HARMONIC ANALYSIS OF INVARIANT DISTRIBUTIONS gy,

James Arthur#
Suppose that G is a reductive Lie group, with Lie

algebra 43 . To be safe, let us assume that G is the set
of real points of a reductive algebraic group defined over
R . Harish-Chandra has defined the Schwartz space, C{(G), on

G. It is a certain space of functions on G such that

c':(c;)c_ c(G) C 1.2(g).

In each case the inclusion is a continuous map from one space
onto a dense subspace of the second. A distribution, F, on
G 1is called tempered if it extends to a continuous linear
functional on C(G}). F is said to be invariant if for fixed

fe C:(G), <F,fY¥> is independent of y & G. Here

¥ (x) = £y T xy).

EXAMPLE: Suppose that T is a Cartan sSubgroup of G with

Lie algebra 4. If y e T the set of points in T whose

reg’

centralizer is T, define

D(y) = det(l - Ad(y))

G4
Harish-Chandra has shown that the map which sends £ e ((G)

to

. 1/2 -
Fly,f) = F&'T(y,£) = |D{y)] / I £ix L y x)dx
T/G

is well defined, and is a tempered invariant distribution on
G. The distributions so obtained, known as the orbital

integralé of £, play a central role in the harmonic analysis
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on G. They also arise naturally in the study of LZ(I'\G),

where T is a discrete co-compact subgroup of G,

PROBLEM: Define the notion of Fourier transform for an in-
variant tempered distribution.

In this lecture we shall describe a solution to this
problem. We shall then use our solution to define a wide
class of invariant tempered distributions, of which the
orbital integrals are special cases.,

Let K be a fixed maximal compact subgroup of G. It
the set of fixed points of a Cartan involution g of G.
Suppose that P 1is a parabolic subgréup of G. Then P = NM,
and M = Ml. A, where N 1s the unipotent radical of P, and
Ml and A are uniquely determined 8-stable reductive groups
such that Mt has compact center and A is a vector group.

"Any me M can be written ml exp H, where. ml

€ Ml and
H  belongs to gt , the Lie algebra of A. We denote H by

HM(m). Since G = PK, any x in G can be written
X = nmk, ne N, me M, keK,

It is customary to denote the vector Hy(m) by HP(x). Sup-
pose that ¢ 1is an irreducible representation of M. We can
pull ¢ back from M = N\P to P and then induce to G.

The result is a reéfesentation ip(o) of G on a Hilbert
space ﬁp(o) of functions on G, which is unitary if ¢ 1is
unitary. Any function in ﬁp(u) is uniquely determined by
its restrictiqn to K. Let HP(o) be the space of functions -

on K obtained in this way, and let 1Ip{os) be the correspond-
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ing representation of G on HP(U).. The reason for intro-
ducing this latter space is that it does not change if ¢ .
is twisted by a character of A. In other words, if
A(Hy (m))
OA(mI = g(m) e R m e ﬂ,
for any quasi-character A of #m, the representations

{IP(UA): A g Hom{£{,C)}

all act on the same space,
A representation % of G is said to be tempered if
its character is a tempered distribution. This implies that

for £ e C(G),
ch“(f) ='tr(fG Fix)m{x)dx)

is well defined. We obtain a map from (G} to the space of
complex valued functions on ET(G), the set of classes of
irreducible tempered representations of G. The problem is
to characterize the image of this map. |

It is known that 7 is tempered if and only if it is a
subrepresentation of some IP(o), where ¢ is an irreducible
unitary representation of M- which is square integrable
modulo A. Let Ay be any second order left and right in-
variant differential operator on M. such that for all such
¢ the operator U(AM), a priori a scalar, is actually posi-

tive. Then if 1 is any subrepresentation of I, (o), define

il = atay) -
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It is easy to.show that this number depends only on the
tempered representation w# and not on P and o¢. For any

P, and any o ¢ Ep(M), we can define ||o]| the same way. Sup-
pose that s 1is a complex valued function on ET(G). If P
is a parabol%c subgroup, and ¢ ¢ ET(M)' then Iplo) is a
finite sum of tempered representations of 6. We define
s(IP(o)) additively. If D = D, is a differential operator
of constant coefficients on the real vector space Hom(eL,iR),

and n is a positive integer, define
sl . = suwe dlofllp, s(Zpte), |
B,n geb, (M) A FA =0
if all the derivatives in this formula exist. Otherwise,
set ]|s]|D = », Let I{G) be the set of all functions
,n
5: ET{G) +
such that

sl o < =

for all P, D and n. With the topology defined by the

gsemi-norms || HD n' 1(G) becomes a Frechet space.
THEQOREM 1: The map
ch: (f,m} » ch_ (£}, feClG®, Te ET(G),

is a continuous surjection from C(G}) onto 1(G).

CORCLLARY: The transpose
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ch': 1'(8) + ¢' (&)
is a continuous injection.

THEOREM 2: The image of ch' is exactly the space of invar-

iant tempered distributions on G.

COROLLARY: For £ ¢ €(G) suppose that either
{a} ch (£f) = 0 for every T ¢ ET(G), or
(b} FG'T(y,f) = 0 for every Cartan subgroup T and ﬁll

Y € Trag
Then I(f) = 0 for every invariant tempered distribution I.

