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Introduction

This paper is the second of two articles in real harmonic analysis. In the first paper
[A14], we established asymptotic formulas for some natural distributions on a real group.
In this paper we shall establish important relationships among the distributions, as the
group varies.

The group is the set of real points of a connected reductive group G over R. The distri-
butions are weighted orbital integrals Js(y, f) on G(R), and their invariant counterparts
Ine(7, f). Here, M C G is a Levi subgroup of G, while v C Mg-1g(R) is a strongly G-
regular conjugacy class in M (R). The relationships are defined by the invariant transfer of
functions on G(R) to functions attached to endoscopic groups of G. This necessitates our
working with the invariant distributions Ip;(7y, f). We refer the reader to the introduction
of [A14] for some general remarks on these objects.

The distributions Ins(7, f) are the generic archimedean terms in the invariant trace
formula. We cannot review the trace formula here. The reader might consult the intro-
duction to [A13] and the two papers that precede it for a brief summary. The purpose
of the paper [A13] was to stabilize the invariant trace formula, subject to a condition on
the fundamental lemma that has been established in some special cases. The stable trace
formula is a milestone of sorts. It is expected to lead to reciprocity laws, which relate
fundamental arithmetic data attached to automorphic representations on different groups.

The stable trace formula of [A13] relies upon the results of this paper (as well as a
paper [A16] in preparation). This has been our guiding motivation. The relevant identities
among the nonarchimedean forms of the distributions Iy;(7, f) were actually established
in [A13]. They were a part of the global argument that culminated in the stable trace
formula. As such, they are subject to the condition on the fundamental lemma mentioned
above. Our goal here is to establish the outstanding archimedean identities. We shall do
so by purely local means, which are independent of the fundamental lemma.

To simplify the introducton, we assume that the derived group of G is simply con-
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nected. The identities then relate the invariant distributions on G(R) with stable distribu-
tions on endoscopic groups G’(R). We recall that a stable distribution on G'(R) depends
only on the average values assumed by a test function over strongly regular stable conju-
gacy classes in Gy, (IR), which is to say, intersections of G, (R) with conjugacy classes in
G'(C). (An invariant distribution on G(R) satisfies the broader condition of being invari-
ant under conjugation by G(R).) In general, the endoscopic groups represent a finite family
{G'} of quasisplit groups over R. They are defined in terms of G by a purely algebraic
construction [L1] of Langlands. For any G’, Shelstad has established a correspondence

f — [’ between test functions on G(R) and G'(R). The image f’ of f is defined only up

to its averages over stable conjugacy classes in G’(R), but this is enough to yield a pairing
(£,8") — S'(f")

of f with any stable distribution S” on G’(R). The identities express Ip/(7y, f) as a linear
combination over G’ of such pairings.

Let us be more precise. We fix an elliptic endoscopic datum M’ for the Levi subgroup
M of G. We then attach an invariant distribution Ip;(o’, f) to a strongly G-regular element
o’ in M'(R). This is a straightforward step, taken by applying the Shelstad correspondence

for M to the function
v — Iu(y, f).
The object is to relate this invariant distribution on G(R) to stable distributions on endo-

scopic groups G’ for G. The identity we eventually establish may be formulated as a finite

sum
(%) ZLM, (G,G"SS (o, 1),

where G’ ranges over endoscopic groups for which M’ is a Levi subgroup, ¢y (G, G’) are

explicit coefficients, and SC}/[(O‘/ ,+) are uniquely determined stable distributions on the
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groups G’(R). This result can be regarded as a stabilization of the invariant distribution
In (v, )

The identity (*) might seem somewhat arcane, at least at first reading. However,
it is very natural. It is governed by the very considerations whose global expression in
[A13] led to the stable trace formula. The essential point may be summarized as follows.
One can try to stabilize Ip;(7, f) in either of the two arguments v or f, but it is not a
priori evident that the two operations are compatible. Indeed, Iy/(7, f) is defined as an
invariant distribution by a rather formal process [A14, (1.4)], which gives no indication of
how the values it takes on averages of f over conjugacy classes depend on ~. The identity
(x) asserts that the two ways to stabilize Ip; (7, f) are indeed compatible.

How can one establish an identity (*) with so little knowledge of the explicit behaviour
of Ins(v, f)? The answer comes from an interesting application of methods of classical
analysis. One shows that any of the terms in (*) is the solution of a (non-homogeneous)
linear boundary value problem. Namely, it satisfies a system of linear differential equations,
it obeys explicit boundary conditions as ¢’ approaches the G-singular set in M'(R), and
it has an explicit asymptotic formula as ¢’ approaches infinity in M’(R).

