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Abstract. This article is an introduction to the L~-cohomology of arithmetic symmetric 
spaces. We shall describe properties of automorphic representations which lead to a 
remarkable interplay among Hodge structures, Lefschetz structures, and Hecke operators. 
In order to make the discussion slightly more concrete, we shall focus on the special case 
of Siegel moduli space. 

Resume. Cet article est une introduction a la cohomologie L2 des espaces 
symetriques arithmetiques. On dkcrit des propriktks des representations automorphes 
ou interagissent de facon remarquahle les structures de Hodge et de Lefschetz et les 
opkrateurs de Hecke. Pour fixer les idkes, on se restreint au cas particulier des espaces 
de modules de Siegel. 

I was asked by the editors to submit a general article on the trace 
formula. There are severalsuch papers already [4], [22], [61, [231, [IS], and 
I was not sure I could add anything. I decided to write a survey article on 
a different topic, one to which the trace formula has been applied and will 
certainly be applied further. 

The article is on the relationship between L2-cohomology and auto- 
morphic representations. It is an introduction of sorts to the papers [3] 
and [S], especially [8,Â§91 I shall try to Illustrate some general phenomena 
by looking at a basic case-Siegel moduli space S(N) of level N. The phe- 
nomena, partly known (Theorem 1) and partly conjectural (Conjecture 2), 
concern the interplay among Hodge structures, Lefschetz structures and 
Hecke operators. Taken together, they may be regarded as a reciprocity 
law for S(N) at the Archimedean place. For a general discussion of reci- 
procity laws at the unramified finite places, see the papers [26] and [211. 

Fix a positive integer n and let 3 f  be the Siegel upper half space of genus 
n. Then 3 f  is the space of ( n  x n)-complex matrices of the form 

where Xis a real symmetric matrix and Y is a real positive-definite matrix. 
Observe that 3f is an open subset of the complexvector space of complex 
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symmetric matrices, and is therefore a complex manifold. Let G be the 
symplectic group Sp ( 2 n )  of rank n.  Then G ( K )  acts on 3f by 

for any element g = in G (R). The isotropy group of the matrix 

i1 is a maxirnal'compact subgroup K of G ( R ) ,  which is isomorphic to the 
unitary group U ( n ,  C). We obtain a canonical diffeomorphism 

If N  is a positive integer, 

is a discrete subgroup of G ( K ) .  We shall assume that N  is large enough 
so that F ( N )  acts properly discontinuously on 3f. The quotient 

is called the Siege1 moduli space of level N.  The space is a compact mani- 
fold which is known to be a quasi-projective algebraic variety [Ill ,  and it 
comes with a complete Hermitianmetric. Many of its most interesting fea- 
tures can be seen in its cohomology. The space is noncompact, however, 
so it is best to take the L2-cohomology 

with respect to the given complete metric. The L2-cohomology of such 
a space behaves exactly like the ordinary cohomology of a nonsingular 
projective variety [14]. It is a finite dimensional, graded, complex vector 
space which satisfies Poincare duality, it has a Hodge decomposition, and 
it satisfies the hard Lefschetz theorem. We would like to describe these 
things explicitly. 

One of the reasons that S ( N )  is interesting is that it also comes with 
a large family of correspondences, which show up as Hecke operators on 
the cohomology. Before we describe these operators, however, we need 
to recall the adelic description of S ( N ) .  

From our given N  we can construct an open compact subgroup 
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of G ( A f ) ,  the group of points with values in the ring Af of finite adeles. 
Recall also that we have a diagonal embedding 

of G ( Q )  as a discrete subgroup of the full adelic group. The group G  is 
simply connected. The strong approximation theorem [19] then tells us 
that 

G ( A ) =  G ( Q ) . G ( R ) K f ( N ) .  

we obtain a diffeomorphism 

Dividing on the right by the group K  c G ( R )  (which of course commutes 
with K f  ( N ) ) ,  we obtain the adelic representation 

of S ( N ) .  This looks more cumbersome than the original description, but 
it has some distinct advantages. For example, one could treat all the va- 
rieties S ( N )  simultaneously by taking the topological inverse limit 

The Hecke operators come from the action of G  ( A f )  on S  by right trans- 
lation. 

The L2-cohomology of S  is a direct limit 

of finite dimensional spaces. The action of an element g â G  ( A f )  on S  
determines an endomorphism H?,) (g) on the Infinite dimensional space 
H?,) ( S ) ,  but the endomorphism does not generally leave invariant the 
subspace 

H & ( S ( N ) )  = H ^ ( S ) ~ ~ ( ~ ' .  