The corellary is easy to prove. Recall that if
T e Egp(G),

T G,T
ch, (f) = % J ¢ (YVIF ' {y,£)dy,
{T} Treg

where {T} is a set of representatives for conjugacy classes
of Cartan subgroups of G, and ¢$(Y) is a bounded function

on 7T. Therefore, (b) implies (a). But
I(f) = (ch'(8))(f) = S(ch f),

for some S ¢ I'(G). Therefore (a) implies that I(f) = 0.
The proofs of Theorems 1 and 2 are more difficult and will

appear elsewhere, However, they give a solution to our pro-

blem, If I 1is a tempered invariant Gistribution on G, we

define its Fourier transform to be (ch‘)-ltl). it is an

element in the dual space of I (a).
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Suppose that A is a vector subgroup of G such that
0A = A, Let M be the centralizer of A in G and let

<t be the Lie algebfa of A. A is called a special subgroup

of G if it is the split component of a parabolic subgroup
.P. Suppose that this is the case and let P(A) be the set
of all such P., If P e P(A), let @P be the set of simple

roots of (P,A). Then
+
mp = {Heet: a(H) > 0, a ¢ L

is called the positive chamber of P. As P varies through-

out P(A), the associated positive chambers are disjoint and
dense in &« . Groups P and P' in P(A) are said to be
adjacent if their chambers share a common wall.

Let us identify <L with its dual space by means of a
suitable positive definite bilinear form < , > on .fr .

Suppose that
{cp(A): Pe P(A), A € o4}

is a family of analytic functions. We shall call it a com-

patible family if whenever P and P' are adjacent and A

is in their common wall,

cplA) = Cps {r).

LEMMA 1: If the family is compatible,

-1
Y cplr)} (@ <a sA>)
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is an analytic function of A.

PROOF : The only possible singularities of the function are
<g,A> = 6 for roots B of (G,A}. Given B the only sum-
mands for which <f,A> = 0 1is a singqularity occur in adjacent

pairs, P and P'. Moreover, we can assume ¢, U -ep) =

{g}. The contribution in the above sum from (P,P') is

<3,A>'l{cP(A) (n ca,hs) - cpy (M) (1 ca hs) "L

wedN{8] oedp \{-B]
IYf A 1is in the common wall of P and P', the expression
in the curly brackets is 0. It follows that <§,A> = 0 is

not a singularity. []

EXAMPLE: Fix x e G. It is easy to check that
< A,HP(x)>
{cP(A) = e : P e PlR)}
is a compatible family. Therefore
<A,HP(X)>

vix) = lim & e (1 <B,A>)
A+0- PeP(A) aed

igs well defined. If m g M,
HP(mx) = Hp(x) + HM(m),
so that
<0,HM(m)>

vimx) = e vix) = v(x).

Suppose that T is a Cartan subgroup in M, and

Y E Treg‘ It can be shown that
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1/2]

f(xL y x)vixiax, £ e clG),
Je

|D(y) |

is a tempered distribution. However, it is not invariant.
We would like to modify it to obtain an invariant distribu-

ticn.

LEMMA 2: Suppose that ¢ is an irreducible unitary repre-

sentation of M. Then there exist unitary operators

. V 1

RP.’P(U). HP(G) + HP-(U)' P,P' € P(7),
such that
(1) RP,IP(U)IP(o.x} = IP.(o,X)RP.tP(o), X g G,
(ii) R, (6) =R (o) R (o), P,P',P" ¢ P(A)

P |P P"lP' P.lp '

(iii) If P and P' are adjacent and A lies in their

common wall, RP'[P(OA) = RPllP(U).

Suppose that Po e P(A), £ e C(G), and o ¢ ET(M).

Then

-1

cp () = tr(R ) RPIPO

o |2y (o1, (0,2))

is a compatible family. Therefore

-1
¢, {F,0) = lim c, (A) (1 <o, A>)
A-0 ae@P

L4

is well defined. It is independent of PO'

LEMMA 3: The map

o+ 4alf,0), o€ Eg(m,



392.

is in I(M).
It follows from Theorem 1 that there is a function

Qn‘f) in (M) such that
cho(QA(f)) = @A(f,g)

for every g e ET(M). QA(E) is not unigquely defined, but
it follows from Theorem 2 that if I is any invariant

tempered distribution on M, I(¢A(f)) is uniquely defined.

Suppose that y e T .4 We define a number rC TRy )
inductively by
M*,T,A _
z 1 (Yegp , (£}) = |D(Y) |l/2 i f(x le)v(x)dx_
{a*:A*CA} : A ™G

The sum on the left is over the finite set of special sub-
groups which are contained in A. We are assuming inductively
that we have defined all the summands except the one for
which A* is the gplit component of the center of G. 1In

this latter case, of course,

ITI

M*, T

/A A,
F (Y,¢A*(f)) = F {(Y,£).

Notice that if A is the split component of the center of
G there is only one term in the sum., In this case
FG'T’A(Y,f) is just the orbital integral FG'T(T,f) defined

earlier.

THEOREM 3: The map
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is an invariant tempered distribution on @.
Notice that this theorem is necessary for our inductive
definition to work. The theorem, along with Lemmas 2 and 3,

is proved in {1]. The distributions G/ ToA

(y) seem to be
the natural replacements of the orbital .integrals when one
tries to study LZ(F\G) and TI'\G 1is assumed only to have

finite volume.
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