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Problems for Real Groups

James Arthur

To Bill Casselman and Dragan Milicié

At the suggestion of Bill Casselman, I have tried to compile a set of interesting
problems for real groups. I have not made any attempt to represent the field as a
whole. Some of the problems are in fact quite idiosyncratic. They all come from real
harmonic analysis, and are generally motivated by global questions in automorphic
forms.

The list was put together rather quickly, and could certainly stand further
reflection. I expect that I have overlooked some points, and have perhaps misstated
others. The problems should be treated as guidelines, to be reshaped as necessary
in any attempts to solve them.

Unless otherwise indicated, G will denote a connected, reductive algebraic
group over R in the discussion below.
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1. Endoscopic transfer

It would be very useful to recast the work of Shelstad [She2], [She3], [She4],
[Sheb] explicitly in terms of the general transfer factors defined later by Langlands
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and Shelstad [LS1]. The setting is an endoscopic embedding
(1.1) ¢ g —1tag
where G’ represents an endoscopic datum (G',G’, s',¢’) for G [LS1, (1.2)] for which

G’ has been identified with an L-group “G’ of G'. Shelstad’s work is anchored by
two basic results. One is her construction of an endoscopic transfer mapping
f - fla

from the Schwartz space C(G) on G(R) to the stable Schwartz space S(G’) on
G'(R). The other, which we will leave for Section 2, is her proof of the resulting
family of endoscopic character identities.

We recall that there are three Schwartz spaces attached to G, with surjective
mappings

C(G) — I(G) — S(Q).

Besides Harish-Chandra’s original (nonabelian) Schwartz space C(G) [Had], we have
the invariant Schwartz space

(@) = IC(G) = {fa : feC(@)}

of invariant orbital integrals
1 _
feln = DI [ fla ya)dz,
Gy (R\G(R)

and the stable Schwartz space
S(G)=8C(G)={f¢: fecC(@)}

of stable orbital integrals

£9(6) = D) / faton)dz = Y fal).

(Gs\G)(R) b

The space Z(G) consists of functions on the set of strongly regular conjugacy classes
v in G(R), while S(G) is composed of functions on the set of strongly regular
stable conjugacy classes d. Using the differential equations and boundary conditions
of Harish-Chandra [Hal, Theorem 3], [Hab, Theorem 9.1], Shelstad characterized
S(G) explicitly as a space of functions of ¢ [She2]. We note that Shelstad (and
Langlands) did not normalize orbital integrals in terms of the Weyl discriminant
D(y) =det(1 - Ad(v))g/gv,

as we have here, but this amounts to a minor notational difference.
Shelstad defined the transfer mapping as a finite linear combination

(1.2) 7@ =S AP ) fa()

of invariant orbital integrals on G(R). The coefficients are the somewhat ad hoc
transfer factors of [Sheb] (modified here to accommodate our normalization by
the Weyl discriminant). They predated (and anticipated) the systematic transfer
factors A(d’,v) of [LS1]. With the hindsight of [LS2, Theorem 2.6.A], we know
that the mapping can be defined equivalently by means of the later transfer factors
of [LS1]. In other words,

A®(S4) = eA (7)),
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for a nonzero constant c. Since the two transfer factors are defined anyway only
up to a multiplicative constant, they are therefore equal. However, the proof of
this fact is indirect, and depends on the existence of the mapping f — f’ Shelstad
had defined earlier. It would be very instructive to show directly that the mapping
defined by (1.2), but with A(¢,7) in place of A®)(§”,+), takes C(G) to the space
S(GH.

The problem is by and large one of exposition, but it is no doubt harder than
many questions of original research. A satisfactory solution would probably be very
influential. The general transfer factors of [LS1] have still not really been absorbed
by mathematicians. A concrete description for real groups of their four subfactors
[LS1, (3.2)—(3.5)] would lead to a better understanding of their analogues for p-adic
fields. Each of these four factors has a precursor in Shelstad’s papers. Shelstad’s
constructions were driven in turn by certain aspects of the work of Harish-Chandra.
These antecedents from Harish-Chandra raised vaguely uncomfortable questions,
which in retrospect explain why transfer factors are complicated (and interesting).

One question concerns Harish-Chandra’s basic formula for the characters of
discrete series. What are the implications of the fact that this formula is given as a
sum over the Weyl group of a maximal compact subgroup Kg of G(R), rather than
the full Weyl group?

Other questions concern Harish-Chandra’s normalization of invariant orbital
integrals. He defined G to be acceptable if the usual half sum p of positive roots
{a} on the Lie algebra of any maximal torus 7' C G lifts to a character £, on T'(C).
The function

A =& [T (0 -&it™), v € T(R),

a>0

is then a refinement of the normalizing factor |D(v)|2 we used above. In particular,
its absolute value equals the nonnegative function |D(7)|%. Harish-Chandra nor-
malized invariant orbital integrals in this case according to the further refinement

P}(V)::ER(WLA(W)J{;(RKCKR)f(x17x)dx,

in which er(y) is a locally constant sign function on the set Tyes (R) of regular points
in T(R) [Hal, §22]. This normalization was chosen so that if T'(R) is compact, and
f is a matrix coefficient of discrete series, then Fy(y) extends from Tee(R) to a
smooth function on T'(R).

The transfer factors pertain to relative forms of these questions, as they relate
to both G and G’. The term A; in [LS1, (3.4)] addresses the first point, namely the
discrepancy between the Weyl groups of G and Kg. The term Ajr in [LS1, (3.3)]
addresses the product

o) L (1= ()
The reader will observe that the quotient of this function by the factor |D(v)|2
(which we have built into the basic invariant orbital integrals, and which is the
supplementary term Ary in [LS1,(3.6)]) is quite simple, especially when G is ac-
ceptable. The term A, from [LS1, (3.5)] deals with the function ,(v) if G is accept-
able, and accounts more generally for what happens if G (or G) is not acceptable.
(Shelstad actually works with Harish-Chandra’s later normalization ‘Fy () [5, §17],
which makes sense in general, but has slightly less agreeable properties.) Finally,
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the term Ap from [LS1, (3.2)] is a sign, which is independent of v, and reflects the
fact that the product of the other terms is based on some noncanonical choices. As
we have already said, these terms all go back to constructions in Shelstad’s papers.
For example, the term A, is closely related to the embeddings (1.1), studied in [S4]
and discussed further in [S5, (3.3)]. If T have things straight, the precursor of the
term Ay is the set of signs treated in [S5, (3.5)].

It would be very useful to describe all of this explicitly. The goal might be
to illuminate the path that leads from Harish-Chandra to Shelstad to Langlands-
Shelstad. A greater appreciation of the role of Harish-Chandra’s work in the def-
inition of the transfer factors of [LS1], and hence in the foundations of the theory
of endoscopy, would make the theory that much more accessible.