However, if we average over the points in the open compact subset 
Kf  ( N )  -g  . K f ( N )  of G ( A f ) ,  the resulting operator will leave H h  ( S ( N ) )  
invariant. More generally, if h is an element in the space 
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of compactly supported, Kf (N) -bi-invariant functions on G (Af), the en- 
domorphism 

HT;) (h )=  [G(A,) h ( g ~ ) H w g ~ ) d g s  

acts on the finite dimensional vector space H&, (S(N)). In fact, A{(N) 
is an algebra under convolution on G(Af), and as such, operates on 
H?,, (S(N}). It is these endomorohisms which are. the Hecke ooerators. ,<, . . . 
They carry fundamental arithmetic information, in the form of numerical 
data obtained from their eigenvalues on the various spaces H"; ( S ( N ) ) .  

Using the trace formula, I proved a closed formula for the~efschetz 
number 

Â £ W  y ^ - l ) m t r ( ~ &  (h))  
m 

of any Hecke operator [7]. The formula has a finite number of terms, each 
of which can be evaluated explicitly in terms of the characters of discrete 
series representations of G (R). In principle it could be used to calculate 
the eigenvalues of Hecke operators. However, this is not really the role of 
the formula, and it would not be practical in any case. For one thing, the 
number of terms increases with the height 

of a Hecke operator Kf (N) -g  . Kf (N). The formula should rather be used 
in conjunction with some arithmetic Lefschetz fixed point formula, which 
displays the arithmetic information in terms of its origins in algebraic ge- 
ometry. An important step in this direction was taken by Goresky and 
Macpherson (in collaboration with Harder and Kottwitz), who established 
a topological proof of the formula for Lo. (See [16].) They obtained 
a formula for the intersection cohomology Lefschetz number of a Hecke - 
correspondence on the Bailey-Bore1 - compactificationS(N) of S(N). It is a 
difficult business since S(N) is highly singular, and the Hecke correspon- 
dences intersect the diagonal in a complicated way. One hopes that their 
methods will eventually lead to similar formulas for the 8-adic version of 
intersection cohomology. 

We cannot discuss such things here. Our purpose rather is to de- 
scribe the interplay on L2-cohomology of the Hecke operators, the Hodge 
structure, and the Lefschetz structure. 

The Hodge and Lefschetz structures are decompositions of 
H?;) (S(N)) into irreducible subspaces, relative to the actions of two 
different groups. For the Hodge structure, the relevant group is C*. The 
irreducible constituents are one-dimensional representations of the form 
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with p and q nonnegative integers. This gives the Hodge decomposition 

of the cohomology into isotypical subspaces. For the Lefschetz 
structure the group is SL(2,C). The differential of its representation on - - 

H& (S(N) ), evaluated at the element (2 A) in the Lie algebra. is the 

nilpotent action by cup product of a ~2h le r  form. If d = dim(S(N)), the 

element [i ) E SL(2,C) acts on H$+)~(s(N)) by zk. As our third 

ingredient we have the Hecke operators, acting as a representation of 
the convolution algebra Af  (N) on HT2, (S(N)). 

The action of Af(N)  on Hm(S(N)) commutes with that of both C* 
and SL(2, C). We can also make the two group actions commute, if we 
replace the Hodge structure by a Tate twist. More precisely, if p' and v 
are the representations of C* and SL(2, C) just described, we replace // 
bv 

Then the three actions all commute. In other words the Hecke operators. 
the Hodge structure, and the Lefschetz decomposition can all be put to- 
gether as a single representation of 

on the cohomology H;) (S(N)). We would like to describe this represen- 
tation more explicitly. 

2. The spectral decomposition of cohomology 
The first step is a qualitative description of the cohomology In terms of 
the spectraldecompositionof L2(G (Q) \G (A)) .  It is not difficult toderive 
this decomposition, at least in the case of compact quotient. Suppose for 
the moment that S(N)= r (N)  \3f is replaced by F\3f, where F c G (R) is 
a discrete cocompact subgroup which operates properly discontinuously 
on 3f. We shall sketch the arguments from [13, VII, Â§1-31 

The de Rharn cohomology H* (F\3f) is the cohomology of the com- 
plex A* (n3f) of differential forms onF\3f. Thus, Am (r \3f)  is the space 
of complex m-forms 

w:AmT(r\3f)-C 
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with the boundary operator 

Here T  ( r \ N )  denotes the complexified tangent bundle, and Xo, . . . , Xm 
are complex vector fields. 

