An Introduction to Langlands Functoriality

James Arthur

June 2020

The Principle of Functoriality has long been regarded as the centre of the
Langlands Program. More recently, it has had to share the spotlight with Reci-
procity, Langlands’ conjecture that relates automorphic representations with
motives from algebraic geometry. However, the two principles are closely re-
lated, and in any case, Reciprocity came at the end of the decade that followed
the years 1960-1967 that are the focus of this volume.

Functoriality famously had its roots in the seventeen-page letter that Lang-
lands gave to André Weil in 1967 [L2]. He wrote some of the details shortly
afterwards in the article he dedicated to Salomon Bochner [L3]. It represented
a very different direction for Langlands after his monumental volume [L1] on
Eisenstein series, which was largely analysis. Langlands credits Bochner, an
analyst himself, with directing him towards number theory, especially, I believe,
class field theory and its long-sought nonabelian generalization.

There are several ways to introduce functoriality to a general reader. One
is as a series of identities (reciprocity laws) that relate families of conjugacy
classes
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in different complex groups. As objects with complex coordinates, but parametrized
by prime numbers, these families are easy to imagine as gateways to higher
arithmetic. There are already a number of introductions to functoriality from
this point of view. (See for example [A, §4].) We shall take a slightly different
approach here, one that is closer to the way Langlands originally presented func-
torialityﬂ in [L3]. We shall describe it as a fundamental property of L-functions,
and especially the arithmetic L-functions introduced and studied by Emil Artin.
The reader can refer also to the paper [S] by Shahidi in this volume, which is an
introduction to Langlands’ L-functions that is largely complementary to what
is contained here.

The article is intended to be a short historical introduction to functoriality.
I have not taken up a well-founded suggestion of Matthew Sunohara to break
the paper into sections, which I have formulated as:

1. Introduction
2. From Euler’s product to Artin reciprocity to Tate’s thesis

1The name functoriality was introduced only later, along other terms such as automorphic
representation



3. Artin L-functions and Godement—Jacquet L-functions
4. On Langlands’ seven questions
5. Four applications

This would have added clarity, but I have preferred to keep the narrative as
informal as possible. I would like to thank Matthew for this suggestion and for
other thoughtful comments, most of which I have adopted.

L-functions have a long history, with roots in both analytic and algebraic
number theory. For the former, one can look back to Euler. He introduced the

infinite series
1
C(s) = Z s
n=1
for real numbers s > 1, proved that it had what is now called an Euler product

((s) =TT -»p)7", (1)

p

and studied its behaviour near s = 1. For algebraic number theory, one thinks
of Gauss and his famous law of quadratic reciprocity. This formula anticipated
what we look for even today in the study of number fields, and can be used
in this connection to define the coefficients of the first L-functions. These in
some sense represent an early model for the general automorphic L-function of
Langlands.

Recall that a Dirichlet series is an infinite series of the form

o0
E anpn”?,
n=1

for complex coefficients a,, and a complex variable s. If the coefficients satisfy
a bound
lan] < Cn%, neN,

for a positive number «, the series converges in the right half-plane Re(s) > a+1.
The original model is of course Riemann’s extension

¢(s) = Zn_s, Re(s) > 1,

of Euler’s series. It converges to an analytic function of s in the right half-
plane Re(s) > 1. It also has analytic continuation to a meromorphic function
of s € C, whose only singularity is a simple pole at s = 1, and which satisfies a
functional equation relating its values at s and 1 — s. In addition, the Riemann
zeta function has an Euler product. By the fundamental theorem of arithmetic,
it can be represented as a product

) =TJa-p" =11 (Z(pk)_s>
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of Dirichlet series attached to prime numbers.

An L-function is a Dirichlet series with supplementary properties. There
seems to be no universal agreement as to the definition, but let us say that an
L-function is a Dirichlet series that converges in some right half-plane, and that
has an Euler product of the general fornﬂ

L>(s) = H (1 + icp’kp_ks> ,
k=1

p

for complex numbers ¢, . We will not insist on analytic continuation and
functional equation, simply because this has not been established for many of
the L-functions that arise naturally, even though it is widely expected to hold.

Much of the history of nineteenth-century number theory concerns L-functions,
explicitly or implicitly. Not surprisingly, it was Dirichlet who introduced the
first L-functions after the original Euler product. These were the series

L(s,x) = > _x(mn~* =T[(1 = x(p)p~*) "
n=1

p

attached to Dirichlet characters y on (Z/NZ)*, for any positive integer N. It is
understood that x(n) depends only on the congruence class of n modulo NV, and
that x(n) = 0 if n has any prime factors that divide N. The case that N =1 is
of course Euler’s product . Dirichlet studied these objects as functions of a
positive real variable s. The series converges absolutely if s > 1, but Dirichlet
showed that if x # 1, the series converges conditionally for 0 < s < 1 and that
L(1,x) # 0. He used this in 1837 to prove that there are infinitely many primes
in any arithmetic series

{a+nd:n>0} (a,d)=1.