2. Endoscopic character identities

This is a continuation of the proposal of Section 1. In [She5], Shelstad estab-
lished an equivalent spectral version of the mapping (1.2). It is given by a linear
combination

(2.1) F1(¢) = A¢,m) fa(m)

of irreducible tempered characters

fa(m) = tr(”(f))» 7 € Hiemp(G),

on G(R). The coeflicients are spectral transfer factors A(¢’, 7). They are uniquely
determined by the original choice of transfer factors

A= {A(d,y) = A® (&, )},

once the linear form " — f'(¢’) on S(G’) on the left hand side of (2.1) has been
defined. (We recall that A is determined up to a scalar multiple.) If (1.2) is taken
as the definition of the mapping f — f’, the identity (2.1) is to be regarded as a
consequential formula. It expresses f’ explicitly as a function on the set of tempered
Langlands parameters ¢’ of G'.

Recall that a tempered Langlands parameter for G is an L-homomorphism

¢) : W]R — LGa ¢ € (I)temp(G)a

taken up to @—conjugacy, whose image in G is relatively compact. We assume
implicitly that ¢ is relevant to G, in the sense that if its image is contained in a
parabolic subgroup “P c ¥G, then ©P is dual to a Q-rational parabolic subgroup
P C G. It then gives rise to the L-packet 114 that was an integral part of Langlands’
earlier classification [L1] of representations of real groups. Recall that II, is a finite
subset of representations in Iliemp(G) whose constituents have the same local L-
functions and e-factors, and that Iliemp(G) is a disjoint union over ¢ of the subsets
II4. Shelstad observed that for any ¢, the distribution

(2:2) r9) = > falm). fec(@),
welly
is stable, in the sense that it depends only on the image f¢ of f in S(G). Applied
to G’ instead of G, this gives meaning to the left hand side of (2.1).
Shelstad established striking properties of the spectral transfer factors A(¢’, )
n (2.1), which had been conjectured earlier by Langlands [Shel]. The problem we
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propose here is, again, to establish them explicitly in terms of the transfer factors
of [LS1].

In describing Shelstad’s spectral results, we assume implicitly that the given
pair (G', ¢') is relevant to G, in the sense that the composite Langlands parameter
$=Eod: Wg — LG

is relevant to G. Given ¢, one forms the centralizer

Sy = Cent (G, (Wr))
of the image of ¢ in @7 its quotient

S4=84/2(G)"
by the group of I' = Gal(C/R)-invariants in the center Z(G) of G, and the corre-
sponding group
Sp =m0(Ss) = 8s/85Z(G)"

of connected components. The semisimple element s = s’ that is part of the
endoscopic datum represented by G’ belongs to S;. We thus have a mapping

(G/7 ¢/) - (¢a S)
Conversely, for any ¢ € ®iemp(G) and any semisimple element s € Sy, (¢, s) is the
image of the unique pair (G’,¢’). The mapping is therefore invertible. (We have

assumed for simplicity that every endoscopic datum G’ for G has an endoscopic
embedding (1.1). This is not true for arbitrary G, but is easily accounted for [LS1,

(4.4)].)
Shelstad’s spectral results may be summarized as the existence of nonvanishing
normalizing functions
p(A7S)7 ¢ S q>temp(G)7 s € S¢7
where (G’, ¢’) maps to (¢, s), and A is a Langlands-Shelstad transfer factor for G,
with the following two properties.
(i) The quotient
(z,7) = p(A,s)A(¢, 7), s € Sy, ™€ iemp(G),

depends only on the image s of s’ in Sy, and vanishes unless 7 lies in the
subset Iy of Tiemp(G).
(ii) For any m € IL4, the function

x — {(x,m), z € Sy,
is a character on S.

Shelstad has shown that S, is a 2-group. Since the mapping © — (-, m) is
injective by construction, an irreducible representation 7 € Hiemp(G) can thus be
identified with a parameter ¢ € Piemp(G), together with a character on a finite
2-group. We remark that this characterization is in some sense natural only in the
case that G is quasisplit. Later observations of Vogan suggested that it is sometimes
appropriate to replace Sy by a larger group, such as the extension

(2.3) 1 — Zye — Sy = m0(Spse) — Sp — 1

defined for p-adic groups in [A8, p. 207]. (Here, Sy s is the preimage of S, in Gee.
the simply connected cover the derived group of G, and Zs. = Z(Gy.).) Elements
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in I, are most naturally viewed as irreducible characters on Sy, whose restriction
to ZSC equals a fixed character that depends on G as an inner twist, and is trivial
if G is quasisplit. I am supposing here that the group §¢ is abelian, something
I have not checked. It would be useful to do so. Shelstad’s characterization then
follows from an appropriate choice of the function p(A,s). In any case, Shelstad’s
spectral results impose an endoscopic structure on the tempered representations
in the Langlands classification. This of course is very important for the theory of
automorphic forms.

The problem, once again, is to try to reorganize the proofs of Shelstad’s spectral
results. As they stand now, they are quite difficult to extract from their source in
[S5, §4-5]. An exposition would include the straightforward stabilization

(zf) =41, z € Z2(G),

of Harish-Chandra’s differential equations for invariant orbital integrals, as well as
Shelstad’s more difficult stabilization of the boundary conditions of [Ha5, Theorem
9.1].

3. Orthogonality relations

Elliptic tempered characters satisfy orthogonality relations. For example, the
characters of discrete series form an orthonormal set on the (regular) elliptic set
Geni(R) in G(R). We assume that G is cuspidal, in the sense that Gen(R) is
nonempty. This is to say that G(R) has a maximal torus Te;(R) that is com-
pact modulo the split part of the center Ag(R) of G(R). In general, suppose that
O = O, and © = O, are two irreducible tempered characters with the same
central character on Ag(R). One forms their elliptic inner product

(3.1) (0,0)en = / O(z) ©'(z) d,
{Gen(R)/Ac (R)}

in which dz is the canonical measure on the space of (strongly regular) elliptic
conjugacy classes on G(R). That is,

(6.6 = [W (G, Tu®)| ™ [ e, PO T

where W (G(R), Treg(R)) is the Weyl group of (G(R), Ten(R)), and dv is the nor-
malized Haar measure on the compact abelian group Ten(R)/Ag(R).

If 7 and 7’ belong to the discrete series, Harish-Chandra established the rela-
tions
1 ifr=n

(@v @/) = {

in the course of his monumental classification [Had]. More general orthogonality
relations apply to irreducible constituents of induced tempered representations.
They can be described elegantly in terms of the finite groups Sg. To adopt a
broader perspective, let us take S to be any complex reductive group, and

S =m(S) =5/85°

0 otherwise,

to be its finite group of connected components. The example we have in mind here
is of course the case that S equals the group Sy, so that S equals Sy.
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Given S, we define S! to be the subgroup of connected components in S that
have representatives that commute with the identity component. The quotient

R=S5/S!

then acts faithfully by outer automorphisms on S°. We also obtain an action of R
on any maximal torus 7" in S° by fixing a Borel subgroup B of S° that contains T,
and choosing representatives of classes in R that stabilize the pair (B,T). This in
turn gives an action of R on the real vector space

ar = Hom (X (T)g,R).
The function
d(r) = det(1 — T)GT/UG’ r € R,
on R is independent of the pair (B, T), as is the subset
Ries ={r € R: d(r) # 0}

of R.