A preliminary observation is that Am(T\Jf)  can be identified with 
the space Am (w of r-invariant forms on 3{. Next, we recall that the 
complexified tangent bundle on 3-[ is homogeneous. More precisely, 

where g and f denote the complexified Lie algebras of G (R)  and K, and 
K acts by the adjoint representations on g/f. A similar assertion applies 
to any exterior power A m T ( f f )  of the tangent bundle, so we may identify 
Am (.?/')r with 

a space of functions on r\G(R) with values in the dual space of Am (g/f). 
This in turn can be written as 

the space of K-invariant linear transformations between two complexvec- 
tor spaces. The boundary operator above then has an immediate interpre- 
tation as a map 

The cohomology of the resulting complex is, by definition, the relative Lie 
algebra cohomology H* (a, K;Cm(r\G(R))) of (g, K) with values in the 
(g, K)-module Cm(r\G (R)). to other words 

The third observation is that we can exploit the spectral decomposition 
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of L2 ( r \ G ( R ) )  into irreducible representations r r ~  of G ( R ) .  We obtain 

where rrif is the dense subspace of smoothvectors for the representation 
X R .  

If r is replaced by the group r ( N )  we started with, r ( N ) \ G ( R )  is 
no longer compact. Then L2 ( r ( N ) \ G ( R ) )  has a continuous as well as a 
discrete spectrum, and one must use the arguments above with caution. 
However, Borel and Casselman 1121 have shown that they remain valid. 
The upshot is a decomposition 

where m d i s c ( m , r ( N ) )  is the multiplicity of U K  in the subspace 
f i iS, .(r(N) \ G ( R ) )  of L ^ ~ ( N )  \G ( R ) )  which decomposes discretely. 

The diffeomorphism 

is compatible with right translationby G  ( R )  on both spaces. We therefore 
have a G  (R)-isomorphism 

To analyze the right hand space more fully, it makes sense to consider 
the action of the larger group G  (A)  on 

As a representation of G ( A ) ,  this space is a direct sum of irreducible 
representations rr of G  ( A ) ,  with finite multiplicities mdjsc (rr )  . Each such 
rr is a tensor product 

of irreducible representations of the groups G ( R )  and G ( A f ) .  
Since LiiSc(G ( Q )  \G ( A )  / K f  ( N ) )  is the subspace of vectors in 
L~~,,..(G ( Q )  \ G ( A ) )  which are fixed by Kf  ( N )  under right translation by 
G  ( A f ) ,  we obtain decompositions 
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where rr?'") is the finite dimensional subspace of vectors in the G(Af) -  
module rrf fixed by Kf(N). It follows that 

This is the spectral decomposition of cohomology in the form we want. 
The Hodge and Lefschetz groups act on the cohomology through the 

graded vector spaces H* (g, K; rr;). Indeed, the complex structure on 
G (R) /K comes from a K-equivariant decomposition 

of the complex tangent space at 1, and this determines a Hodge decom- 
position 

H * ( g , K ; m =  @ HP3q(g,K;ir;) 
p.qa.0 

of the (g, K)-cohomology. (See for example [8, p. 601.) The Killing form 
provides a canonical element in H13l (g,K; C) ,  whose image in H:$ (S(N)) 
is just the Kahler class. In particular, the cup product with this element 
gives a map 

HP"'(g, K; ^t) - ~ P + l . ' ? + l  (g , K; rr" K ) ,  

which in turn (by the Jacobson-Morosov theorem) provides a representa- 
tion of SL(2, C) on Hfn (g,K;rr;). Combining the two structures as we 
did earlier (with a Tate twist), we obtain a representation of the group 
C* x SL(2, C) on each of the graded vector spaces H* (g, K; -~ rr;). ~~~. The 

Hecke algebra, on the other hand, acts through the spaces rr?'"'. The 
action is simply given by the operators 

K 
on the finite dimensional spaces r r / .  The spectral decomposition thus 
brings the essential questions into focus. It conveniently separates the 
further investigation of the cohomology into the study of three distinct 
objects - the spaces H*(g, K; rr;), the spaces rr?'"), and the multiplici- 
ties mdiac (rr). 
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The first objects are the best understood. Vogan and Zuckerman 
(31) have classified the irreducible unitary representations TTB with (g, K )  - 
cohomology, and for each such n~ they construct the graded vector space 