We formulate the identity, in precise and somewhat more general terms, as Theorem
1.1 at the end of §1. The rest of the paper will be devoted to its proof.

The titles of the various sections are self-explanatory. We discuss the differential
equations in §2. This is partly a review of the paper [A12], where it was shown that the
differential equations satisfied by I/ (7, f) have compatible analogues for the terms in ().
In §3, we investigate the boundary conditions attached to compact roots. This reduces to
results of Shelstad [S1] for invariant orbital integrals, which were a part of her construction
of the transfer mapping f — f’. In §4, we investigate the boundary conditions attached
to noncompact roots. These results require more effort, since they have no analogue for
invariant orbital integrals. We then analyze the asymptotic formula of [A14] in §5. The

problem is to convert the asymptotic expression for I/(7, f) into a corresponding formula

4



for the term Ip;(o’, f) on the left hand side of (%), and compatible formulas for the terms
§gl,(a’ , f') on the right. This requires a separate stabilization of each side of the original
asymptotic formula. In the last section §6, we combine everything. We show that the
difference of the two sides of (k) is the unique solution of a homogeneous boundary value

problem, and hence vanishes.

Our results are obviously dependent on the work of Shelstad on real groups. Her
construction of the mapping f — f’ was by geometric transfer, in terms of invariant
orbital integrals. She later showed that the mapping could also be defined by a compatible
spectral transfer [S3], given by L-packets of tempered representations. We shall need
both interpretations. Shelstad based her construction on ad hoc transfer factors, which
predated (and anticipated) the systematic transfer factors of [LS1]. This circumstance
makes it difficult at times to keep track of her arguments. With the hindsight of [LS2,
Theorem 2.6.A], we know that the mapping f — f’ can also be defined by means of
the general transfer factors of [LS1]. It would be very useful to reformulate Shelstad’s
arguments in terms of the general constructions of [LS1]. Rather than attempting to do

so here, however, we have simply appealed to the original arguments whenever necessary.

The distributions Ip;(7y, f) that are the source of our identities are subtle objects. It is
perhaps surprising that one can solve the problems implicit in () by purely local methods.
They could probably have been handled more easily by global means, as was done for the
nonarchimedean valuations in [A13]. This is in fact the way the archimedean valuations
were treated in the special case established in [AC]. However, we would still have needed
all the local results established in §2—4 of this paper. Moreover, the final result would then
have been conditional upon the fundamental lemma.

There are other reasons for proving as much as possible by local means. Langlands
has recently outlined a tentative strategy [L5] for applying the trace formula much more
broadly. While it has yet to be seen to work, even in principle, the strategy offers the

possibility of something that has always been missing: a systematic attack on the general
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principle of functoriality. The next step is by no means clear. However, the theory of
endoscopy has been instructive. Shelstad’s study of invariant archimedean orbital integrals
led to the general transfer factors needed for a precise theory of endoscopic transfer at any
place. One can hope that the program outlined in [L5], though much more difficult, will
ultimately turn out to have structure in common with the theory of endoscopy. If this is so,
a careful study of the archimedean terms in the stable trace formula would offer guidance.
It could yield theorems required along the way, suggest what needs to be established at
nonarchimedean places, and at the very least, provide evidence in support of the program.
Some analysis of this sort has been carried out by Langlands [L4] for weighted orbital

inegrals on the group GL(2,R).



gl. Statement of the theorem

We shall work in a slightly different context than is usual for real groups. We take G
to be a K-group over the field R. The notion of a K-group was introduced in [A11]. Tt is

an algebraic variety

G:HGL

e (G)

over R, whose connected components G, are connected reductive groups over R, and which
is equipped with some extra structure.

The supplementary structure is an equivalence class of frames (¢, u) that also satisfies
the cohomological condition at the beginning of §2 of [A11]. We recall that a frame is a
family of pairs

(%U) = {(%mum) LK E 71'O(G)}>

where ¢, : G, — G, is an isomorphism of connected groups over C, and u,, is a function
from the Galois group I' = I'g = Gal(C/R) to the simply connected cover G, ¢; of the
derived group G, ger of G. The objects {t,,} and {u,.} are required to have the three
properties of compatibility listed at the beginning of §1 of [A1l]. The cohomological
condition is a further requirement, which includes the stipulation that each function w,,
be a one-cocycle. Moreover, for any fixed ¢, the mapping that sends u,, to its image in
HY(R,G,) is required to be a bijection from the set {u,, : Kk € mo(G)} onto the image of
HY(R, G sc) in H'(R,G,).

