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THE FOURIER TRANSFORM OF WEIGHTED ORBITAL 
INTEGRALS ON SL(2,IR) 

3 J s  ~ r t h u r ;  Rebecca A. Herb, and Paul J. Sally, Jr. 

1. INTRODUCTION. A study of the adelic version of the Selberg trace for- 

mula leads naturally to the analysis of certain tempered distributions on re- 

ductive groups over local fields [ la] ,  [4], [8]. The invariant distributions 

which arise in this context appear mainly as  ordinary orbital integrals and 

their limits. The Fourier analysis of ordinary orbital integrals has been 

studied extensively over the past decade, and, in the case of real  reductive 

groups, this analysis may now be regarded as essentially complete [2], [7b], 

[lo1 

The situation for p-adic groups is  much less satisfactory, and consid- 

erable work remains to be done in that case (see [9] for more details). 

Along with the ordinary orbital integrals, certain non-invariant dis- 

tributions called weighted orbital integrals arise as  additional terms in the 

trace formula. The Fourier analysis of weighted orbital integrals i s  more 

complicated than that of the ordinary orbital integrals. However, it i s  likely 

that, to fully apply the general trace formula, one will have to understand 

these distributions and their Fourier transforms. 

Let G be an acceptable, real  semisimple Lie group. Let A be the 

split component of a parabolic subgroup of G and suppose that T = T T 
I R is 

a Cartan subgroup of G such that A C T If v(x), x 6 G, is the weight R *  
factor associated to the class P(A) of parabolic subgroups of G [lc]  , then 

the weighted orbital integral associated to A i s  defined as  
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Here, f S C (G), the Schwartz space of G, A(h) is  the 

(h) = Â 1, and dx i s  an invariant measure on G/TR 
IR 

h â  T& . 

usual discriminant, 

The properties of the distributions f I+ T (h) have been studied ex- 
f 

tensively by Arthur [lb, c]. In particular, Arthur computes the Fourier 

transform of T when f ? Co(G), the space of cusp forms on G. In another f 
direction, under the assumption that A T Herb [7a] has determined the IR' 
Fourier transform of T on a subspace of C(G) which is  strictly larger than 

f 
C (G). In the cases considered by Arthur and Herb, the distribution T i s  

0 

actually an invariant distribution when restricted to the appropriate subspace 

of C(G). Thus, the Fourier transform may be written as  a "linear combina- 

tion" of tempered characters of G. 

The distribution T is decidedly non-invariant on C(G). There is, at 
f 

present, no general theory concerning the Fourier transforms of tempered, 

non-invariant distributions. We approach the problem as follows. 

Let ( n ,  K )  Gtemp , the space of (equivalence classes of) irreduc- 

ible, tempered representations of G. We set 

l~ ( f )  = /" f(x) ~ ( x )  dx, f 6 C(G) . 
Then (f) i s  of trace class. 

Now, if A i s  a non-invariant, tempered distribution on G, we seek a 

'distribution" 3 A on Gtemp such that 

A ,. 
where B(7) = (f)  for IT E Gtemp . More specifically, for each G 

temp' 
we expect that there is  an operator A ( T )  on " K  and a measure d ( 7 ~ )  such 

A 
that 

We note that the operator A (n )  and the measure d ( n )  are not well- 
A A 

defined independently of each other. 
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The goal of this paper i s  to derive the full Fourier transform of the 

distribution T for the group G = SL(R) .  As noted above, Arthur [lb, c] 
f 

has computed the Fourier transform of this distribution when f 6 C (GI. We 
0 

therefore restr ict  our attention to functions in the orthogonal complement of 

the space of cusp forms. In particular, we compute the Fourier transform of 

T when f i s  a wave packet corresponding to a principal series representa- 

tion of G. 

The representation theory of G i s  well-known. In order to state our 

results, we first  define the following subgroups of G. Let 

cos 6 sin 9 
K = so(2,R)  = : 0 Â £ 9 < 2 ~  ; 

s i n  9 cos 6 I 

P = AAN . 
I 

If x 6 G is  decomposed as  x = kEa, k ? K, ii 6 %, a ? A, then we define 

1 2 
(1.6) V(X) = V(E) = - log (1 + y ), 5 = ii . 2 Y 

The function v(x) i s  the weight factor used to define the weighted orbital 

integral associated to the Cartan subgroup H = A A  of G (see [lb] ). 