Twenty years later, Riemann studied Euler’s series as a function of a complex
variable s. He proved that it has meromorphic continuation to the complex
plane, as we have already noted, and that the product

L(s,1) = 7 */*T'(s/2)((s)
satisfies the functional equation
L(s,1)=L(1 —s,1).

He also showed that L(s, 1) is entire, apart from a simple pole at s = 1. Finally,
he introduced his hypothesis that the only zeros of L(s, 1) lie on the line Re(s) =
1/2. This would imply a very strong asymptotic estimate for the number

m(x) = {p < =}

2The superscript oo follows the conventions of Langlands. It is used to indicate that the
L-function is incomplete, in the sense that the product is missing an archimedean factor that
would greatly simplify an expected functional equation if it were included.




of primes less than or equal to a large number zx.

The Riemann hypothesis is of course completely open today. What is less
widely discussed is a common belief that the analogue of the Riemann hypothesis
holds for all arithmetic L-functions, apart from certain obvious exceptions. In
particular, it is thought to hold for the general Langlands L-functions L(s,, p)
that are the topic of this article. This would imply equally strong asymptotic
estimates for the arithmetic data that go into the coefficients of these Dirichlet
series.

Later nineteenth-century contributions to the developing theory of L-functions
include Kummer’s 1851 generalization of Dirichlet L-functions to cyclotomic
fields, Dedekind’s 1893 generalization of the Riemann zeta function to arbitrary
number fields, and Weber’s 1897 generalization of Dirichlet L-functions to ar-
bitrary fields. Weber then used the Dedekind zeta function to prove what was
called the first inequality (later demoted to the second inequality!), a fundamen-
tal early step in the development of abelian class field theory. About this time,
the turn of the century, Hilbert was laying the foundations of what would be-
come the modern outline of class field theory. He worked with the Hilbert class
field of a given number field F', the maximal unramified abelian extension of F,
rather than the maximal abelian extension. However, his framework offered a
new perspective, and anticipated what would be used in the general ramified
case. He also rewrote Gauss’ Law of quadratic reciprocity as a product formula
for the Hilbert symbol. This made quadratic reciprocity the foundation of the
simplest case of class field theory (with its corresponding Dirichlet series), the
quadratic extensions of the field F = Q.

We can now go on to Artin L-functions, which we are treating as a foundation
for the L-functions introduced by Langlands. For a short but systematic account
of the history of class field theory, the reader can consult [Con]. The article [Cog]
is an interesting informal introduction to Artin L-functions.

Suppose that F' is a number field, and that K/F is a finite Galois extension.
Recall that almost all prime ideals p in F' are unramified in K, and that for any
such p, the Frobenius class Frob, = ®, is a canonical conjugacy class in the
Galois group

We thus obtain a family
{®p:p &S}

of conjugacy classes, parametrized by the prime ideals p outside some chosen
finite set that includes all the ramified primes. This is a fundamental datum
attached to K/F, which is given entirely in terms of p. Recall also that p is
said to split completely in K if ® is the identity element 1 in I'g/p. It is then
a well-known fact that the map

{K/F} — Spl(K/F), (2)

from the set of finite Galois extensions K/ F of F' to the set of families Spl(K/F) =



Spl® (K/F) of primes p ¢ S that split completely in K, is injectiv There-
fore the map parametrizes the finite Galois extensions K/F in terms the data
Spl(K/F).

Suppose for example that FF = Q. We can represent K as the splitting
field of an irreducible monic polynomial f(x) € Z[x] of degree n. There is then
an embedding of the Galois group I'k /g into the symmetric group S,,, which is
canonical up to conjugacy. The conjugacy classes in S,, correspond to partitions
of n. In particular, if I'g/q equals Sy, which is what happens generically, we
can identify the various Frobenius classes for K/Q with partitions of n. In fact,
it follows from the basic theory that the Frobenius class of an unramified prime
p is the partition defined by the irreducible factors of f(z) modulo p. This gives
a concrete realization of a deep phenomenon. In particular, even without the
restriction on I'i/p, Spl(K/F) is the set of primes p such that f(x) breaks into
linear factors modulo p.

Emil Artin used the families of conjugacy classes ®, to construct the L-
functions that bear his name. For the coefficients, he had to attach complex
parameters to the conjugacy classes in I'g,p. His idea was to take not just the
Galois extension K of F', but also a finite-dimensional complex representation

r:I'g/p — GL(n,C)

of its Galois group. The conjugacy classes in I'/p would then be mapped to
semisimple conjugacy classes in GL(n, C) (of finite order), which could then be
parametrized by their characteristic polynomials. The local Artin L-function at
an unramified prime p ¢ S of F' is defined in these terms as

Ly(s,r) =det(1 — (Np)_sr(d)p))_l.

The (unramified) global Artin L-function for r is then the Euler product

L8(s,r) = [ ] det(1 = (Np)~*r(®p)) .
pés

If we identify p with its normalized valuation v, as is convenient, we can also

write
L8(s,r) = [ Lo(s,r) = ] det(l — ¢ r(®,) 7", (3)

vgS vgS

where g, is the order of the residue class field of p, and .S is now understood to
include the finite set S, of normalized archimedean valuations of F' as well as
the non-archimedean valuations at which r ramifies.