We assume a familiarity with the discussion of the first few sections of [A11]. Among
other things, this includes the notion of a Levi (K-) subgroup of G. Any Levi (K-)
subgroup M comes with associated finite sets P(M), L(M), and F(M), which play the
same role as in the connected case. We can also form a dual group G for G, and a dual
Levi subgroup M c G for M. Any such M comes with a bijection L — L from L(M) to
E(]\//T), and a bijection P — P from P(M) to 77(]/\/[\) We recall that 77(]\/47), £(]\//j), and

—

F (M) consist of subgroups of G that are stable under the action of T'.
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The definition of a K-group is clearly somewhat artificial. It was introduced only
to streamline some aspects of the theory of endoscopy for connected groups. The main
theorem of this paper could well be stated in terms of connected groups. However, the
statement for K-groups we shall give presently is somewhat stronger.

Invariant harmonic analysis for connected real groups extends in a natural way to
K-groups. As in [A11], we make use of obvious extensions to G of standard notation for
connected groups. For example, we have the Schwartz space

G = P c@)

Ltemo(G)

on G(R), and its invariant analogue

L€ (G)

Elements in C(G) are functions on G(R). Elements in Z(G) can be regarded either as

functions on the disjoint union

Hiernp(G) = [T Mhemp(G)
of sets of irreducible tempered representations on the groups G,(R), or as functions on the
disjoint union

Treg(G) = [ [ Treg(GL)

of sets of strongly regular conjugacy classes in the groups G, (R).
For purposes of induction, it is convenient to fix a central character datum (Z, () for

G. Then Z is an induced torus over R, with central embeddings
7 = 7, CQG,

that are compatible with the isomorphisms ,,;. (Recall that an induced torus over a field
F'is a product of tori of the form Rg,p (GL(I)) .) The second component ( is a character

on Z(R), which transfers to a character ¢, on Z,(R) for each ¢«. We can then form the space

C(G,¢) =G, ¢)
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of (~l-equivariant Schwartz functions on G(R), and its invariant analogue
I(G,¢) = P LG, ¢).

Elements in Z(G, ) may be regarded either as (~!-equivariant functions on I'yee(G), or as

functions on the set

Htemp(G» C) = HHtemp(Gm CL)

of representations in Iiepmp(G) whose Z(R)-central character equals (.

The paper [A14] of which this is a continuation was written for connected groups with
trivial central character datum. The definitions and constructions of [A14] extend easily to
the K-group G with arbitrary central character datum (Z, (). We adopt them here, often

without further comment. In particular, we form the invariant tempered distributions

(11) IM(’%JC) :I]?/[('V,f), f EC(G7<)7

indexed by Levi K-subgroups M of G and strongly G-regular elements v € M (R). In the
present setting, Ip/ (7, f) is a (-equivariant distribution in f and a (~!-equivariant function

of v. In the special case that M = G, the distribution

fa(v) =1a(v, f),

is essentially Harish-Chandra’s invariant orbital integral. We recall that the invariant

function space above is defined as the family

I(G,¢) = {fa: [€C(G,Q},

regarded as a space of functions of v € I'teg(G). However, it is the case of general M

that is of interest here. Our aim is to study the stabilization of the general distributions

There are two ways one could try to stabilize Ip;(7, f), corresponding to the two

arguments v and f. If M = G, the two stabilizations are the same. In this case, Langlands
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and Shelstad use the transfer factors of [LS1], and the resulting stabilization in ~, as the
definition of the transfer mapping f — f’ that stabilizes f. If M # G, the two possible
ways of stabilizing I/ (7, f) are thus predetermined. They are dictated by the constructions
from the more elementary case that M = G. The purpose of this paper, simply put, is to
show that they are compatible.

We are assuming a knowledge of the basic constructions of [A11]. These include
the extension to K-groups [A11l, §2] of the transfer factors of Langlands and Shelstad, a
construction that follows observations of Vogan and Kottwitz. However, we shall also view
matters from a slightly broader perspective. This is because some of the constructions
become more natural if we treat all the transfer factors attached to a given endoscopic
datum at the same time.