K f ( N )  H* (g, K ;  rr;). Less is known about the spaces nf , although there has 
been considerable progress, especially in the case that N is a product of 
distinct primes ((171, [29], (281). The multiplicities mdisc(n) are the deep- 
est part of the problem. The nonvanishing of mdisc("K @ n f )  is a very 
strong condition, that is to be regarded as a subtle linkbetween two oth- 
erwise unrelated representations and 9. The conjectural theory of 
endoscopy ([241,[20l,I81) suggests a simple formula for mdisc ( n )  in terms 
of objects which classify the representations {rrs,} and { n f ) .  One hopes 
eventually to establish the formula for mdisr(n') by comparing trace for- 
mulas for G ([51,[91) with those of related groups. 

3. Parameters over IR and Hodge-Lefschetz structures 
Our goal has been to describe the representationof C* x SL(2, C) xJ+(N) 
on H b ( S ( N ) ) .  Towards this end, let us look more closely at the con- 
stituents of the spectral decomposition. We shall consider the groups 
H* (0, K ;  n;) in this section and the multiplicities mdisc ( n )  in the next. 

We first recall the Langlands classification ([251, [18], [301) of the irre- 
ducible representations { r r ~ l  of G (R) .  The necessary ingredients are the 
Well group of R and the dual group of G. The Well group WB is generated 
by the group C* and an element a, subject to conditions a z u l  = 2 for 
any z C*, and a2 = -1. It is the unique nontrivial extension 

(with the Galois group Gal(C/R) acting in the obvious way on C*), and 
its commutator quotient wSb is canonically isomorphic to R*. The Well 
group is thus a pretty straightforward object. So is the dual group. It is 
simply the complex Lie group G = SO (2n + I ,  C).  Langlands classified the 
irreducible representations n~ as a disjoint union of finite packets 11+,., 
parametrized by the 8-conjugacy classes of continuous homomorphisms 

For a given An, take the centralizer 

of the image of + R ,  and its group 
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of connected components. Then there is an injective map 

from the finite packet n+,, Into the set of irreducible characters on the 
finite group S+,, which is defined by some natural character identities. In 
this way, the irreducible representations TTB are classified by some rather 
concrete objects-maps of W R  into G, and irreducible characters on the 
finite groups S+,. 

Not all representations T R  will be the K-components of automorphic 
representations rr of G(A). 1 later introduced a family of parameters 
which I conjectured would determine the R-components of automorphic 
representations [3]. These parameters are the 8-conjugacy classes of 
maps 

U ; B : W K  x SL(Z,C)-G 
such that the image of W K  is bounded. For a given ~ J R ,  the map 

is a parameter of the first kind. In fact U ; R  is uniquely determined by < p w R ,  
so the parameters { ~ J B )  can be regarded as a subset of the parameters 
{+it}. (The absolute value I wl comes from K* via the isomorphism w$' s 
R*.) For a given ~ J K  set 

I conjectured the existence of a finite packet IInR of Irreducible represen- 
tations of G (R) ,  and a map 

from IIw, into the set of characters on the finite group Sic, satisfyingnat- 
ural character identities. (I actually conjectured that the map was injective 
and that the characters on S,,,. in the image were irreducible, in analogy 
with the Langlands classification. The first condition, at least, turned out 
to be too strong.) 

If <^a = 41BR, there is a surjective map S m g - S + , ,  and hence an in- 
A 

jective map S+.  - $+, from irreducible characters on S+.  to those on 
SW, .  It was natural then to conjecture that the packet H+, was a subset 
of n u , , .  The complement of II+, in rim,,, however, need not be a union of 
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other Langlands packets n+;. Nor do the packets {rim,) have to be dis- 
joint. Their role is not so much one of classification, as in the description 
of how representations of G (R)  contribute to autormorphic forms. 

In the paper [21, Adams and Johnson constructed packets rim. of rep- 
resentations of G (R)  for a finite set of parameters U<R Ycohom. They 
showed that the irreducible constituents of the elements in those pack- 
ets were precisely the representations with (g, K )  -cohomology, classified 
earlier by Vogan and Zuckerman. (See also [8, 551.) The parameters U<R 

in the set Ycohom all have the property that the group Sa,, is finite, so that 
So,, = Slim- 

More recently, Adams, Barbasch and Vogan [I] constructed the pack- 
ets rim, for all of the parameters ip^. They also established the pairing 

by proving all the relevant character identities. The Langlands packets 
n+,, with 4 > ~  = 4>m,,were built naturally into the constructionas subsets 
of the corresponding packets TimR. Their work is likely to play an impor- 
tant role in the future study of automorphic representations. Here we are 
only discussing representations with cohomology, so it will be enough to 
consider the finite set Yrohom of parameter studied by Adams and John- 
son. 