An L-function is not just a way to package arithmetic data. It should also
lead ultimately to fundamental asymptotic properties of these data. A necessary
condition for this would be that the L-function have meromorphic continuation

3The choice of S is immaterial. One could take Spl(K/F) to be the set of equivalence classes
of families SplS (K/F), in which SplS (K/F) is equivalent to SplS’ (K/F) if the intersection of
the two sets has finite complement in each one. The mapping then remains injective with
this interpretation of the right-hand side



to a suitable function on the complex plane. Artin conjectured that for any
r, L9(s,r) could be completed with a suitable contribution Lg(s,r) from the
places in S so that the resulting product

L(s,r) = Lg(s,7)L%(s,r) (4)
has meromorphic continuation, and satisfies a functional equation
L(s,r) =¢e(s,7)L(1 —s,7), (5)
for the contragredient representation
rV(o)="r(c"), o€ Tx/r,

and a monomial
e(s,r) =ab’, ae€C*beC. (6)

He conjectured further that for irreducible r, L(s,r) is entire unless r is the
trivial 1-dimensional representation (in which case his L-function is just the
completed Riemann zeta function

L(s,1) = Loo(s,1)C(s) = 72T (s/2)((s),

which is entire apart from a simple pole at s = 1). It is the last statement that
is the deepest. It is known today simply as the Artin conjecture.

Artin proved the earlier assertions of his conjecture in a way that became
part of the motivation for Langlands’ principle of functoriality. The heart of
what he established was the case that K/F is abelian. One might imagine that
there would be a direct proof of the Artin conjecture in this case. However,
that is not the way the mathematical world was put together. Artin gave a
decidedly indirect proof that even today seems extraordinary. He showed that
every abelian Artin L-function was a Hecke L-function, the class of concrete
L-functions that arose from analysis, and for which Hecke had been able to
establish the desired analytic properties. This was class field theory. Artin
studied what was known, and extended it to what was required for his purposes.
The result was the Artin Reciprocity Law, which we state in adelic terms as
follows.

Artin Reciprocity Law. Suppose that K/F is an abelian extension of the
number field F. Then there is a canonical isomorphism

We recall here that the adéle ring of F' is a topological direct limit
Ap :@(H Fyx [ (’)s>,
S Myes vgS

where S ranges over finite sets of valuations of F' that contain the set S, of
archimedean valuations. Then A is a locally compact ring (commutative, with



1), which contains the diagonal image of F' as a discrete, co-compact subring. It
was introduced by Artin and Whaples (1945), following the earlier introduction
of its group of units, the idéele group

Ir = A} = GL(1,Ap),
by Chevalley (1940). The idéle class group is the quotient
Cp=1Ip/F*,
while its quotient
Cr/Ng/r(Ck) = Ir/F* Ng/r(IK) (8)

is the domain of the Artin map 0, r in . The norm map Ng/p : Cx — Cr
is built in the obvious way from the usual norm maps between local and global
fields.

The definition of the Artin map is built on local class field theory, which
asserts that there is a canonical isomorphism

Or,/F, - F)/ Nk, p,(Ky) — Tk, /5,

for any completions F, of F' and K, of K over F,. Since I'r,r is abelian,
this provides a canonical embedding of I'gc, /, into I'k /- that depends only on
F, (and not the choice of the field K, over F,). The product over v of these
embeddings then gives a well-defined mapping

Ox/r: Ir/Ng/p(Ix) — TP

The deepest property, the one that makes this global mapping a “reciprocity
law”, is the fact that its kernel equals the image of the subgroup F* of Ig.
Therefore 6, descends to a mapping on the domain (8] of (7). This seems to
have been a point that late nineteenth-century number theorists struggled with.
It was eventually clarified (at least for unramified extensions K/F') by Hilbert.

We have formulated the Artin reciprocity law in this detail so as to serve
as a foundation for Langlands’ nonabelian generalization. Our description does
rely on local class field theory, which was an important advance in its own
right. However, one could set up the Artin map 0 /r in a more elementary,
if less elegant, way by restricting the factors 0 ,p, of O/ r to the unramified
places of K/F, where they can be defined in terms of Frobenius elements in
Ik/p. The adelic formulation itself could be replaced by the more concrete
(but also more cumbersome) classical description in terms of “moduli” and
“conductors”. For further information a reader might consult the Wikipedia
articles, “Artin reciprocity law” and “Symbols (number theory)”, from June 3,
2020. The second of these is like a one-page history of class field theory, in the
form of a list of symbols for the evolving reciprocity maps, from the Legendre
symbol of quadratic reciprocity to the Hilbert symbol for Kummer extensions,
and then finally, to the Artin symbol for arbitrary abelian extensions.