Suppose that G’ represents an endoscopic datum (G, G’,s',¢’) for G [LS1, (1.2)]. In
particular, G’ is a connected quasisplit group over R. A transfer factor for G and G’
includes an implicit choice of auxiliary datum (G’, €'), in which G’ is an R-rational central
extension of G’ by an induced torus C’, and & is an admissible L-embedding of G/ and
LG’. For example, one could take G’ to be a z-extension of G [K1]. The derived group of
G’ is then simply connected, and an embedding & can always be found [L1]. A transfer

factor attached to (G/,¢) is a function

Ag(5/,’y), & e AG—reg(G/)a v E Freg(G),

which vanishes unless the projection of ¢’ onto G'(R) is an image [LS1, (1.3)] of ~. Its

purpose is to transfer functions f € C(G, () to functions
F@Y =590 = 3 D@ el
YET reg (G)

of 0" in the set AG_reg(é’ ) of strongly G-regular stable conjugacy classes in G (R). We write
Z' for the extension of Z by C’ given by the preimage of Z in G, 7' for the character on

A (R) determined by the auxiliary datum, and ¢’ for the product of 7 with (the pullback
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of) ¢. Then
(1.2) Fi(28) = ()L (0, 7 € Z'(R).

(See [A11, §2], where the objects ', 7', 7’ and Z’ were denoted by Z', Z'Z, E’ and 5’(

respectively.) It follows from results of Shelstad [S3] that f’ belongs to the space
S(G, ¢ ={n%: nec@, )}

of stable orbital integrals on G’(R).
What ambiguity is there in the choice of a transfer factor? If (GN” & ) is fixed, A = Ag

can be replaced by a scalar multiple
(uA)(d",7) = uA(d,7)

by a complex number u € U(1) of absolute value 1, but is otherwise uniquely determined.
If G/ only is fixed, £ can be replaced by a multiple o€/, where o is a 1-cocycle from the
real Weil group Wrg into the center Z (5' ) of 5’ . The Langlands correspondence for tori,
combined with the constructions of [LS1] (especially (3.5) and (4.4)), tells us that there is

a canonical character w’ on G'(R) such that the product
(WA, 7) = W' (3")A(d, )

is a transfer factor attached to (G’,o/€’). (We assume implicitly that our admissible
embeddings are of unitary type, in the sense that they have bounded image in the abelian
quotient égb of 8" . This forces w’ to be unitary.) Finally, we can replace G’ by some other
central extension é’l of G’. By taking fibre products, one sees that it is enough to consider
the case that é’l is a central extension of G'. The composition E{ of a given E’ with the
standard L-embedding of “G’ into LG is then an admissible embedding of G’ into £G).
In this case, the function

A1(d7,7) = A(d',9), 8 € Agureg(Gh),
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in which ¢ is the image of 8] in G/(F), is a transfer factor for (G4, ¢}).
It is obvious how the Langlands-Shelstad transfer mapping f — f’ = fi depends on
A. The definitions lead immediately to the three relations
La(8) = uf'(8)
(1.3) fira(8') = w'(6") FA(8)
Fa,(61) = FA(87),
governed by the three objects u, w’ and A; above. These relations, which will be an
implicit part of our understanding, have obvious analogues for the Levi subgroup M.
Suppose that M’ represents a fixed endoscopic datum (M', M’ s),,&),) for M. Let
us write 7 (M, M) for the corresponding set of transfer factors for M and M’. An element
Ay € T(M, M’) thus comes with an underlying auxiliary datum (M " E;w), and a character
¢’ on the central subgroup 2’ (R) of M'(R) that depends on the original character ¢ on
Z(R). To make matters more concrete in the present setting of real groups, we fix a
maximal torus 7" in M’ over R, with preimage T' in M’. We will then work with points
o € f’G_reg(R), instead of the stable conjugacy classes &' in M’(R) they represent. (As
usual, the subscript G-reg denotes the subset of elements in a given set that are G-regular.)
We are going to treat families of suitably related functions, parametrized by elements
A = Ay in T(M,M’) and defined on the associated spaces f(’;_reg(R), as sections of an
underlying vector bundle.

We first introduce a bundle £(T”, M, () of equivalence classes of pairs
(A, o), AeT(M,M), o €T (R).
The equivalence relation is generated by the elementary relations
(A, 2'd") ~ (C'(2) 1A, '), 2 e Z'(R),

and
(WA, 0") ~ (w’(a’)A,a’)

(A1, 01) ~ (4,07,
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where w’ is an arbitrary character on M’ (R), and o] — ¢’ and A — A; are the mappings

attached to a central extension M 1 — M, as above. The natural projection
(A, 0') — 7
makes L£(T’, M, () into a principal U(1)-bundle over the quotient
T'(R) =T'(R)/Z'(R) = T'(R)/Z(R).