If € is an irreducible character on the group S, let R be the subgroup of
elements in R that stabilize £. There is no a priori reason why ¢ should extend
to an irreducible character on the preimage of R¢ in S. The obstruction will be a
class in H? (Re¢,C*). It has never been determined, so far as I know, whether this
cocycle always splits, at least in the case that S is the centralizer in G of some
L-subgroup of LG. 1 pose this as a problem, even though it does not look like it
concerns real groups. Indeed, if S = Sy, the group Sy is abelian, and the answer
is obvious. However, the problem does seem to be relevant to the nontempered
packets for G(R), which we shall discuss later.

Suppose now that S = §¢3 and consider the associated short exact sequence

(3.2) 1—8; — Sy — Ry — 1.

The subgroup Sql5 of Sy is isomorphic to Sy,,, where M is a Levi subgroup of G,
and
orr s We — "M

is a Langlands parameter for M whose image in “G equals ¢, and whose L-packet
Il4,, consists of representations in the relative discrete series of M(R). Suppose
o € lly,, corresponds to the character £ on the group Sy, = S;). Since Sy is
abelian, R equals the full group Ry, and { extends to a character § on Sg. The
set of such # is a torsor under the action of the group of characters in Ry. It
corresponds to a subset Il , of II;, composed of the irreducible constituents of
the induced representation Z§ (o), where P belongs to the set P(M) of parabolic
subgroups of G with Levi component M. The group R, = Ry is known as the
R-group of 0. We have described it here in its spectral form, rather than the dual
form [KnSt, §13] defined originally in terms of Plancherel densities. (See [KnZ].)

The general orthogonality relations apply to an arbitrary pair of irreducible
tempered characters © = O, and © = O/, where m and 7’ correspond to charac-
ters 6 and 0’ on respective groups S, and Sy. We form an elliptic inner product
(0,0")en by defining it to be 0 unless m and 7’ belongs to a set Il , as above, in
which case we define

(3-3) (0,6")en =R/ ™" D 1d(r)[6(r) 0 ().

TER reg
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Since 6 and 6’ here both restrict to the same character £ on the subgroup S;, of
Sp, the summand in (3.3) is a well defined function on Ry = Sg/S;. The general
orthogonality relations are then given by the identity

(3.4) (0,0)en = (0,6 )en.

(See [A6, Corollary 6.3].) Notice the parallel structure in the definitions (3.1) and
(3.3) of the two sides of the identity. In particular, Ry eg is an analogue of the
elliptic set Go(R), and d(r) is an analogue of the Weyl discriminant D(7).

I pose a second question of deciding whether the identity (3.4) might have any
role in the proof of Shelstad’s spectral results. For example, is the identity easy to
derive directly from what is known of the characters ©,7 (The proof of (3.4) by
the local trace formula is indirect, and applies uniformly to all local fields of char-
acteristic 0.) The R-groups Ry are an essential part of Shelstad’s arguments. The
question of whether the orthogonality relations have anything further to contribute
would not be hard to resolve. The answer might well be negative. Nonetheless, it
is useful to be armed with concrete questions upon entering territory as unfamil-
iar as the work of Shelstad might be to some. In any case, I have tried to raise
the question in a form that might also be posed for nontempered representations
discussed in Secctions 8 and 9.

4. Weighted orbital integrals

Weighted orbital integrals are generalizations of invariant orbital integrals.
They are integrals

(4.1) T f) = D)) /G g [OTE F<0(©),

over the G(R)-conjugacy class of a G-regular class v in M (R), with respect to a
noninvariant measure vps(x)dxz. The weight function vy (z) is the volume of a
certain convex hull, which depends on z, and is trivial in case M = G. Weighted
orbital integrals are terms in the noninvariant trace formula that are attributable
to the boundary. Their invariant refinements

(4.2) I ) = I, £) = 3. T (v.00(F)

LOM
L#M

represent corresponding terms in the invariant trace formula. If G is quasisplit,
these objects in turn have stable refinements

(4.3) S, ) =In@.f)— > wm(G.GNSG (6, f),
G'eEp (G)
G'#£G

where § is a G-regular, stable conjugacy class in M (R), and

IM(avf) = ZIM(%JC)
y—4
They become corresponding terms in the stable trace formula.

We refer the reader to [A8, §1] and [A9, §1] for discussion of the inductive
definitions (4.2) and (4.3). Keep in mind that although I/(y, f) is an invariant
distribution, in the sense that it is invariant under conjugation by G(R), it is by
no means equal to an invariant orbital integral. Similarly, Sy, (d, f) is not a stable
orbital integral, even though it is a stable distribution.
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The problem is to compute the Fourier transform of any of the three kinds of
tempered distributions (4.1)-(4.3). In each case, the problem is to compute the
distribution explicitly as a linear form on the relevant dual space. For example,
since Jpr (7, f) is a noninvariant distribution, its Fourier transform is a continuous
linear form on the Schwartz space C (é) of matrix valued functions on Iepp(G).
Since Ips(y, f) is invariant, its Fourier transform can be treated as a continuous
linear form on Z(G), regarded now as a Schwartz space of functions on Iiem,(G).
Since Sas (6, f) is stable, its Fourier transform becomes a continuous linear form on
S(G), regarded as a Schwartz space on the set ®iemp(G) of tempered Langlands
parameters. (It is on this understanding that the notation T and S in (4.2) and
(4.3) is based.)

The problem was solved for G = SL(2) in [AHS], and for G of real rank 1 in
[Ho]. In general, there are two sources of difficulty. The first is analytic. One tries
to characterize the Fourier transform uniquely in terms of the analytic properties
it satisfies. The second is combinatorial. This entails imposing some sort of order
on the complicated functions that make up the Fourier transform. W. Hoffmann
has made considerable progress on both fronts.

The equation (4.3) is actually part of the solution of a similar (though simpler)
problem. It represents an inductive definition of the terms in a more general iden-
tity, which was stated and proved in [A9, Theorem 1.1], and which amounts to a
stabilization of the invariant distributions I/ (7, f). The analytic properties used
in the proof are the differential equations

Iu(y,2f) = > Oty 20)In (v, ), z€ 2(Q),
LDOM

satisfied by In(7,f) as a function of v, the boundary conditions satisfied by
Ini (v, f) as v approaches a singular hypersurface, and an asymptotic formula [AS]
for Ips(7, f) as both « and the support of f approach infinity. (Much of the paper
[A9] was devoted to the stabilization of these properties.) The three properties
might also suffice to characterize the relevant Fourier transforms. However, they
do not seem to help with combinatorial questions.

The problem of computing Fourier transforms of weighted orbital integrals goes
back to Selberg, or at least to the study of his work by Langlands in the 1960’s. The
complicated nature of these objects, and the lack of a clear application, has been
discouraging. However, it does seem to me that a solution could now be very useful.
It might allow us to investigate local aspects of Langlands’ proposal [L3] for using
the trace formula to study the principle of functoriality. For example, Langlands has
used Hoffmann’s solution of the problem for G = GL(2) to investigate relationships
among some of the terms that arise for this group [L2].