An abelian Artin L-function of degree 1 is defined by a character £ on the
abelian Galois group I'g/r on the right hand side of . A character x on the
domain at the left in defines a Hecke L-function. The two definitions can be
seen to match under the isomorphism 6, thereby giving an identity

L(s,§) = HLU(S,&,) = HLU(SaXv) = L(s,x) ()

of the two kinds of abelian L-functions. Hecke used harmonic analysis to show
that his abelian L-functions satisfied analogues of all the conditions conjectured
by Artin. Therefore the abelian L-functions of Artin also satisfy the assertions
of his conjecture. It was in its form of a correspondence & — x of abelian
global characters, and the resulting identity @[) of L-functions, that Langlands
generalized Artin reciprocity.

Artin used his reciprocity law and the Hecke L-functions L(s, x) it provided
to prove some of the assertions of his general conjecture. The idea was to
decompose a general representation r of I'i/p into a virtual linear combination

r= Zai Indr, (&), T =Tg/r,

for one-dimensional representations ; of cyclic subgroups I'; of I' = I'/ . Artin
proved that this could be done for rational numbers a;. Standard properties of
L-functions then provided a corresponding product decomposition

L(s,r) = HL(s,@-)‘“

of L(s,r) into abelian L-functions over cyclic extensions K/F;. Artin was then
able to use this to establish the analytic continuation and functional equation
of L(s,r). (See [Cog, p.10] for further remarks on this, including its relation
to the later Brauer induction theorem.) What the decomposition did not give
was Artin’s conjectural assertion that L(s,r) is entire. The problem is the
contribution to the product of the negative numbers a;, from which the zeros
of L(s,¢&;) could contribute poles to L(s,r). This crosses into the domain of the
Riemann hypothesis and its analogues for Hecke L-functions. The phenomenon
is certainly interesting but, by itself at least, does not offer any help with the last
assertion of the conjecture, the assertion now known as the Artin conjecture.

Hecke studied the L-functions L(s, x) for what he called Grossencharaktere
(now known simply Hecke characters). They amount to characters on the full
idele class group Cr, not just those that descend to Cr/Ng/p(Ck), for a
general number field F', although the ideles were not introduced until twenty
years later. Hecke’s L-functions represent a major generalization of the Dirichlet
L-functions and the Dedekind zeta functions, and indeed, all of the extensions
of these functions that had previously been studied. To establish their analytic
properties Hecke relied on the classical Mellin transform and classical Poisson
summation. In this, he was following Riemann, but with arguments that were
by necessity considerably more sophisticated.



Thirty years later, Tate’s 1950 Ph.D. thesis [T1] gave a different way of
looking at both Hecke’s proofs and his results. Tate had the advantage of being
able to work with the ideles Ir = A; that had been introduced ten years earlier
by Chevalley, and in terms of which we stated the Artin reciprocity law. The
heart of his proof was the application of the Poisson summation formula for the
discrete subgroup F' of the adele ring Ar. The simplicity of Tate’s arguments
led to an important refinement of the functional equation

L(Sv X) = 5(87X)L(1 - SvY)

for the given L-function

L(S?X) = LS’(Sa X)LS(57X)'

This was a decomposition of the global monomial in the equation into a product

5(57X) = H 5(57X1nwv)

veS

of local monomials

1
5(87 Xvs 1/%) = 5(Xm wv)qv_nv(s_i)a
where ¢, equals the residual degree of F,, if v is non-archimedean, and equals
1 if v is archimedean, and ) is a nontrivial additive character on the quotient
Ap/F.

We are working towards the 1968 preprint [L3] of Langlands, and the seven
questions it posed, in our attempt to understand the origins of functoriality. The
logical next step in our exposition here is the generalization of Tate’s thesis from
GL(1) to GL(n) by Jacquet and Godement [GJ]. It was not published until 1972,
well after [L3], but its future existence was clearly part of Langlands’ thinking.
He was in regular communication with Godement throughout the 1960s, and he
mentions the extension of Tate’s thesis in his paper [L3] as an essential premise
for his conjectures.

Suppose for a moment that G is any reductive group over a number field
F, and that « is an automorphic representation of G (which is to say, of the
locally compact group G(Ap)). This term was not in use at the time of [L3],
as we observed in the footnote 1. Its formal definition did not come until the
Corvallis conference [B7], [L5] ten years later. Langlands simply referred to m
as an irreducible representation of G(Ap) that “occurs in” L*(G(F)\G(Ar)), a
description that gives a good idea of the concept, even if it is also somewhat more
restrictive than what became the general definition. Langlands also took for
granted that an automorphic representation m has a unique (restricted) tensor
product decomposition

= ®7rv, o € II(G,),



into irreducible representations m, of the local components G, = G(F,) of
G(AF), almost all of which are unramified. The formal proof of this by Flath
also came ten years later at the Corvallis conference [F].