We may as well write £(T”, M, () also for the complex line bundle attached to the canonical
one-dimensional representation of U(1). We then form the dual line bundle £*(T", M, (),

and its restriction £*(T(_,qq, M, () to T’G_reg(R).

With these definitions, we write C'°°(T, (’;_reg, M, ) for the space of smooth sections of

the bundle £*(T, ’G_reg, M, (). An element in this space is thus a complex valued function
a: (A 0') — dr\(d'), AeT(M,M"), o€ f(’;_reg(R),

that satisfies relations

(1.2)m dp(2'0") = {(2) " tap (o), 2 € Z'(R),

and

a7 (0") = uay (o)

(1.3)m ayn(0’) = w'(0")ax (o)

ay, (01) = ax(o’),
parallel to (1.2) and (1.3). We need only specify the values taken by the function at one
transfer factor A = Ajy;. We shall often do so, without including Aj,; explicitly in the
notation.
We assume from now on that the endoscopic datum M’ for M is elliptic. The first
stabilization of Ip;(7, f) is the more elementary. It simply transforms Ips (7, f) to the

function

(14) IM(O-,vf) = Z AM(Ulv’Y)]M(fyvf)



of o' € Té_reg(R) attached to a transfer factor Ay, € T(M', M). It is clear that as Ay
varies, this function satisfies the relations (1.2)5; and (1.3)57. It can therefore be regarded
as a section in the space C’OO(T(';_reg,M ,¢). We have excluded Aj; from the notation
In (o', f), as agreed, with the understanding that there is an implicit dependence on A,
governed by (1.3)as.

To describe the second stabilization, it is well to recall some other notions from the
early part of [A11]. Replacing M’ by an isomorphic endoscopic datum, if necessary, we
assume that M’ is a L-subgroup of M and that &), is the identity embedding. We then
form the family €y (G) of endoscopic data for G, as for example in [All, §3]. Thus,
Enm (G) consists of data (G',G’,s',¢’), taken up to translation of s’ by Z((A})F, in which
s’ lies in SQWZ(@)F, G’ is the connected centralizer of s’ in G, G/ equals M'G’, and ¢’ is
the identity L-embedding of G’ into ZG. For any datum in £y (G) (which we continue to
represent by its first component G’), the dual group M’ of M’ comes with the structure of
a Levi subgroup of G'. We fix an embedding M’ C G’ for which M’ C G’ is a dual Levi
subgroup.

The K-group G is assumed implicitly to have been equipped with a quasisplit inner

twist

¢ = {% . GL—>G*7 L e 71-O(G)}7

where G* is a connected quasisplit group over R [A1l1, §1|. We say that G is quasisplit if
one of its components G, is quasisplit. In this case, one can arrange that v, is an R-rational
isomorphism from G, to G*. We can then identify the function f¢ on AG-reg(G) given
by the stable orbital integrals of any f € C(G,¢) with the function f* = f¢ in S(G*,(*)
given by stable transfer. (See [All, pp. 226-227].) In general, the transfer factors were
defined explicitly [LS1] in terms of ¢. However, if we identify the dual group G* with @,
1 is uniquely determined up to a natural equivalence relation. For this reason, we will
usually not have occasion to refer to . Of course the group G* plays an independent role

as the maximal endoscopic datum for G. It lies in 31/ (G) if and only if M’ is the maximal
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endoscopic datum for M, which is to say that it equals the quasisplit inner form M* of

M, a group that can also be regarded as a Levi subgroup of G*. In general, we set

Ev (G) — (G*), if G is quasisplit,
En(G) =
Ev (G), otherwise.