5. Intertwining operators and residues

We can agree that the spectral analogues of invariant orbital integrals are irre-
ducible characters

fa(m) = tr(x(f)) = /G o[ @O fec@)

Weighted orbital integrals have their own spectral analogues, known as weighted
characters. These objects are distributions obtained by taking a “noninvariant
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trace” of operators Zp(o, f), for representations o € Iliemp(M). In other words,
they are defined by a trace

(5.1) Ju(o, f) =tr(Rp(o, P)Ip(o, f)), fec(@),
of the product of Zp(o, f) with a natural non-scalar operator
Rp(o,P): Hp(o) — Hp(o),

on the space Hp (o) on which Zp(o, f) acts. This operator-valued weight factor is
built out of the normalized intertwining operators [A2]

(5.2) RQ‘p(O’)\) : Hp(o) — HQ(U), P,Q e P(M),

between the induced representations Zp (o) and Zg(oy). It is defined as (a multiple
of) a limit

(53)  Ra(o,P)=lim > Roip(0) ' Roip(on) ( I1 Mo ) 17
QGP M) a€Ap

which reduces to the logarithmic derivative

d
lim (RP|P(U)715RP\P(U>\)>a

in case M is maximal in G.

Recall that o) is a twist of the representation o by a point A in a complex
vector space

ayc=X(M)r®C"

The normalized intertwining operator (5.2) is a meromorphic function of A\, whose
restriction to the space ia}, is analytic. It follows that weight factor (5.3) can be
continued to a mermorphic function Ry (o, P), which is also analytic on ia},. If
f is compactly supported, Zp(oy, f) is an entire function of A € ajysc- In fact, we
may as well take f from the Hecke algebra H(G) on G(R), relative to the maximal
compact subgroup Kgr which is already implicit in the construction above. Then the
weighted character also extends to a meromorphic function of A € aj}, ¢, which is
again analytic on ¢aj},. Can one say anything about its residues at singular points?

The linear form Jys(oy, f) on H(G) is not invariant. It turns out in fact that
the failure of the weighted character (5.1) to be invariant is parallel (in a precise
quantitative sense) to the failure also of the weighted orbital integral (4.1) to be in-
variant. It is this property that is behind the definition of the invariant distribution
(4.2). Indeed, the argument

oL(f), fec@),

on the right hand side of this formula is the function in Z(L) defined by

ér(f): mp — Jo(m, f),

for irreducible tempered representations 7y, of L(R). However, it is the meromor-
phic function Jas(oy, f), defined for f € H(G), that is our focus here. One sees
from the quantitative description of its failure to be invariant that its multi-residues
in A are actually are invariant linear forms in f. What are they?

To form a multi-residue one takes a residue datum, consisting of the flag

ayr = Ay, O G O s D Ay, = g
attached to a maximal chain of Levi subgroups
M=MyCcM C---CM, =G,
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a unit vector E; in the orthogonal complement of aj, in aj,  for each ¢, and a
point Ag in a}; . The associated iterated residue

Res (Jm(o, f)) = o [{igag (Ja (o, f)), feH(G),
is invariant in f. More generally, the iterated residue
- —A(X)
(5.4) Res (u(0,f)) =  Res (Jar(on, ™), feH@G),

is an invariant linear form in f that depends on a point X € aps [A2, Lemma 8.1].
Can one describe it as a linear combination of characters? Does the answer require
derivatives at A = Aq of the function Zp(oy, f)?

There is a formula that imposes some further structure on these questions
by relating them to elliptic tempered characters. It applies to cuspidal functions
f € H(G). We are assuming here that G is cuspidal, as in Section 3. For simplicity,
assume also that Ag is trivial, and that f satisfies the stronger condition that its
image in Z(QG) is supported on the discrete series characters of G(R). Suppose in
addition that M is cuspidal, and that v € M (R) is in general position. There has
been much study of the normalized discrete series characters

o(m,v) = @a(m,7) = [D(y)|>O(,7)
over the years, beginning with the first [Ha3] of the two papers of Harish-Chandra.
The formula in question gives a relation

6:5) > @a@ u(r(n) =2 > (N eu(e¥ 1) B (u (e, 1)

between these objects and the residues (5.4), in which

X =Huy(v)

is the image of 7 in the vector space ay;.

The formula (5.5) is a special case of [A6, (9.4)]. (See [A6, (9.1) and Remark
(1) on p. 135].) The first two sums are over discrete series representations 7 of
G(R) and ¢ of M(R)/An(R), with contragredients 7V and o“. The third sum is
over the finite set of residue data 2 associated with the residue scheme of the real
Paley-Wiener theorem or the spectral decomposition of Eisenstein series. Namely,
it is the sum of residues encountered in deforming the contour of an integral

/JM(UA, e MXdA

from p(X) +iaj}, to € +iaj,, where p(X) is a large point in general position in the
chamber (a%)* for which X lies in af, and ¢ is a small point in general position
in a},. What is the meaning of the right hand side of (5.5)? It seems to keep
track of constituents of induced representations Zp(o,) that are discrete series, or
at least that match discrete series on cuspidal functions f. What is its relation to
Osborne’s conjecture, which is the real analogue of Casselman’s p-adic embedding
theorem [C], and has been proved by Hecht and Schmid [HeSc]?

6. Twisted groups

All of the problems discussed so far can be posed more generally for twisted
groups. To do so, we need to inflate G to a triplet (G, 0,w), where 6 is an automor-
phism of G over R, and w is a character on G(R). This is the setting of Kottwitz
and Shelstad [KS], who construct transfer factors that generalize those of [LS1]. We
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shall include a few remarks here, leaving to the reader the exercise of formulating
more precisely the problems of Sections 1-5 for twisted groups.

The notation is easier to reconcile with that of previous sections if we write G°
in place of G. We can then use the symbol G for the variety

G=G"%0

over R, which is a G%-bitorsor with respect to the natural two-sided G°-action
x1(x X 0)xg = (x120(22)) % 6.