For f â C(G), the weighted orbital integral of f i s  given by 

where dk i s  a suitably normalized, G-invariant measure on G/A. This 

integral converges, and the map f i-Ã T ( y h ) defines a tempered distribution 
f t 

on G (see [lb] 1. 



2 0 ARTHUR, HERB AND SALLY 

The Schwartz space C(G) decomposes naturally into a direct sum of 

subs paces determined by the various series of irreducible tempered repre- 

sentations of G. These series are: 
A 

(1) G ,  the discrete series of G, parameterized by the non-trivial charac- 

t e r s  of K, which, in this case, is  also a compact Cartan subgroup of G; 
A A 

(2) G ,  the principal series of G, parameterized by a character x ? A 
I 

and a rea l  number \ which determines a character of A by the formula 
x, ̂ 

h e . We denote the corresponding representation of G by IT . 
For fixed x ,  the representations T T  ' A and TT 

x. - A  a r e  equivalent, and, if 

x is  non-trivial, the representation TT splits into two irreducible compo- 

nents. lf x i s  the trivial character on A , we write TT*' = n +. 0 
I 

The representation TT * may be induced from P, -n  ̂̂  = 
G 

Indp (X 8 eiA C3 I), and n x ' \ s  equivalent to F ~ ' ~  where y X s A  = 
G Ind- ( X  8 eiA @ 1). P = A A N .  We denote by M (A) a suitably normal- 
P x 

ized intertwining operator for IT"-* ' and T T ~ ' ,  and by M' (X )  the deriva- x 
tive of M ( \)  with respect to 1. x 

We now state the main theorem of this paper. 

THEOREM 1.8. Let f be a K-finite function in C(G), y A t # 0. Then 
I ' 

Here @ is  the character of the discrete series representation n ,  the 
TT 

(scalar-valued) function c P  is the solution of an inhomogeneous second order 

differential equation (see (2. 19))' and the "tT" preceding the trace in the last  

te rm is  the real  number n - 2217. 
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It i s  clear from the above formula for T that the non-invariance of the 
f 

distribution is  embodied in the third term. (The principal value integral in 

this term is  made precise in (2. 20).) The expression in the f irst  te rm repre- 

sents the Fourier transform of T for f ? C (G). We shall derive the last f 0 

three terms by working with wave packets f determined by a fixed K-type. In 

this case, the resulting operators T * *  '(f) a r e  diagonal with respect to an  

appropriate basis and have exactly one non-zero entry. .This simplifies the 

computations considerably. 

An announcement of this theorem and a more detailed expository account 

of the Fourier transform and weighted orbital integrals appears in [7c] . 
In section 2 notation and background information a r e  given, and Theo- 

r e m  1.8 is  restated for wave packets determined by a fixed K-type a s  Theo- 

r e m  2. 18. This theorem is proved in section 3. Finally, in section 4 we 

compute the Fourier transform of a singular distribution associated to the 

weighted orbital integral. 

Our approach to the determination of the Fourier transform of weighted 

orbital integrals was outlined by the f irst  author a number of years ago. More 

recently, Warner [ 1 l] has extended the results of Theorm 1.8 to semisimple 

Lie groups of rea l  rank one. The singular distributions derived in section 4, 

which also play a role in the trace formula, seem more difficult to derive in 

the general (rank one) case. At this writing, these singular distributions have 

been determined only for SL 2 ' 

2. PRELIMINARIES. Let G = SL(2,IR), the group of two-by-two matrices 

with rea l  entries and determinant one. We will use the notation of (1. 5) for 

subgroups and elements of G. Each x G can be decomposed uniquely 

according to the Iwasawa decompositions G = KNA or G = KNA a s  

where ( x ) ,  K(x) ? K, n(x) 6 N, 5(x) 6 E, and h(x), h(x) Â A. If h(x) = ht a s  
- 

in (1. 5), write H(x) = t. Similarly, if h(x) = h , write H(x) = t . 
Haar measures dk and dii on K and respectively a r e  normalized 

so that K has total volume one and so that JÃ e"2H(ii) dii = 1. Let d5 denote 

the G-invariant measure on the quotient G/A which corresponds to the product 

measure dkdii on KE. This makes precise the formula for T (yh ) given 
f t  

in (1.7). 
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Using the left-invariance under K of the weighting function v of (1.6), 

we can also write 

where 

- 1 
fix) = }  f(kxk )dk 

is the average of f over K. Thus, we see that it i s  sufficient to evaluate T f 
for functions invariant under conjugation by K. 