If G’ is an arbitrary element in £y (G), we also set
(GG = 201 [ Z(M)| 2(G)/2(G)1 |

The second stabilization of Ip;(, f) is an inductive construction. Suppose that
G € £9,,(@), that G is a central extension of G’ by an induced central torus C’ over R,
and that ¢’ is a character on the pullback Z’(R) of Z(R) to G'(R). The preimage M’ of
M’ in G’ is then a Levi subgroup, while the preimage 7" of T’ is a maximal torus. We

assume inductively that for every such G’, G’ and ¢, we have defined a family

SE (o', 1), 0 € Troy(R), W € C(G, ),

-reg

of tempered, stable, 5’ _equivariant distributions on G’ (R), with
G (gt B A N=1QG (1 1 ~
(15 SE (o' W) = T(2) 715G (0!, 1), )

We assume also that the relations
G (ot N — (A NQG (1 3t
SM/(O- y W h ) =w (U )SM/<O- 7h )
(16) 7] -~
Sy (01, 14) = SF, (o' 1)
hold, for a character w’ on G(R), a covering G of G’ as in (1.3), and pullbacks (1 and b/
of ' and ' to G.
Suppose that A is a transfer factor attached to an element G’ € £Y,,(G). Then A
comes with an auxiliary datum (G, ¢ ) and a character (" on Z' (R). It therefore gives rise

to a collection of stable distributions S]\C:;;,(O'/ ,-) on G’(R), by hypothesis. It also provides
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the transfer mapping f — f' = fA from C(G,() to S(GN”, Z’) We thus obtain a family of

(-equivariant distributions
(1.7) Sy (o' f), fEC(GQ), 0" € Tir ey (R),

on G(R). (We write §’, as usual, for the transfer of a stable linear form S’ on C(é’, Z’) to
a linear form on (G, ¢’).) Now there is a canonical restriction mapping from 7 (G, G') to
T (M, M"), which takes A to a transfer factor A,; for M with auxiliary datum (M’, gf\/[) It
follows easily from (1.3), (1.5) and (1.6) that as a function of Ay and o', (1.7) satisfies the
relations (1.3)ps (with Aj in place of A). In other words, (1.7) varies in the appropriate
way as Ay ranges over the image of the injective mapping A — Aj,. It therefore extends
to a section in C'*° (Té_reg, M, Q).

We now recall the stabilization of Iy (7, f) with respect to the function f in C(G, ().
If G is not quasisplit, we define an “endoscopic” distribution
(18) e )= Y (G &S ).

G/ €€y (G)
In case G is quasisplit we define a “potentially stable” distribution
(1.9) SH(M' o' f)=Iu(0". f) = Y wr(G.G)SE (. f).
G'eg,,(G)

In this case, we define the endoscopic distribution by the trivial relation

(1.10) I§, (o', f) = I (0, f).

The left hand side of each equation is a section in C°(T¢._ .., M, (), represented as the

reg’
function of ¢’ € fé_reg (R) attached to the given transfer factor Ay, for M’. Observe that
the coefficient ¢y (G, G’) vanishes unless Z(G)T is of finite index in Z(G')T, which is to

say that the endoscopic datum G’ is elliptic. The two sums may therefore be taken over

the finite sets of elliptic endoscopic data in €y (G) and £, (G).
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To complete the inductive definition, one still has to prove something serious in the
special case that G is quasisplit and M’ = M*. In this case, we take T* =T’ = T’ to be a
maximal torus in M* over R, and o* = ¢’ to be a strongly G-regular point in 7*(R). The

problem is to show that the distribution
(1.11) Sii(o, f) = Sy (M*, 07, f)

on G(R) is stable. (We follow the notation of [A11, §2,3] here. In particular, o represents
the stable conjugacy class in G(R) that is the bijective preimage of the stable class in

G*(R) represented by ¢*.) Only then would we have a linear form

(1.12) SS- (0", f*) = S5 (0, f)

on S(G*,¢*) that is the analogue for (G*, M*) of the terms S\JG\;[//(O'/, f") in (1.8) and (1.9).
Given the stability of (1.11), one has then to check that the stable distributions S§7. (o, -)
on G*(R) satisfy the analogues of the conditions (1.6). This is straightforward. For
example, any character w* on G*(R) transfers to a family of characters w = {w,} on
the components G,(R). This transfers in turn to a character w’ on any G/(R), with the

property that
(wf) =u'f', f€C(G,Q).

The analogue for G* of the first relation in (1.6) then follows from the definitions (1.8)
and (1.9) [A16].

The discussion of this section has been quite brief, since the constructions are essen-
tially those of [A11, §1-3]. We did not actually account for varying transfer factors in
the definitions of [A11, §3] (and [A12, §4]). The reason was the mistaken view, expressed
on p. 242 of [A1l], that the auxiliary data (é’,E’) for the various G’ € £y/(G) could all
be chosen to have the same restriction to M’. However, the discrepancy is minor. For a
complete discussion of a more general situation, we refer the reader to the forthcoming

paper [A15].
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Theorem 1.1. Suppose that M, M', T' and o’ € Tg_reg(R) are as above.