In fact, following our convention for endoscopic data, we may as well let G also
represent the triplet

(G°,0,w).
A point v € G(R) may be called strongly G-regular if its G°-centralizer

G ={yeG :y lywy=n}

is a torus with the property that pr (R) lies in the kernel of w. It gives rise to a
(twisted) invariant orbital integral

fa(v) = [D()I

N|=

flz™ yr)w(z) da, fecC(G).
G (RN\GO(R)

(Our understanding here is that a tempered distribution D in G(R) will be called
invariant if

D(f¥) = D(f)w(y), feC(G), yeG'R),

where f¥(z) = f(yzy~').)
For the spectral analogue, we let Iiem,(G) denote the set of representations
7 € Hiemp(G®) such that 7o 6 is equivalent to w ® 7. These representations extend

to G(R). To be more precise, we introduce a set ﬁtemp(G), consisting of unitary
equivalence classes of (continuous) mappings 7 from G(R) to the space of unitary
operators on a Hilbert space V' such that

(6.1) T(zrxwe) = w(ay)7(x)m(r2)w(22), r € G(R), z1,22 € G°(R),
for a representation 7 € Iliemp(G) on V. Then ﬁtemp(G) is a principal U(1)-bundle

over Iiemp(G), relative to the mapping # — 7, and the obvious action of U(1)

on ﬁtemp(G). The (twisted) character of 7 € ﬁtemp(G) is the tempered invariant
distribution

ol = (7)) =ur( [ f@yria)de). f @)
G(R)
on G(R). For any f, the function fo(7) can be regarded as a section of the bundle
Htemp(G)~ ~ N
Following [KS, (2.1)], we choose an automorphism 6 of G that is dual to 6,
and that preserves a I-splitting. We also choose a 1-cocycle a,, from Wg to Z(G?)
that is the Langlands dual of the character w on G°(R). We can then form the
L-automorphism
Lop= Lo, gxw— 0(g)a,(w)™" xw, gxwe GO,
of the L-group “G° of G°. This in turn gives rise to the dual set
G=G,=G"% kg,
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The L-group LG° acts by conjugation on G.
Suppose that ¢ is a tempered Langlands parameter for G°. We again write

Sy = S4(G) = Cent (G, p(Wx)),

Sy = 85y/2(C),
and

S = m0(594)-
We then let ®iemp(G) denote the subset of parameters ¢ such that Sy is nonempty.
For any such ¢, these associated objects are no longer groups. However, if

S5 = S4(G°)

is the earlier centralizer attached to G°, the quotient

Sy =m(Sy) = m0(S5/2(GO)")

is a finite abelian group that acts simply transitively on both the left and the right
of S¢.

There is no need to generalize stable orbital integrals and stable characters
to twisted groups, since these objects are needed only for the twisted endoscopic
groups G’ of G, which are again quasisplit and connected. This time G’ represents
a larger twisted endoscopic datum (G’,G’, s, ¢’), defined for G as in [KS, §2.1]. In
particular, s’ is a semisimple element in G, G’ is a split extension of Wg by G’
and ¢ is an L-embedding of G’ into “G°, whose image centralizes s'. Given an
L-embedding

f/ . LG/ N LGO
obtained from an identification of G’ with “G’, one defines the twisted form of the
original transfer mapping by the natural analogue

F1©E)=> AWy falv)

b

of (1.2). Thus ¢’ is a stable conjugacy class in G’(R) in general position, v ranges
over strongly G-regular GY(R)-conjugacy classes in G(R), and A(d’,7) is a twisted
transfer factor of [KS]. As in Section 1, the problem is to show that f’ belongs to
S(G"). It was studied by Renard [R], at least in the case that w is trivial.

Renard’s results are based on the twisted transfer factors A(¢’, ), which gen-
eralize the ordinary transfer factors of [LS1]. In this sense, they represent answers
to some of the inquiries of Section 1. However, they also depend on constructions
from [She5]. It would again be very useful to establish the twisted transfer mapping
in more concrete terms, relating it if possible to the work of Harish-Chandra.

The corresponding twisted character identities should be similar in form to the
identities of Section 2. To be safe, assume that G is quasisplit. For a given pair
(G, ¢"), there will be an expansion

F@)y=">Y_ A7) fa),
7€ temp (G)

for coefficients A(¢’, 7) which are determined by the choice of twisted transfer factor
A that defines f/, and which satisfy

A(¢',ur) = A(¢, 7)u"t, u€U(l), 7 € Miemp(G).
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There ought then to be a function p(A, s’) with analogues of the properties (i) and
(ii) of Section 2. In particular, the function

(z,7) = p(A,s) LAY, 7), z € Sy,

on S, attached to any 7 € ﬁ¢ should be an extension of the corresponding function
(-,m) on &7, in the sense that

(x1229, ) = (21, M) (T, T) (22, T), T1,T2 € Sj.

(We write T19, Il and l:[¢ for the subsets of Htcmp(GO), Miemp(G) and f[tcmp(G)
respectively attached to ¢.) The problem of establishing such identities appears to
be completely open.

The twisted analogues of other problems require the notion of a Levi subset of
G. A parabolic subset of G is a nonempty subset P that equals the normalizer in
G of a parabolic subgroup P° of G? over F. The correspondence P — PP is an
injection from the set of such P to the set of P? such that §(P°) is conjugate to P°.
A Levi subset of G is a rational Levi component M of a parabolic subset P, which
is to say, the normalizer in P of a Levi component M? of P° over F. For any such
M, one forms the finite set P(M) C P(M?) and the real vector space ay; C apgo.
One can then formulate twisted versions of weighted orbital integrals and weighted
characters, and corresponding analogues of the problems of Sections 4 and 5.

7. Trace identities for intertwining operators

To simplify the remaining discussion, we assume again that G is a connected
reductive group. The normalized intertwining operators Rq p(0) appear as local
ingredients of several terms in the global trace formula. The most sensitive of these
concerns the case that

Q = w ' Puw, w € W (M),
and

a%wflaw, Uthemp(M)a
where w is represented by an element in G(R) that normalizes M. In this case, one
uses Rg|p(0) to construct a self-intertwining operator

(71) RP(G'w> :A(O’w)ORQ‘p(O')
of the induced representation Zp (o). The relevant local object is the trace
(7.2) tr(Rp(ow)Zp(o, f)).

The problem is to interpret this trace in terms of the endoscopic character identities
of Shelstad.

There are really two questions. The first is to formulate a precise conjectural
identity for (7.2) in terms of the spectral transfer factors A(¢’, ) and the charac-
ters (s, ). This is already quite subtle. Such a formula was stated in [A5, §7], by
allowing representations with Whittaker models to serve as base points. The con-
jectural formula is pretty complicated, partly because it was stated in much greater
generality. The theory of Whittaker models is well understood for real groups [V1].
Following the discussion of Sections 1, 2 and 6, one might try to formulate the con-
jectural identity as clearly and simply as possible in the special case of tempered
distributions of real groups we are dealing with here.
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The second problem would be to prove the identity! Shahidi has done so in the
special case that the original inducing representation ¢ € Iiemp(M) has a Whit-
taker model [Sha]. The more general situation seems to be considerably harder. If
G is a classical group, it is likely that such identities can be established by global
means. Perhaps one could approach the problem locally through the theory of
minimal K-types [V2].