We recall that an irreducible representation m, of G, is unramified if GG, is
quasi-split over F,, and split over some unramified extension F, of F,, and if the
restriction of m, to a suitable (hyperspecial) maximal compact subgroup K, of
G, = G(F,) contains the trivial 1-dimensional representation of K. Langlands
introduced this notion in [L3] (again without the name). He then observed that
there was a bijective correspondence 7, — ¢(m,) from the unramified represen-
tations m, of G, to the semisimple conjugacy classes ¢, in the L—groupﬁ

LG,U:GUNFE“/E)%LG:GXFE/F, éy:é7

whose image in I'p, /g, projects onto the Frobenius class ®,. This is a con-
sequence of the classification of complex-valued homomorphisms on the Hecke
algebra C.(K,\G,/K,) (under convolution) or equivalently, the description of
the unramified principal series for G,,. The automorphic representation 7 of G
thus gives rise to a family

e(m) = {eu(m) = e(m,) s v ¢ 5}

of semisimple conjugacy classes in “G, where S O S, is again a finite set of
valuations of F' outside of which m, is unramified.

Returning to the volume of Godement—Jacquet, we take G equal to GL(n)
over F'. An automorphic representation m of G now gives a family

co(m) = {eo(m) = c(my) : v € S}

of semisimple conjugacy classes in the complex group ‘G = G = GL(n,C).
A very special case of Langlands’ general definitions (which we will come to
presently) is then the associated family

L,(s,m) = L(s,m,) = det(1 — qvfsc“(w))*l, v &S,

of unramified local L-functions, and the unramified global Euler product

Lo(s,m) = H L,(s,m), (3"

vgS

which converges for Re(s) in some right half-plane.
The main theorem of [GJ] applies to the basic case that 7 is cuspidal. It
asserts that L%(s, ) can be expanded by a finite product

Ls(s,m) = H Ly(s,m) = H L(s, )

veS veS

4Langlands had earlier introduced the fundamental notion he called the associate group
for G, and that Borel later named the L-group in [B1]. The notation here is due to Kottwitz
(K].

10



of ramified local L-functions so that the resulting completion
L(s,m) = Lg(s,m)L°(s, ) 4"
has meromorphic continuation, and satisfies a functional equation
L(s,m) =¢e(s,m)L(1 —s,7"), (5"

for the contragredient representation 7 = !r(x~!), and a finite product

e(s,m) = [ elsmatts) (6)

veES

of local monomials

g (s—1
6(5777-1)7'(/}1)) :E(ﬂ-vawv)qv ( 2)

that depend on the local components v, of a nontrivial additive character ¥
on Ap/F. Moreover, L(s,w) is entire unless n = 1 and n(z) = |z|* for some
u € C. This theorem is the natural generalization of the theorem of Tate for
n = 1, itself a refinement of the fundamental results of Hecke. The restriction to
cuspidal 7 is not a serious impediment. With techniques from Langlands’ theory
of Eisenstein series [L1], the theorem can be extended to arbitrary automorphic
representations m of G.

With the Galois L-functions L(s,r) of degree n and the automorphic L-
functions L(s,7) for GL(n), our exposition has acquired a certain symmetry.
The Galois representation r can in fact be made independent of the finite Galois
extension K /F', simply by taking it to be a continuous, complex representation
of the absolute Galois group I'r = Gal(F/F). For it would then automatically
factor through a finite quotient I/ . The other discrepancy between the two
theories is more significant. It is the lack of a local factorization for Artin’s
Galois e-factor £(s,r) that would match the canonical factorization (6') of the
automorphic e-factor (s, ) attached to v,. For Langlands, this was a serious
deficiency, given the local classification he had in mind for Question 6 of [L3],
which we will come to presently. He worked hard in the late 1960s to establish
a local construction of Artin e-factors e(s,7,,%,). He eventually succeeded,
but did not include all of the details in his long treatise [L4]. Soon afterwards,
Deligne was able to find a simpler global solution of the problem [T2].

The upshot is that the two theories are completely parallel. Taken together,
they very much resemble what had been established in the abelian case of GL(1).
Given the Artin reciprocity law, a reader might well wonder whether every
Artin L-function of a degree n representation r of I'r is a Godement—Jacquet
L-function of an automorphic representation 7 of GL(n). That is, whether there
is an injective correspondence r — 7 such that

L(s,r) = [[ Lo(s,7) = ] ] Lu(s,7) = L(s, 7). (9)

11



We would then have a reciprocity law that amounted to nonabelian class field
theory. If so, would it then be the final word on the subject?

There are three points to consider in regard to the last question. One would
be the uncomfortable prospect of having to prove such a broad nonabelian
reciprocity law, given the historical difficulty in establishing just the abelian
theory. Nonabelian class field theory, whatever form it might take, was obviously
going to be very deep. It would be reassuring to think that the problem at
least had some further structure. A second point concerns this last possibility.
Suppose that r’ is an irreducible Galois representation of degree n’, and that p’
is an irreducible n-dimensional representation of GL(n’, C). The composition

r:Tr 25 GL(,C) 5 GL(n,C)

is then a Galois representation (frequently irreducible) of degree n. The Frobe-
nius classes that define the Artin L-functions L°(s,r’) and

L3(s,r) = L%(s,p or)
satisfy the obvious relation

T(q)v) = (Pl o 7"/>((I)v>v vegs.