(a) If G is arbitrary,
(1.13) If (o', f) = I (0, f), feC(G,Q).
(b) If G is quasisplit, the distribution
f— S5(M, ', f), feC(G,9Q),

vanishes unless M’ = M*, in which case it is stable.

The proof of this theorem will take up the rest of the paper. Notice that (a) is
an assertion about the nonquasisplit case, since it is part of the definition (1.10) if G is
quasisplit. Observe also that (b) includes the stability assertion for quasisplit G needed to
complete the inductive definition above.

We shall say that 7" is an M-image if any element in Tg_,.,(R) is an image [LS1, (1.3)]
of some element in M. This is always the case if G is quasisplit. If 77 is not an M-image
(so that G is not quasisplit), the right hand side of (1.13) vanishes, by definition (1.4) and
the basic properties of transfer factors. In this case, the local vanishing theorem [A11,
Theorem 8.6] asserts that the left hand side of (1.13) is also zero. It is therefore enough

for us to prove the theorem if 7" is an M-image, an assumption we make henceforth.
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§2.  Stabilization of the differential equations

Theorem 1.1 will be proved by methods of analysis. The assertions (a) and (b) of the
theorem may both be formulated as the vanishing of a function of ¢’. In each case, we
will find that the relevant function satisfies a homogeneous linear boundary value problem.
Our task will then be to show that the problem has no nonzero solution.

Boundary value problems are founded on differential equations. The invariant distri-
butions (1.1) satisfy a family of differential equations, parametrized by elements z in the
center of the universal enveloping algebra. These equations are natural generalizations of

the equations

(2.1) (2f)a(7) = 8(hr(2)) fa(v)

that play a central role in Harish-Chandra’s study of the invariant orbital integrals. We
shall recall the generalization of (2.1) satisfied by the distributions Ins(7, f). We shall then
review the results of [A12], which provide a stabilization of these equations that is parallel
to the constructions of the last section.

We have to remember that G is a disjoint union of connected groups G,. For any ¢,
we write Z(G,) for the center of the universal enveloping algebra of g,(C). (As usual, we
denote the Lie algebra of a given algebraic group by a corresponding lower case Gothic
letter.) We then form the quotient Z(G,,(,) of ([ !-covariants in Z(G,). If the Schwartz
space C(G,,(,) is regarded as a space of sections on the line bundle on G,(R) defined by
(Z,,¢.), Z(G,,(,) becomes the algebra of biinvariant differential operators on this space.
The inner twist ¢,,, from G, to G, provides canonical isomorphisms from Z(G,;) to Z(G,)
and Z(G,, (x) to Z(G,,(,). We can therefore attach canonical algebras Z(G) and Z(G, ()
of differential operators to G. They come with canonical isomorphisms from Z(G) to

Z(G,) and Z(G,() to Z(G,,(,) for each ¢.

For much of the rest of the paper, we shall treat v as a representative of a conjugacy
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class, rather than the conjugacy class itself. We can then form the centralizer
T'=M,=M,,

of v in the component M, of M that contains ~. In fact, we shall generally fix a maximal
torus 7' over R in (some component of) M, and allow ~ to vary over points in Tg-reg (R).

The differential equations (2.1) of course apply to the special case that M = G. The
mapping

z — hT(Z) = hT,G(Z)

is the Harish-Chandra homomorphism attached to the torus T' = G. It can be regarded
as an isomorphism from Z(G) onto the vector space of elements in the symmetric algebra

on t(C) that are invariant under the Weyl group
W(G,T)=W(G,,T), T CA@G,,

of (G,T). We write (hr(z)) as usual for the corresponding differential operator on T'(R)
with constant coefficients, which is to say, with the property of being invariant (under
translation by T'(R)). The mapping z — 9(hr(z)) descends to an isomorphism from
Z(G, () to the algebra of W(G, T')-invariant differential operators with constant coefficients
on C(T, (), the space of sections of the line bundle £*(T, () on T'(R) attached to (Z, ().
This is how we will interpret Harish-Chandra’s differential equations (2.1).