It might be helpful to add a few remarks about the first question, by way
of introduction to the conjectural identity of [Ab, §7]. We write M, for both
the R-rational subvariety Mw of G, and the triplet (M , Int(w), 1), following the
convention of Section 6. The operator

Aow) : HQ(J) =Hy-1puw(0) — Hp(o)
in (7.1) is defined by
(A(ow)$r)(@) = ow(w)¢r(w x), ¢1 € Ho(o),

where o, is an extension of the representation o of M(R) to the group generated
by M., (R). This last object is an essential ingredient. Since its restriction to
M, (R) satisfies (6.1), in the special case here, o,, can be regarded as an element
in ﬁtemp(Mw). Let ¢, be the Langlands parameter for M such that o lies in the
packet IIs, . Then ¢, is an element in the subset ®iemp(My) of Premp(M). As
such, it gives rise to the Sgw—torsor 84, described in Section 6. Since o, belongs

to the packet 1:[%7 it should yield a function

(8w Ow) = P(vas/w)_lAw(d);uaaw)’ 5w € Sg,, -

The extension of o,, of ¢ is not unique. If it is replaced by its product o, with
a character £ of cyclic subgroup of W (M) generated by w, the expression (7.2) is
multiplied by the complex number v = {(w). On the other hand,

Aw(¢:vu7 é-aw) = Aw(d);ua Uw)u_l-
It follows that the product

(7.3) <5w7‘7w>tr(RP(Uw)va(Uv f))

of (7.2) with (Sy,0) is independent of the extension o,. The product is also
independent of the transfer factor A,,. However, it does depend on the choice of
function p(A,,s.,), which in turn is determined only up to multiplication by a
function p(s,,) on Sy, such that

p(s15ws2) = p°(51)p(50)p°(52), 51,82 € S)

for some character p° on Sgw.

Let ¢ € ®iemp(G) be the Langlands parameter for G induced from ¢,,. The
short exact sequence (3.2) actually sits in a larger commutative diagram [A5, (7.1)],
which consists of four exact sequences. The set Sy, = Sgw X w is in bijection with
the 8;-coset Sé,w = Séw of w in the group My at the center of this diagram. (We
are following the notation of [A5, (7.1)] here, but with ¢ in place of the more general
parameter v.) Let

Sw 87 Sw € S¢um
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be the projection mapping from this subset of 914 onto the group Sg. The conjec-
tural identity of [A5] amounts to the assertion that (7.3) equals

(7.4) e(s0) 32 (s, m)fa(m),

melly o

for a constant c(s,) [A5, Conjecture 7.1]. The constant becomes explicit (and
independent of s,,) with a judicious choice of functions p(Ay, s, ) and p(A, s) that
is ultimately based on Whittaker models. In order to formulate the identity in case
G is not quasisplit, one would also want to verify that the expression [A5, (7.9)] is a
transfer factor for G, a hypothesis that was put forward before the twisted transfer
factors appeared in [KS].

8. Construction of A-packets

The spectral questions we have discussed to this point apply only to tempered
representations. General nontempered representations do not behave in the same
way. However, there are some nontempered representations that inherit much of
the structure of tempered representations. They are the representations that are
thought to occur in discrete spectra of spaces of automorphic forms. Such rep-
resentations should of course be unitary. I do not know whether it is expected
that, conversely, unitary representations should all have structure in common with
tempered representations.

The structure in question arises from the endoscopic transfer of characters. In
particular, the relevant nontempered representations occur in packets IL,. These
packets generalize tempered L-packets. However, they are quite different from
general nontempered L-packets, which are incompatible with endoscopic transfer.
They are parametrized by mappings

Y Wg x SL(2,C) — L@

for which the projection onto G of 1(Wg) is relatively compact. We take such
mappings up to G-conjugacy, and denote the resulting family by U(G). The packets
IT,, were constructed by geometric means in [ABV], and were shown there to satisfy
the conjectured endoscopic properties.

As originally envisaged [A4], the representations in a packet II, were conjec-
tured to be irreducible. This would have provided a well defined construction of
the packets in terms of harmonic analysis, specifically a series of conjectural charac-
ter identities. However, in their study of the characters of unitary representations
with (g, K)-cohomology [AJ], Adams and Johnson showed that the constituents of
a packet need not be irreducible. (See also [A5, §5].) This was reflected in the
expanded account [A5] of the conjectures, without however being accompanied by
a corresponding means for determining the packets I, uniquely. The geometric
methods by which the packets were eventually defined in [ABV] are remarkable,
and will undoubtedly be an important part of future progress. Nonetheless, it would
be interesting to have an alternative way to characterize the packets that is based
purely on harmonic analysis. I pose this as a problem, without having a sense of
whether any such thing is possible in general.

The basic problem is to define a stable distribution

(8.1) J— FeW) f e H(G),
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in case G is quasisplit and v is any parameter in U(G). If ¢ is trivial on the second
factor SL(2,C), it reduces to a parameter ¢ € ®iemp(G). The stable distribution
was defined in this case by the sum (2.2), taken over representations in the packet
Ily. The point here is that the packet I, had already been defined in Langlands’
original classification [L1]. There is no such a priori construction of a general
nontempered packet IL.

Suppose that the same distributions (8.1) have been defined, in some fashion,
whenever G is quasisplit. Let me recall how the conjectures, stated in [A5] and
proved in [ABV], then lead to the general packets II,.

For an arbitrary G and v, we first form the centralizer

Sy = Cent (G, 1(Ww x SL(2,C)),

and its group Sy, of connected components, as in the special case of Section 2. This
gives rise to a bijective correspondence

(G,vwl) - (wv 5)7
again as in Section 2. The distribution

f - f/(w/)v f € H(G)v
is then defined by hypothesis, and depends implicitly on a choice of transfer factor
A for (G,G"). Following (2.1), we decompose it as a linear combination

(8.2) F@) =Y AW, fa(r)

of irreducible (nontempered) characters m, with coefficients A(¢/, 7).
Suppose for simplicity that G is quasisplit. The first assertion is that there is
a function p(A, s) such that for any 7, the quotient

Q(mv 7T) = p(A, S)_IA(w/v 7T)
depends only on the image x of s in Sy. At this point there is a new wrinkle. It
comes from the central element

w6 )

in Sy, which we identify with its image in Sy. The second assertion is that for any
7, the function

r — q(sllx,ﬂ) = q(syzx, ™), x € Sy,
is a character (possibly 0) on the group (possibly nonabelian) S,,. We decompose
it as a linear combination

q(s;lz7 ) = Z E(z)ne »
1

of irreducible characters £ of Sy, with nonnegative integral coefficients n¢ .. For
any & such that ne » # 0 for some 7, we set

T =T¢ :@n&ﬂ—ﬂ.

We then define the packet IL; to be the disjoint union over £ of the representations
(possibly reducible) 7¢. Any representation 7 = 7¢ in II, thus comes with an
irreducible character

v — (z,7) = {(x)
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on Sy. The decomposition (8.2) then takes the form
(8.3) F@)=p(A,s) Y (spx,7)fa(r).

TEIL,

With its explicit dependence on the transfer factors A, the statement of (8.3)
differs slightly from that of its counterpart in [ABV] (or rather the special case in
[ABV] that applies to functions supported on only one of the several groups G that
make up an “extended group”.) In the spirit of the questions posed in Section 1,
one could try to compare the two formulations directly. Notice that the function
p(A,s) is forced on us here, as it was in Section 2, since the transfer factor A
attached to s is determined only up to a scalar multiple. This function ought to be
determined up to multiplication by a linear character in x, a change that would be
reflected in a corresponding translation of the image of the injective mapping

T — (-, 7), T € IL.