How could this be reflected in the corresponding automorphic representations?
Finally, the work of Harish-Chandra has taught us that representations should
be studied uniformly for all groups. If some interesting phenomenon is dis-
covered in one group, or one family of groups such as {GL(n)}, it should be
investigated for all groups. What are the implications of this for automorphic
L-functions?

These considerations were undoubtedly part of the thinking of Langlands
that led up to the Principle of Functoriality. However, perhaps the most deci-
sive hints were in his theory of Eisenstein series. They came from the L-functions
that he discovered in the global intertwining operators M (w, A) from his func-
tional equations for Eisenstein series. Thus informed by his general results on
Eisenstein series, as well as his study of Artin L-functions and abelian class field
theory, and perhaps above all, his earlier study of the work of Harish-Chandra,
Langlands put his ideas together in the letter to Weil and the paper [L3]. It was
clear to him that the theory should indeed encompass the automorphic repre-
sentations m of an arbitrary reductive group G over F. He actually took F' to
be any global field, but we shall continue to assume that it is a number field.

At the beginning of [L3], Langlands introduced the L-group. This was a
sweeping new idea in its own right. He then defined the semisimple conjugacy
classes ¢, (m) = ¢(m,) in “G attached to the unramified constituents of an auto-
morphic representation 7, which of course also gave the family ¢(7) = {c,(m)}
we have described above. But he wanted also to attach L-functions to these ob-
jects. This was not immediately clear, since unramified L-functions had always
been defined as characteristic polynomials, and the L-group “G that contains
the conjugacy classes from 7 does not usually come with a general linear group.

12



Langlands’ solution was simple and elegant. It was to attach another datum to
7, a finite-dimensional representation

p:*G — GL(n,C)

of the L-group. The unramified local and global L-functions could then be
defined as

Ly(s,m,p) = L(3, 70, po) = det(1 — g, pu(cu(m))) !

and

S(s,m,p) HL (s,m,p). (3"
vgS

Langlands formulated his ideas as a series of questions. The first was de-
signed to frame the entire discussion in terms of L-functions. It asked whether
the unramified L-functions L°(s, , p) above have the same analytic properties
as in the special case of Godement—Jacquet.

Question 1. Given G/F, ® and p as above, is it possible to define local L-
functions

Ly(s,m,p) = L(s,my, py)

and epsilon factors

Ny (s— 2)

Ev (8 ™ p "l}) - E(S 7Tv7pvawv) - €(ﬂvapvawv)qv

at the ramified (and archimedean) places v € S so that if

s(s,m,p) HL 8,7, p)

veS
and
Sﬂ-p H&;Sﬂ-pa ) (6N)
veS
then the completed global L-function
L(s,m,p) = Ls(s,m, p)L*(s,m, p) (4”)

has meromorphic continuation to the complex plane with only finitely many
poles, and satisfies the functional equation

L(s,7,p) =¢e(s,m p)L(1 — s,m,p"), (5"

for p¥ ="p(g=")?

Langlands then alluded to the case that G equals GL(n) and p is the standard
n-dimensional representation of G = GL(n,C). In this case, L(s, T, p) = L(s, )
is the Godement—Jacquet L-function. Referring to ongoing work of Godement,
Langlands offered the expectation that the assertions of Question 1 would be
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answered affirmatively in this case. The other special case of immediate interest
was for G equal to the trivial group {1}. This of course forces the automor-
phic representation to be trivial, but p = r can still be an arbitrary complex
representation of the L-group

LG = {1} xT'p,

or in other words, a continuous representation of the absolute Galois group I'g.
In this case, L(s,m, p) = L(s,r) is an arbitrary Artin L-function. By introducing
the further L-functions L(s,w, p), with the plausible hope that they too have
the desired analytic properties, Langlands does indeed impose further structure
on the general problem of relating L(s,r) to L(s,n). This becomes more vivid
as we go along.

After stating Question 1, Langlands wrote, “The idea that led Artin to the
general [abelian| reciprocity law suggests that we try to answer [Question 1] in
general by answering a further series of questions.” It would be very interesting
to trace through the details of Artin’s proof with Langlands’ questions as a guide,
but I have not done so. The remaining six questions are divided into three pairs,
each consisting of a local and a global version of a question. Question 2 and 3
concern how the L-functions behave under inner twists. It is Question 4 and 5
that introduce local and global functoriality, our main topic. Questions 6 and 7
represent a generalization of parts of functoriality, with the Weil group Wy in
place of the Galois group I'fp.