We will a lso use the familiar (unweighted) orbital integral defined for 

f ? C(G) by 

The following properties of the weighted orbital integral a r e  among 

those proved in [ lb]  . For fixed f ? C(G), y c AT, t b Tf(yht)  i s  an even func- 

tion which is smooth for  t #O. (The behavior of T (yh  ) a t  t = 0 will be dis- f t 
cussed in section 4. ) Further, le t  z denote the left and right invariant dif- 

ferential operator on G given by z = XY t Y X  t H + 1 where 

0 0 
H = (; -:) , X = (: ;), and Y o) . 

Then for a l l  f ? C(G), y A , t # 0 , 

We now review some definitions and formulas of Har ish-Chandra from 

[6a, c] regarding induced representations and wave packets. Let = A A N ,  

^ 2 
P = A N. For  x 6 A le t  it* = (g 6 L (K): g(ky) = ~ ( y )  g(k) for a11 y 6 AI, 

I * x * x  - k ? K] . Then for A ? R, the unitary principal s e r i e s  representation TT - 
G 

Ind ( X  63 e i  63 1) can be realized on K^ by 
P 

im9 
For  m 'C Z, le t  w be the character of K given by w (t ) = e , 0 <: 9 2rr .  

m m 9 
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Let Z = [m ? Z: ~ ( y )  = x(y) for al l  y ? A } .  Then [ w ;  m ? Z is a 
x x 

basis for 'Kx and for m ? Z we define the Eisenstein integral x 

The matrix coefficient E(m: 1) is  Schwartz class. In order to get an ele- 

ment of C(G) we take a ? C m ) ,  the Schwartz space on IR, and form the wave 

packet 

w 

where u ( A )  i s  the Plancherel measure corresponding to the representation 
x9 

x 
n .  

Since E(m: \) i s  an eigenfunction of the differential operator z of (2.5) 

with eigenvalue p(\) = - \  , f satisfies the equation 

Further, for k k ? K, x ? G , 
1 

In particular, f i s  invariant under conjugation by K, which would not have 

been the case if we had started with an off-diagonal matrix coefficient. These 

wave packets span the space of K-central functions orthogonal to the space of 

cusp forms. 

A further consequence of the transformation property of f under K 

together with the fact that A  is central in G is  that for f a s  in (2.8),  
I 

Thus it is enough to evaluate T (h ), t 0. f t  
For f = f(a:m) a s  in (2.8), the operators T T ( ~ )  defined in (1. 2) are  

A A 

particularly simple. First ,  for n ?  G n(f) = 0. Also, for \' ? AI , X' # x ,  d ' 
we have ~ f )  = 0 for al l  1 ?  R. Finally, for m' ? Z , x 

0 if rnf- f -  m 
(2.12) m' 

( a(1) -t a(- k))  wm if m ' = m 

so that i ~ "  '(f) has only one non-zero entry and it is on the diagonal. 
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Recall that for a l l  X 6 A , X ? R, TT*, ' is  unitarily equivalent to the 
G - Ind- ( \ @  e iA @ 1) definedon K  ̂ by representation i7" - 
P 

x Let M ('A) denote the intertwining operator on K^ which satisfies 

M^T^ t x )  = TT^' (x)M*(x) for al l  x ? G. With-respect to the basis 

iwrn 
: m 6 Z } , the intertwining operators a r e  also diagonal matrices with 

Â¥ 

Here c (X )  i s  the c-function which is  the meromorphic continuation to the 
m 

real  axis of the analytic function defined for p ? C with Im u C 0 by 

We will need to know the poles and residues of d ( X )  = c 7  ( X )  c (x) - '  m m m 
along the rea l  axis. Using formulas of Cohn [ 3 ]  we get 

Taking the logarithmic derivative, we find that 

where +(u) = T 1 ( p ) r ( p ) ,  IJ? C .  The properties of + can be found in[5] .  

It has simple poles only a t  u = 0, -1, -2,. . . so that d ( X )  is  analytic for m 
X #  0. If m is  even, the term (i/2) +[ i \ /2]  contributes a simple pole a t  

\ = 0 with residue - 1 and al l  other terms a re  analytic at  X = 0. If m is  odd, 

we find using the identity + ( u. t 1) = +(p)  + 1 /U that al l  poles at  X = 0 cancel. 