Let us fix a parameter ips in Ycohom. We shall consider the finite 
dimensional graded vector space 

As we have observed, there is a representation of C* x SL(2.C) on each 
space H* (g, K ;  rri) ,  so the direct sum is a representation on Vm,. The 
group S,,,, is abelian, and the functions s- (s, rrn) are one-dimensional 
linear characters. They provide us with a representation 

of Sin. on Vie, which commutes with C* x SL(2,C). We thus have a rep- 
resentation 

pa,,: SW, X C* X SL(2, C)-GL(Vn,) 

of the product of three groups. Is it possible to describe this representa- 
tion more explicitly? 

The question has a nice answer if we are willing to work in a slightly 
different context. We therefore make a change of notation that will be in 
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effect from now on. We take G to be thegroup G Sp(2n) of symplectic 
similitudes, instead of Sp(2n). The dual G becomes the group 

an extension of SO(2n + 1,C) by C*. The corresponding variety S(N) 
is no longer connected, but it can be identified with a disjoint union of 
several Siege1 modular varieties. Everything else carries over as above. In 
particular, for any * B  Ycohom, we have the finite dimensional vector 
space VwK, and the representation pw, of Sip, x C* x SL(2, C) on VwR. 

From our point of view, the advantage of the change is that 6 = 
G Spin(2n + 1,0 has a spin representation 

(of dimensional 2"). The representation is not unique (since 2 has a one 
dimensional center), so we have first to fix a fundamental dominant weight 
pspm to pin it down. Given pspi,,, there is a natural representative of wm 
(within its &orbit) such that Sip, lies in the maximal torus on which p w  
is defined. In particular, pspin determines a linear character on the group 
Sin,. Let 

O-~,:S*. x C* x SL(2,C)-GL(Vspin) 

be the representation defined by 

Since the connected component S8/, equals the center of e, the left hand 
side really is a function of s in the quotient Sip, = S~./S$,,, even though 
the individual terms on the right are not. 

Theorem 1. For each ips e Ycohom, the representations pa,, and uwR of 
Sw x C* x'SL(2, C) are equivalent. 

This result was motivated by the lemma on p. 240 of [271, and was 
proved in [8, Proposition 9.11. It provides insight into the Hodge and 
Lefschetz structures on H b  (S(N)). For a complete picture, however, 
we need to incorporate the action of the Hecke algebra. Again there is 
a rather striking answer, but it rests on the conjectural formulas for the 
multiplicities maisc ("'1. 

4. Global conjectures and Hecke operators 
The global conjectures begin with the understanding that automor- 

phic representations TT should also occur in packets. They are to be 
parametrized by G-conjugacy classes of homomorphisms 
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such that the image of LQ is bounded. The Langlands group LQ here is a 
hypothetical locally compact extension of the Galois group of Q/Q [271, 
[20]. Among its various properties there should be an injection WR - LQ. 
Therefore any ip defines a local parameter 

by restriction, and hence a finite packet II*, of irreducible representations 
of G (K). It is conjectured that there is also a packet IIWf (ofteninfinite) of 
representations of G(Af) attached to ip. (These in fact would be tensor 
products J T ~  = @ rrp. where each rip lies in a local packet T l W  attached 

D 

to w.) The global packet is the set of tensor products 

As in the local case, we set 

Su, = Cent (Image (ip), 6) 

and 
s* = s*/s$ 

There is an obvious map SiÃˆÃ‘Â¥S,, so we obtain a character 

on Sin by restriction, for each r r ~  II*,,. It is conjectured that the rep- 
resentations rrf I Iq f  also determine characters (s,rrf) on Sw.  This 
provides a character 

on So, for every representation rr = r r ~  @ in the global packet II*. 
Finally, there is a canonical sign character 

on S w ,  whose definition we shall recall in a moment. With these objects 
we can state the conjectural formula for mdisc (rr) (8, 581. 