Recall that an arbitrary reductive group G over F' can be obtained uniquely
from a quasi-split group G* (a group that contains a Borel subgroup B* over
F) by twisting the Galois action on G* by inner automorphisms. The L-group
LG* of G* is then equal to that of G. Questions 2 and 3 ask whether the
automorphic representation theory of GG is similar to that of G*. More precisely,
is there a correspondence (binary relation) m, — 7 of representations over each
localization F, such that L(s,m,, py) equals L(s, 7, p,)? Then if 7 = @,
is automorphic, is 7" = ®v7r; also automorphic, thereby giving an identity
L(s,m,p) = L(s,7*, p) of automorphic L-functions for different groups? The
answers to these questions are turning out to be interesting and subtle. The
representation theory of inner twists is now treated as part of a different theory,
Langlands’ conjectural theory of endoscopy, which began to evolve in the 1970s.
This means that for these questions on L-functions and functoriality, one usually
takes G to be quasi-split over F.

For Questions 4 and 5 on functoriality, we take G’ and G to be two quasi-split
groups over the number field F, related by an L-homomorphism

p/ZLG/—>LG

between their L-groups. Question 4 asks whether there is a local correspondence
m,, — m, between the irreducible representations «,, and m, of G'(F,) and G(F),)
such that

L(Saﬂ-inp'u) = L(S77T;apv o P;)
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and
E(Sa anpva'(/)v) = 5(87 Wi;apv o p;n wv)

for every complex finite-dimensional representation p, of “G, and every non-
trivial additive character v, on F,. This is local functoriality. Question 5
then asks if 7’ = @), 7, is automorphic for G’, and 7, — m, for every v, whether
T = ®U7rv is automorphic for G. This is global functoriality. It implies the
identity

L(s,m,p) = L(s,7",pop')

of global L-functions for every complex, finite-dimensional representation p of
E@. At first glance, it might in fact seem like a harmless assertion. This perhaps
accounts for how long it took to be accepted by the mathematical community
for what it was, a revolutionary change in our understanding of number theory.

The last two questions concern the special case of functoriality in which
G’ = {1}. Then p’ is an L-homomorphism from the Galois group to the dual
group “G of the given quasi-split group. For these questions, Langlands replaced
the Galois groups I', and I'» by the local and global Weil groups Wr, and Wg.
My understanding is that he learned of these objects in his discussions with Weil,
and that he was very happy to discover that they would become a natural part
of his theory. Weil had introduced his groupsﬂ in 1951, as objects that behaved
very much like Galois groups. In particular, he was able to attach L-functions
(local or global) to finite-dimensional representations ¢ of the relevant Weil
group, thereby providing an important generalization of Artin L-functions.

Question 6 asks whether there is a correspondence ¢, — m,, which takes
L-homomorphisms ¢, : Wg, — L@, to irreducible representations m, of G(F,),
such that

L(s, 7y, pv) = L(s, py © ¢0)

and®
(8, Ty Pus o) = (8, Pu © Gu, ),

for every complex finite-dimensional representation p, of L@,, and every non-
trivial additive character 1, of F,,. Question 7 then asks if ¢ : Wr — G is an

L-homomorphism, and 7 = ), 7, for local images ¢, — m, of the correspon-
dence, whether 7 is automorphic for G. This would imply the identity

L(s,m p) = L(s,po ¢)

of global L-functions attached to complex, finite-dimensional representations
p of “G. The local Question 6 has turned out to be particularly important.
Langlands later wrote II4, for the set of images m, of a given ¢, under the

5We recall that the Weil group (over F,, or F) is a locally compact group, with a canonical
mapping into the corresponding Galois group (over Fy, or F'), whose image is dense. The
pullback of the mapping then gives an injection r — ¢ from Galois representations to Weil
group representations. The Weil L-function for the image of r of course then coincides with
the Artin L-function of r. (See [T].)

6Langlands was anticipating the results of [L4] here, which included the existence of local
e-factors for Weil groups.
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correspondence ¢,, — m,. The local Langlands classification, or local Langlands
correspondence, is the conjecture that the L-packets II4, are finite, disjoint
sets, whose union over ¢, is the set of alﬂ irreducible representations of G(F,).
This is now known for quasi-split classical groups, and for all real groups, but
otherwise remains largely open. It is now treated as part of Langlands theory
of endoscopy.

Let us add a couple more remarks to our description of the questions of
[L3]. We have tried to motivate the Principle of Functoriality according to the
presentation of Langlands, as a natural outgrowth of the theory of L-functions.
More narrowly, we could think of it simply as an attempt to understand Artin
L-functions, and to prove the Artin conjecture that L(s,r) is entire. We think
back to the simple question we raised on the possible correspondence r — 7
from Galois representations of degree n to automorphic representations of GL(n)
(with its associated matching (') of L-functions). The three points we raised
then are clearly accounted for in the greatly expanded theory encompassed by
Langlands’ seven questions. For a start, the automorphic L-functions L(s,, p)
of Question 1 are attached to automorphic representations 7 of a general group
G, not just GL(n). Secondly, the seven questions reveal a vast, previously
hidden, structure that surrounds the original two L-functions L(s,r) and L(s, 7).
And finally, the automorphic interpretation of the Artin L-function L(s,r) =
L(s,r',p') attached to an n-dimensional representation p’ of GL(n/,C) is just
the existence of an automorphic representation 7w of GL(n) attached to the given
automorphic representation 7’ of GL(n') such that L(s,7) = L(s, 7', p’). This
is functoriality itself, or rather the special case of it for general linear groups.