Combining the above formulas for the operators n(f) and M*(x), i t  is  

easy to see that Theorem 1.8 can be restated a s  follows for wave packets. 

THEOREM 2.18. Let f = f(0.: m )  where a 6 C(R) and m ? Z. Let t + 0. 

Then 
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+ i P .V.  f l a ( l )  + a(-I)] e -il.ItI c' (X) c ( I ) - '  d l  
- CO m 

(0 m odd . 
The function Ã (t) in the f irst  te rm is  defined for t 0 by 

\ 

CO 

1 - 2 
(2. 19a) Ã (t) = - f sin k(u - 1 t 1 ) coÃ l u  (sinh u) du , In" 0 ; x x 

Itl 

m - 2 
~ ( t )  = lim tp ( t )  = f (u - It1 (sinh u) du . 

-i 0 Itl 

Note that both integrals converge absolutely for t #0, and that there is a con- 

stant C so that lcp(t) 1 s C / 1 sinh t 1 for al l  \ â R, t # 0. 

For m odd, the principal value is  not required in the second term since 

c'  (I) cm(X) - l  i s  analytic at  \ = 0. For m even, we define 
m 

Note that the integrand in the last  expression extends to an  analytic function at  

A. = 0 since the simple poles cancel. 

3. P R O O F O F  THE MAIN THEOREM. Fix a ?  C(R) and m 6 Z. Let f = 

f (a :m)  be defined as in (2.8). For t # 0 write 

(3. la)  T ( t : a : m ) = T ( h )  ; 
f t  
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The main step in the proof of Theorem 2.18 i s  to show that R(t:  a :  m )  

gives the asymptotic behavior of T(t : a: m )  a s  1 t 1 -> ,W and that the distribu- 

tion on IR given by u + T(t : a: m )  - R(t : a:  m )  is given by integration against 

a continuous function of X .  These resul ts  a r e  contained in the following 

lemma which will be proved a t  the end of this section a s  Lemmas 3.10 and 

3.11. 

LEMMA 3. 2. For a l l  t # 0 , 

where Cp(t: 1: m )  i s  a continuous function of a t  most polynomial growth in the 

X variable satisfying l im V(t : 'A: m )  = 0, uniformly on compacta of 'A. 

I t  

Assuming the lemma, i t  only remains to show that V(t : 1: m )  is the 

function Cp (t) defined in  ( 2 .  19). To show this we use the differential equation 
X 

(2.5) satisfied by T(t : a: m )  which can be written using (2.9) a s  

Clearly R(t : a: m )  satisfies the corresponding homogeneous differential 

equation 

The Fourier inversion formula for the orbital integral F (see [ 101 ) can be 

used to write 

Thus the function Cp given by Lemma 3. 2 must  be a solution of the equation 
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d 2 - 2 - cp ( t : \ :m) = -\ cp(t:X:m) + cos \ t ( s inh  t )  . . 
dt2 

But ~p (t) i s  the unique solution of this equation satisfying l im Vk(t) = 0 . 1 
I t  + =  . . 

In order  to prove Lemma 3.2 we must  derive new formulas for both 

T(t : a: m )  and R(t : a: m )  and then use the asymptotics of the Eisenstein 

integral. Since both T and R a r e  even, we may a s  well assume that t >0. 

Since f = f ( a :  m )  is K-central we can write, using (1.6), (2. 2), and a 

standard change of variables on , 

Now using the definition of f in (2.8), we obtain 

Using the same argument, but leaving out the weight factor v(E), we obtain 

1 -2t -2  2 1 2 
Nowas t - ~ t ~ , ~ l o g ( l + ( l - e  ) y ) + ~ l o g ( l + y ) = H ( E ) .  Also, 

Y 
1 t 

iih = ~ ( 5 )  h(5) h- n(5) ht + K ( 5 )  h(E) ht . Finally, e E(m: \; K ( 5 )  h(E) ht) i s  
t t 

asymptotic a s  t + to 10 ( ~ ( 5 ) )  e ^ ^ ~  (m: k H(5) t t )  where for any t >0 
m P 

the constant t e r m  E (m: X: t )  i s  defined by 
P 

(The c-functions c ( Â  X ) a r e  given by (2.16). ) Thus we would expect that a s  - 
t +  + a ,  T ( t : a : m ) +  R( t : a :m)  where 
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- - 
(3.9) R(t: a:  m )  =L fa(X)u (h) Wm(K(E)e-H(n)~ (m:X:H(E) t t )  H(E) dXd5 . x P 

N - m  

- 
LEMMA 3.10. The integral defining R in (3.9) converges a s  an iterated 

integral, and for t # 0 , 

,., 
where Y i s  a continuous function of polynomial growth in 1, satisfying - 

l im cp(t:X:m) = 0, uniformly on compacta of 1. 