The packet nu,  should contribute representations to the discrete spec- 
trum (taken modulo the center of G = G Sp(2n)) if and only If S m  is finite 
(modulo the center of 6 = G Spin(2n + 1)). Suppose this is so. The mul- 
tiplicity formula is then 
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This is just the multiplicity of q, in the character (.,n) on Sip. I am 
anticipating here that the different global packets II,,, are actually disjoint. 
Otherwise the multiplicity mdisc (n) would have to be expressed as a sum, 
over all if with rr â FL,, of the expression above. 

The sign character E,,, is defined in terms of symplectic root numbers. 
For any if there is a finite dimensional representation 

of Sw x LQ x SL(2, C) on the Lie algebra of e. (Notice the formal similarity 
of RW with the representation uw, defined earlier.) Let 

be the decomposition of Rw into irreducible representations. The Lang- 
lands group LQ is a generalization of the Galois group of Q/Q, and should 
have similar properties. In particular, we can expect each representation 
p, to have an L-function L (s, pi) with analytic continuation and functional 
equation 

L(s,u,)= c(s,p,)L(l -s,u,). 

Observe that if pi equals its contragredient pi, the number ~ ( $ , p , )  equals 
1 1 or -1. Let J w  be the set of indices i e I,,, such that = pi and E(?,  pi) = 

-1. (If the analogy with Galois representations carries over, each such pi 
will be symplectic.) We define the sign character as 

t w ( s ) =  n det(Ai(s)), s E S,,,. 
iEJ* 

We can now give a solution to the original problem, based on the 
global conjectures. Suppose that if is a global parameter such that  if^ 
belongs to the finite set Kcohom of R-parameters with cohomology. Then 
the group S,,,, is finite modulo the center of G = G Spin(2n + 1, C), and 
S,,, is actually a subgroup of S,,,,. Let pa, and u,,, be the restrictions of the 
corresponding two representations of Sw, x C* x SL(2,0 on Vm = Va,, 
to the subgroup SW x C* x SL(2, C). By Theorem 1, the two are equivalent. 
On the other hand, for each representation nf in Hy, we have the char- 
acter (-,rf) on So,. Let U(T) be a corresponding (finite-dimensional) 
Sin-module. Then 

u; = @ ( u ( T ~ ~ ) @ ^ ' ~ ' )  
mf 

is a finite-dimensional complex vector space, equipped with an action of 
Sw x A f ( N ) .  (It is implicit in the conjectures above that for any N, only 
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Kf(NI . finitely many spaces in this sum are nonzero.) We combine the 
two spaces as a tensor product V,,, 9 u{;, with the tensor product action 
of S,,,. Each of the other three objects acts onits own factor, and we obtain 
a module over 

S,,, x C* x SL(Z,C)xAf(N). 

he the subspace of V,,, 9 U$ which transforms under S,,, according to the 
sign character E, , , .  It is a (C* x SL(2, C) xAf (N)) -module. 

If we substitute the conjectural formula for (n) into the spectral 
decomposition, we obtain the formula we want. 

Conjecture 2. There is a canonical isomorphism 

H^(S(N)) (g (Vw 9 
IW : W ~ â ‚ ¬ Y ' c o l m  

of (C* x SL(Z,C)xAf(N))-modules. 
Let us summarize the main features of this formula. The group C* x 

SL(2,C) acts through the factors V m ,  according to the representations 
o,,, obtained from the parameters. The algebra Af (N)  acts through the 
other factors U" although we do not have an analogue of Theorem 1 to 
describe its action in terms of parameters. The two actions are linked by 
the sign character E , , , ,  through the representation of Sin on each factor. 
It is noteworthy that E,,, is defined in terms of symplectic root numbers. 
These rather subtle arithmetic invariants have thus a direct bearing on the 
cohomology of S(N). They determine how irreducible representations of 
Af  (N) in u{; are paired with irreducible representations of C* x SL(2, C) 
in v*. 

An apparent weakness of the construction is its dependence on the 
hypothetical Langlands group. This is actually not as serious as it seems. 
For many classical groups at least, one could set things up in a way that is 
more elementary, if perhaps harder to motivate. The global parameters w 
would be replaced by self-contragredient automorphic representations of 
a general linear group. The groups Sw could then be constructed directly 
from these objects. In fact, all aspects of the global conjectures could be 
formulated in similar terms. To prove them, or even formulate them in 
this way, one would have to classify automorphic representations of G in 
terms of those of GL(N). This is a serious problem, but it is certainly 
more accessible than that of classifying automorphic representations by 
parameters on the hypothetical group Ln. For an elementary introduction 
to this problem, see [lo, especially 531. 
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