As we have noted at the beginning, one can also motivate functoriality simply
as a set of reciprocity laws among concrete arithmetic data. Recall that an
automorphic representation 7 of a reductive group G over F' comes with a
family

e(m) = {eu(m) = e(m,) s v & )

of semisimple conjugacy classes in “G. Suppose that G', 7', G and p’ are as
in the statement of functoriality from Langlands Questions 4 and 5. Then
functoriality asserts the existence of an automorphic representation 7 of G such
that

c(m) = p(c(7)).

In other words, for each v outside a finite set .S, the conjugacy class in L@ that
contains p'(¢(m,)) equals ¢(m,). These data should among other things govern
the fundamental structure of arithmetic algebraic varieties, and their motivic
components. It seems truly remarkable that they should satisfy such concrete
relations.

We conclude by recalling the four fundamental applications of functoriality
sketched by Langlands at the end of his paper [L3].

"This is correctly stated here only if the local field F, is archimedean. If F, is non-
archimedean, one must replace Wg, with the larger group Wg, x SU(2) in order to account
for the Steinberg representation m, of G(F,), and more generally, what are called the special
representations.
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(i)

(iii)

Artin L-functions and nonabelian class field theory: We have already com-
mented on this, but it is worth repeating, since it is by any measure what
mathematicians have been searching for ever since Artin. It is the case
of functoriality with G’ = {1}, p’ = r an n-dimensional representation of
the L-group group “G’ = T'p, and p = St,, the standard representation of
GL(n,C). The assertion of functoriality is that there is an automorphic
representation m of GL(n) such that

L(s,7) = L(s,m).

This is the original desired identity @ that we have just been discussing.
It characterizes the arithmetic data that classify Galois extensions of F'
in analytic terms. It also tells us any irreducible Artin L-function is a
cuspidal Godement—Jacquet L-function for GL(n), and hence entire.

Analytic continuation and functional equation: This is a generalization
of (i) to an arbitrary automorphic L-function L(s,, p), attached to an
automorphic representation 7 of G and an N-dimensional representation
p of L@. Functoriality asserts that there is an automorphic representation
mn of Gy = GL(N) such that L(s,m, px o p) equals L(s,mx, pn), for any
complex representaiton py of LGy. If we take pn to be the standard
representation Sty of G, the assertion becomes

L(S,W,p) = L(s77TN)'

In other words, any automorphic L-function is Godement—-Jacquet L-
function. It therefore has meromorphic continuation and functional equa-
tion, with only finitely many poles.

Generalized Ramanujan conjecture: The generalized Ramanujan conjec-

ture asserts that a cuspidal automorphic representation 7 = @), m, of
GL(n) is tempered. This means that the character

fo — tr(n(f)), fo € CZ(GL(n, Fy)),

of each local constituent 7, of m is tempered, in the sense that it ex-
tends to a continuous linear form on the Schwartz space C(GL(n, F,)) on
GL(n, F,) defined by Harish-Chandra. We recall that the classical Ra-
manujan conjecture applies to the case n = 2, and 7 comes from the cusp
form of weight 12 and level 1. It was proved by Deligne, who established
more generally (for n = 2) that the conjecture holds if 7 is attached to
any holomorphic cusp form. The case that m comes from a Maass form
remains an important open problem. Langlands observed that functori-
ality, combined with expected properties of the correspondence ' — T,
would imply the generalized Ramanujan conjecture for GL(n). His rep-
resentation theoretic argument is strikingly similar to Deligne’s geometric
proof.
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(iv) Sato—Tate conjecture: The Sato—Tate conjecture for the distribution of the
numbers N,(E) of solutions (mod p) of an elliptic curve E over Q has a
general analogue for automorphic representations. Suppose for example
that 7 is a cuspidal automorphic representation of GL(n). The gener-
alized Ramanujan conjecture of (iii) asserts that the conjugacy classes,
represented by diagonal S,,-orbits

cpa(m) 0

0 Cpn(T)

have eigenvalues of absolute value 1. The generalized Sato—Tate conjec-
ture describes their distribution in the maximal compact torus U(1)™ of
the dual group GL(n,C). If 7 is primitive (a notion that requires func-
toriality even to define), the distribution of these classes should be given
by the weight function in the Weyl integration formula for the unitary
group U(n). Langlands sketched a rough argument for establishing such
a result from general functoriality. Clozel, Harris, Shepherd-Barron and
Taylor followed this argument in their proof of the original Sato—Tate con-
jecture, but using base change for GL(n) and deformation results in place
of functoriality.

I would like to express my gratitude to Robert Langlands, for his friendship
and encouragement over the many years since I first met him in 1968, and also
for what he has given to everyone in his beautiful and profound mathematical
contributions. They offer inspiration for all of us in these troubled times when
we are most in need of it.

18



Figure 1: Jim Arthur and Bob Langlands,
courtesy of the Simons Foundation
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