I t  ->a 

Proof. Using (3.7 ) we can write 

where 

-2t - 2  
Write a = (1 - e ) and write ii h = k h k according to the Cartan 

t y t  1 v 2  
decomposition, where k , k ? K, v 2 0 . Then 

1 2  

2  2t 2 2 2t 2 
v = v(y, t )  a log {(cosh t + e y / 4 ) l f 2  t (sinh t + e y /4)1/2} 

and klk2 = t where 9 = 9(y, t )  satisfies a 

i 9 - 2t -2t 2 2 112 e = ( l t e  - i y ) / [ ( l t e  ) t y  ] 

B = B(t:m:X:y) can be written a s  a sum of the following five terms: 

1 t B = z l o g  at  e E (m:k i i  h ) ;  2 y t  
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We will show that there a r e  functions Q.(t:\:m), 1 i ^ 5, corresponding to 
1 - 

these five te rms,  the sum of which yields the function p(t:\:m) required in 

the lemma. For t > 0, 

t 
converges absolutely. Further ,  e E(m: \: E h ) i s  bounded for a l l  t > 0, 

y t  
y ? R. Thus we can exchange l imits  of integration to write 

where 

is smooth and of polynomial growth a s  a function of 1. Further ,  for X in  
- Zt 

any compact set,  there is a constant C so  that lcp (t:>s:m)l C e for all 
1 

t > 0 .  

Using (3.5) and (3.7b), we obtain 

1 / / a(k) p ( 1 )  B(t :m: k y )  dX dy = log a F(t: a:m) 
TT t 

- C O  - w  

= log a t [i a(k) cos I t  dX, 

1 
Thus we can take Q2(t: \:m) = 7 log a cos U .  

t 
It folllows f rom the estimate of Harish-Chandra for the constant t e r m  

w 
[6a] that there a r e  a continuous seminorm v a n  C (G) and a n  e >  0 so  that 
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t -et 1 e E(m:l:E h ) - ~ ~ ( m : l : t ) \  < v (E(m:k))e for all t > 0. Writing ii h = 
y t  y t  

klhvk2, t0  = k k as above, E(m:l :E h ) = LC (t )E(m:k:hv). Thus 
1 2' y t  m 0 

t e E(m:k:H h ) - e""') LU (t ) E  (m:).:hv)l -Z v(E(m:l.))e m 0  P 
(t-v)e-'v for all 

Y t 
t >  0, y â R. But 

where 

1 2 1/2 
Note that for all t 7 0, y R, g(y, t )  2 7 (1 + y ) . Thus 

which converges absolutely for any c > 0 and is independent of t. Thus we 

can exchange the order of integration to obtain 

-ct 
where IcP (t:A:m)I 5 Ce p (X)v(E(m:l)) for some constant C independent 

3 Â¥X 
of A E R  and t > 0 .  

In the fourth term, we can write 

Using the formula for g(y,t), one checks that there is a constant C so that 

for all t 70, y, l ? [R , 
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Thus 

so that the integral converges absolutely. Thus again we can exchange order 

of integration to obtain 

where lV4(t:l:m)l C I C  (MI px(l)1 1 +ill  e-2t for some constant C. 
m 

Finally, we write K: (5  ) = t where 
Y 

i I p  - 1 - iy 
e - 

(I t y2) l I2  

and r e  call that 

Then for all t > 0, y ? R, 

Thus 

and hence i s  absolutely integrable with respect to y, so that 
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with l ~ ~ ( t : ~ : m ) l  s C ] m ]  ]cm(A) 1 P ( l i e  - 2t for some constant C . 
X 

Q. E. D. 

In order to complete the proof of Lemma 3.2, and hence of Theorem 

2.18, it now suffices to prove the following lemma. 