In [ABV], the mapping was normalized by relating it to a certain representation
with a Whittaker model. B

If G is not quasisplit, one should replace Sy by the group S, in (2.3). In other
words, the decomposition (8.3) ought to remain valid so long as z is taken from the
extension Sy of Sy. (The implications for transfer factors here are similar to those
for p-adic groups in [A8, §3].) As far as I can see, the group §¢ does not appear
explicitly in [ABV]. However, the associated decomposition (8.3) is a part of the
results of [ABV]. It would be very useful to make it explicit.

From the perspective of harmonic analysis, the problem is thus to characterize
stable distributions (8.1). For many classical groups, a candidate for (8.1) can be
obtained through endoscopic transfer from GL(N).

Suppose for example that G is a quasisplit orthogonal or symplectic group.
There is then a triplet

G =(G"0,1),
where G° = GL(N) and 6(z) = 'z~!, for which G represents a twisted endoscopic
datum. In particular, there is a canonical L-embedding
¢:lg — =L GO.
For any v, the mapping

w——»f(z/}(w,('“’Ié 01))>, we Wa,
0 |w|™z

is a Langlands parameter (typically nontempered) for G® = GL(N). Its L-packet
consists of course of one element 7r2}, a unitary Langlands quotient sometimes called
a Speh representation. Using the theory of Whittaker models, one can define a

canonical extension my, of 71'3 to the group generated by G(R). This granted, we set

(84) 1) = falmy) = tr(m(f)), f=H@).
Of course, for this to make sense, one has to show that the right hand side depends
only on the image f¢ of f in the stable Hecke algebra

SH(G) = {f°: feH(G)}
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on G(R) under twisted endoscopic transfer. If G is of the form SO(2n+1) or Sp(2n),
the image of H(CN}’) under the mapping f—> fG is the entire space SH(G). In this
case, (8.4) serves to define the distribution (8.1). If G is of the form SO(2n), the
image is the subspace of functions in SH(G) that are fixed by the nontrivial outer
automorphism 6 of G(R) (an automorphism induced from the nontrivial component
in O(2n)). In this case, (8.4) specifies only the symmetrized distribution

SO+ £9(6)).

The linear form (8.4) can be studied by global means. A global comparison of
trace formulas will yield stable distributions and character formulas (8.3), with the
caveat above that implies weaker assertions in case G = SO(2n). Such methods
lead also to results for p-adic groups.

Let me pose the problem of comparing (8.4) with [ABV]. In the case of classical
groups, does the definition (8.4) match the geometric construction of [ABV]? In
general, the nontempered character identity (8.3) should have a twisted analogue,
along the lines of the twisted generalization in Section 6 of the discussion of Section
2. The formula (8.4) amounts to a very special case of this. An extension of the
general results of [ABV] to twisted groups would undoubtedly provide an answer
to the question.

9. Properties of A-packets

There are many other questions one can pose for A-packets IL,. The most obvi-
ous concern the structure of the representations in a given packet. When are these
representations irreducible? When do they have tempered constituents? When
does a packet II, contain elliptic representations? I do not know whether such
questions are amenable to the geometric methods of [ABV]. It is not even clear the
extent to which explicit answers might exist. Be this as it may, the case of classical
groups is particularly interesting. Any new information in this case is likely to have
immediate applications to spectra of automorphic forms.

As a matter of fact, most of the questions posed for tempered representations in
Sections 1-7 have natural analogues for the nontempered packets IL;. For example,
the conjectural trace identity, described for tempered representations in Section
7, was originally stated for A-packets in [A5, §7]. Once again, it is likely that
for classical groups the identity can be established by global methods. Any local
insights would of course be very interesting.

Consider the orthogonality relations of Section 3. Might they have some ana-
logue that applies to representations in a packet IL;? This is a sharper form of the
question of which representations in IL,; are elliptic. I have no idea whether it has
any kind of reasonable answer. The first step would be to look at examples — say
the unitary representations with (g, K)-cohomology studied by Adams and John-
son [AJ]. The characters of these representations are quite transparent. It ought to
be possible to compute their elliptic inner products. In so doing, can one discern
any pattern? If an answer does emerge, will it have any bearing on whether the
representations in II,, are irreducible?

In the tempered case, the stable characters (2.2) satisfy their own orthogonality
relations. These formulas are simpler, for the reason that a stable character is
elliptic if and only if the corresponding packet II, is composed of discrete series.
They give rise to a stabilization of the orthogonality relations for representations
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7 € II4. Is there anything similar for the stable characters (8.1)7 In the case of
classical groups, can one relate such things to the formula (8.4)? This would entail
establishing twisted orthogonality relations for characters of Speh representations.

In another direction, consider the identity (5.5). This formula relates residues
of intertwining operators with values of tempered characters on noncompact tori.
Does it have any analogue for characters of representations 7 € II,? The residue
scheme that defines the right hand side (5.5) is given by a deformation of a contour
w(X)+ia%,, where u(X) is a large point in the chamber (a%)* such that X lies in a},.
If there is any nontempered analogue of (5.5), it will have to involve deformation
of other contours. These would presumably be of the form p(c) + ia},, where p(c)
is a large point in some other chamber ¢ = ¢(7, X) in a3, that depends on 7 and
X.

The questions I have tossed about in this section are quite scattered. They
need to be better focused before we can see what merit (if any) they have. They do
at least have a common foundation in harmonic analysis. For this reason, we can
hope that any answers for the real groups under discussion here might also apply to
p-adic groups. As I have suggested, the case of classical groups is worthy of special
consideration.

10. Functorial transfer

The problems we have discussed up until now are all related in one way or
another to endoscopic transfer. For example, the question of Fourier transforms
from Section 4 is probably most natural for the stable distributions Sas (6, f), even
though it was originally posed for the basic weighted orbital integrals Jys (v, f).
I would like to conclude by bringing up another open ended question. This one
applies to a completely different kind of transfer.

The starting point for endoscopic transfer was the endoscopic embedding (1.1).
Suppose now that

(10.1) p: @' — @

is an arbitrary embedding. We assume only that G and G’ are quasisplit groups
over R, and that p is an L-embedding of their L-groups. This is the local setting for
Langlands’ principle of functoriality, which applies to reductive groups over a global
field. In [L3], Langlands proposed a tentative strategy for attacking the general
global conjecture. It is highly speculative. However, it is also of great interest
for what it offers, the possibility of being able to extend functoriality beyond the
limited number of cases that are related to endoscopy.

Since [L3] is ultimately predicated on a comparison of trace formulas, it implic-
itly includes a transfer of functions. Recall that the stable Schwartz space S(G’)
can be identified with the natural Schwartz space on the set @emp(G’) of tempered
Langlands parameters for G’. Given the general L-embedding (10.1), and also a
function f € C(G), we define a function f* on ®iemp(G’) by setting

(102) ) =Fpod), ¢ € Premp(G).