Proof. Using the definition (3.8) of E we can write 

w 

It u) ( K (5)) H(E) e t : a : m  =k(l) LL "X ( ~ ) c m ( ~ ) e  
(iA-l)H(ii)dA dE 

The inside integrals 

a re  absolutely convergent since 1-1 ( A )  c (Â A )  i s  analytic for all 1 ? IR and 
X m 

of polynomial growth at infinity [6c]. However, for fixed 1, 

does ~t converge. In order to change the order of integration we must think 
- 1 

of A as R e p , P â ‚ ¬  Then Lt (A)cm(A)=cm(-A) and ki (A)cm(-A)= 
Â¥ X 

c ( A ) - '  extend to holomorphic functions on a strip about Im \.\= 0, say on 
m 

1 Im p 1 < 26 for some 6 > 0 [6c]. Assume that a is  the restriction to the 

real axis of a holomorphic function which decays rapidly as  ~e u -> uni- 

formly in 11m. p 1 5 2e .  Then we can shift contours of integration to write 
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-1 e(-i A-â‚¬ 
w ( K (Fi))H(ii)e 

(- i l -C-l)H(E) 
m 

d l  dii . 
N - m  

But, f rom (2.15), for â > 0 , 

converges absolutely to ic' (T 1 -is) where the pr ime denotes the derivative 
m 

with respect to 7,. Thus the order  of integration can be reversed to write 

For  p e1C write h ( M ) = i a ( p ) c  (-p)-% (-M)eiw and h2(l-0 = 1 m m 

i a(u) C ( M ) - '  C;(M) e -ipt . Then both h and h have at  worst simple 1 2 
poles at  p = 0, but a r e  otherwise holomorphic on the s t r ip  1 Irn p 1 < 2e , 

Further, h + h i s  holomorphic throughout this region. Thus 
1 2  

We now have 



34 ARTHUR, HERB AND SALLY 

which, using ( 3 . 1 ~ )  and (2.201, is equal to R(t: a: m). This proves the lemma 

when a i s  the restriction of a holomorphic function as above. But such a 

form a dense subset of C(R) and for each t # 0, a Ã -̂ R(t: a:m) i s  a tempered 

distribution. Using (3. lo), we obtain 

also gives a tempered distribution since a I-+ T(t: a :m) is  tempered. Thus 

R(t:a:m) = R(t:a:m) for all a C C(IR). 
Q. E. D. 

4. THE SINGULAR WEIGHTED ORBITAL INTEGRAL. We now look at the 

behavior of T (h ) as t + 0. Recall from (3.7) that we can write 
f t 

This shows that S (h ) has a well-behaved limit as t 4 0  given by 
f t 

w 

lim S (h ) = 7 
f t  f(Ey)log l y l  dy . t +  0 

-a 

Arthur defines the s ingular  I '  weighted orbital integral 

T (1) = lim S (h ) , 
t + o  f t 

This term also appears in the Selberg trace formula. (See (9.2) on p. 384 of 

[ la] .  1 
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The Fourier transform of T (1) can be easily computed from that of 
f 

T (h ), t # 0. As before, suppose f = f (a :m) ,  a C (R), m 6 Z, i s  a wave 
f t 

packet. Write S (t: a : m )  = Sf ( h )  . Recall that Theorem 2.18 can be written 

as  

Now 

Thus to find lim S(t: a: m)  it suffices to evaluate lim [S(t: a :m) - R(t: a:m)] 
t + 0 t + o  

where, using (3.5) we have 

1 -2t 2 
h A ( t )  = cPA(t) + -log(l - e cos At . 

2 

Using the differential equation (3.6) and behavior at infinity character- 

izing ip . , we see  that for t > 0, \ (t ) i s  the unique solution of the equation 

d ' 2 4 A sin Ã  ̂
-h (t) = - A  h Ã ˆ ( t )  
dt2 eZt - 1 

satisfying lim h (t) = 0. 
t +  +CO \ 

(4.6) 

Thus 

Thus for t > 0 we can write 
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s in2  XU 
l i m  h ( t )  = h (0) = -4  

t l 0  
\ / e Z u -  1 

i s  well-behaved. We have proved the following proposition. 

PROPOSITION 4.7. Let f = f ( a  : m )  where a ? C(R) and m ? Z. Then 

( 0  m odd . 
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