It follows from the definitions that f — f” is a continuous linear mapping from
C(G) to S(G"). Since f* depends only on the image f¢ of f in S(G), we in fact
obtain a mapping f¢ — f? from S(G) to S(G’). The hope is that it will some day
be part of a comparison of stable trace formulas.
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The trouble is that the mapping does not have a simple geometric characteriza-
tion. Unlike its endoscopic companion f — f’, it does not have a simple expression
in terms of invariant orbital integrals. Since any comparison of trace formulas would
be focused primarily on the geometric terms, the matter is serious. On the other
hand, it is not the stable trace formula for G that one would hope to compare
with its counterpart for G’. It is rather a hypothetical formula, attached to a finite
dimensional representation r of “G (or perhaps several 7), and derived from the
stable trace formula of G. The relevant point here is that the geometric terms in
the latter would depend on the stable orbital integrals of f only obliquely. The
situation is murky, to say the least. Might one be able to guess at some aspect of
the structure of the hypothetical r-trace formula for G by studying the mapping
f¢ — fr in terms of stable orbital integrals? Do matters become any simpler if
one takes a linear combination of mappings over several related groups G'?

One can of course consider special cases. For example, if G and G’ are tori, the
mapping f¢ — fP has a simple geometric formulation. This observation can be
applied to the general case if f is restricted to be a cuspidal function. The image
f? then vanishes unless there are elliptic maximal tori Tp; C G and T/, C LG,
with admissible L-embeddings T/, ¢ LG’ and LTy C £G [LS1, (2.6)] such
that p( LTéH) is contained in “T,y. In this case, the problem can be reduced to its
analogue for the groups Tén and Tg);. The admissible embeddings of LTe’H and LTy,
are of course an essential part of the answer. They play the same role as they did
for endoscopic transfer [Shed], [LS1, (3.5)], though it is more transparent here.

We could also take minimal Levi subgroups M C G and M’ C G’, since these
groups are again maximal tori. Suppose that there are admissible embeddings
EM" ¢ G and M C LG such that p(L'M’) is contained in “M. If f is any
function in C(G), the restriction

1P, 0" e M'(R),
of f7 to the stable conjugacy classes in G'(R) that meet M’'(R) then has a simple
formulation in terms of the associated restriction

e, 6 € M(R),

of f&. It is given by the obvious reduction of the problem to the tori M and M.

I mention the last example for the relation it bears to the stable distributions
Sn(0, f). These objects are among the most interesting geometric terms in the
stable trace formula. I am assuming now that M and M’ are as above, so in
particular, M is a minimal Levi subgroup of G. It seems to me that it would be
useful to try to relate the function

SM((Svf)v o€ M(R)mGreg(R)a
with its analogue
Sar (8, ), §' € M'(R) NGl (R),

for G’, which is obtained by functorial transfer of f. One would first transform
S (0, f) to a function

S (&, f), 0 e M'(R)N Gl (R),

reg
of & by the simple prescription above for M and M’. There would then be two

functions of ¢’ one could try to compare. It is at this point that an explicit formula
for the Fourier transform of Sps(d, f) would be needed.
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If there are any simple relations to be found, they will probably show up in
a linear combination of functions S M (6, fP). Assume that we are given only the
torus M’, together with an L-embedding “M’ — ©M. It is conceivable that the
endoscopic relations (4.3) could offer guidance. One might look for a family Fys (G)
of functorial embeddings (10.1), with M’ being a minimal Levi subgroup of G’, such
that

(10.3) Su@, )= > (G p) S (0, 1),
PEF N (G)

for coefficients ¢y (G, p). This is at best only a natural guess. My point is simply
that there seem to be a number of experiments that can be performed with the
distributions Sz (0, f).

Suppose for example that M’ = M. In this case, we could take Fyp (G) to be
set €37 (G) that indexes the sum in (4.3), or perhaps some related set of endoscopic
data for G. The functorial embeddings p would then coincide with endoscopic em-
beddings £'. This of course does not mean that the functorial transfer mappings
f — fP are the same as their endoscopic companions f — f’. What are the impli-
cations in this case for a possible identity (10.3)? If f is restricted to be a cuspidal
function, Sps(d, f) has a simple expression as a linear combination of stabilized
discrete series characters, evaluated at the point 6 € M(R). The experiment then
becomes quite accessible. However, it still seems to offer us the possibility of new
insights.
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Supplementary remarks (added in proof)
1. The questions of §1-2 have been addressed by Shelstad in three papers.

D. Shelstad, Tempered endoscopy for real groups I: geometric transfer with canonical fac-

tors, to appear in this volume.

———, Tempered endoscopy for real groups II: spectral transfer factors, preprint.
, Tempered endoscopy for real groups III: inversion of transfer and L-packet

structure, preprint.

These papers recast the theory of standard endoscopy in terms of the transfer
factors of [LS1] and [KoSh]. A fourth paper on twisted endoscopy in preparation
by Shelstad deals with questions raised in §6.

There is also a recent paper
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D. Renard, Endoscopy for real reductive groupos, to appear in the Paris Book Project,
edited by M. Harris,

which gives an overview of the subject, and can be regarded as a mildly technical
introduction.

2. For further discussion of the problem in §4, see
W. Hoffmann, Weighted orbital integrals, to appear in this volume.
3. For further discussion of the problem in §7, see

J. Arthur, Induced Representations, Intertwining Operators and Transfer, Contemporary
Math. 449 (2008), 51-67.

4. There has been remarkable progress by Moeglin (in partial collaboration with
Waldspurger) on p-adic analogues of the questions raised in §8—-9. For p-adic orthogonal
and symplectic groups (at least in the quasi-split case), she describes the Langlands pa-
rameters of irreducible constituents of A-packets, and shows that these constituents occur
with multiplicity 1. See

C. Moeglin and J.-L.. Waldspurger, Sur le transfer des traces d’un groupe classique p-adic
4 une groupe linéaire tordu, Selecta Math. 12 (2006), 433-516.

C. Moeglin, Pacquets d’Arthur discrétes pour un groupe classique p-adic, to appear in the
volume in honor of S. Gelbart.

For a corresponding real group G, and a parameter ¢y € ¥(G), we have the familiar
nontempered Langlands parameter

fracl2
by (w) =9 (uu (|’w| . |w|0_%)> , w € W,

for G. However, we can also introduce the tempered Langlands parameter

Py (w) = P (w, Se(w)), w € W,
where

S¢: Wr — SL(2,C)
is the Langlands parameter for the group PGL(2) that gives the lowest discrete series.

This is the R-analogue of an operation that plays a basic role in the p-adic constructions
of Moeglin. It comes with a mapping S, — S% of finite groups, and a dual mapping

g% — §w of linear characters. These objects should be a part of any combinatorial
description of the irreducible constituents of the real A-packet Il;. They are presumably
also relevant to the question in §9 on elliptic orthogonality relations. They do have a
natural role in the examples of Adams and Johnson, but it would of course be desirable
to look at more general cases.
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