The generalization of (2.1) was reviewed in [A12, §1]. It is a family of differential

equations
(22) In(v:2f) = Y (v, z) (v, f),
LeL(M)

in which z again lies in Z(G, (). For any L, z — zp, is the canonical injection of Z(G, ()
into Z(L,¢), and 8% (v, zr) is a linear differential operator that depends only on L. It

acts on C*(Tg-reg, ¢), the space of smooth sections of the restriction of the line bundle
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L*(T,¢) to Tg-reg(R). We include v in the notation because 9%, (7, z1,) varies in general

from point to point. However, in the special case that L = M, we note that

8%(’}/, ZM) = a(thM(zM)) = a(hT(Z))

The term with L = M in (2.2) will eventually be decisive for us. Of the remaining terms,
it is the one with L = (G that is important to understand, since we will be able to apply
inductive arguments to the intermediate terms.

The notation for the differential operators 8]?4(7, z) was chosen deliberately to match
that of the distributions Ins(7, f) = I$;(v,f). In particular, one can try to stabilize
0§, (v, 2) in either v or z. It turns out that the two stabilizations are compatible. In other
words, the analogue of Theorem 1.1 for (‘9194 (7, z) has been shown to hold.

We fix an elliptic endoscopic datum M’ for M, with maximal torus 77 C M’ over R,
as in §1. We are assuming that 7" is an M-image of T'. Then there exists an M-admissible

isomorphism from T to T”, by which we shall mean an R-rational isomorphism of the form
(2.3) ¢ =it olInt(h) oy,

where ¢ is an admissible embedding of 7" into G* [LS1, (1.2)], 1/ is the inner twist from
M to M™* compatible with the implicit identification of M* with M , and h is an element
in M* such that hip(T)h™! equals i(T”). We can use ¢ to transfer differential operators.

This gives an isomorphism
) — T =¢d=(¢")"0dos",

from the space of (linear) differential operators on C°°(Tg-yeg, () to the corresponding
space of operators on C*° (7T, ’G_reg,f). The isomorphism ¢ is uniquely determined up to
the action of the real Weyl group Wgr(M,T) of M and T. (Recall that Wgr(M,T) is the
subgroup of elements in the full Weyl group W (M, T') that are defined over R. It contains
in turn the subgroup W (M (R),T(R)) of elements induced from M (R). These groups are
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of course taken relative the component M, of M that contains T'.) If 0 is invariant under
the action of W (M, T), & does not depend on the choice of ¢.

Suppose that A,s is a transfer factor for M and M’. As we recall, Ay; comes with
an auxiliary datum (M ! ,E;W), an extension 7" of T, and a character ¢/ on the preimage
Z'(F) of Z(F) in T'(F). One uses the internal structure of the L-embedding E;w, together
with symbols of differential operators, to construct an isomorphism 0’ — @’ between
the spaces of (linear) differential operators on C* (T, é_reg(]R),C) and C'> (T (’;_reg(]R),g’ )
respectively. Our essential concern is the composition 9 — @’ of the isomorphisms 0 — &’
and 9’ — @', and its restriction to the space of Wg(M, T)-invariant differential operators
on C®(Tg-reg, (). It is this mapping that is compatible with endoscopic transfer. More
precisely, suppose that a is a Wr(M,T')-invariant function in C°°(Tg-reg, (), and that

a’ = al  is the function in C> (T G-reg» ¢’ ) defined by Langlands-Shelstad transfer. Then
(2.4) (0a)' (o) = (0'd')(0"),

for any Wgr(M, T')-invariant differential operator 0 on C°°(Tg-reg, () [A12, Lemma 2.2].

The restriction of the mapping 9 — 9’ to the Wg (M, T')-invariant differential operators
is again independent of ¢. It does depend implicitly on the transfer factor A, through the
associated datum (M , E ). However, its variance with Ay is compatible with the relations
(1.2)ps and (1.3) 5, a fact that is suggested by (2.4), and which is easy to check directly. We
can therefore interpret 9 — 0" as a linear mapping from the space of Wg(M, T')-invariant
differential operators on C*(Tg-rcq, ) to the space of differential operators on the space
of sections C° (T eq, M, () of §1. However, we shall generally treat 9" as above, namely
as the differential operator on Coo(fé_reg, Z’ ) provided by an implicit choice of transfer
factor Ay, following the convention from §1.

There are two examples to bear in mind. The first is the case of a W(G, T')-invariant
differential operator O with constant coefficients on C°°(T,(). Then 0 equals

6(hT(z)), for a unique differential operator z in Z(G,({). Suppose that G’ is an endo-
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scopic datum for G of which M’ is a Levi subgroup. There is then a canonical injection

z — 7' from Z(G,() to Z(G', () such that
A(hr(2)) = d(hr (2)).

There is also an injection z — 2’ from Z(G,¢) to Z(G', ('), which depends on a choice of

transfer factor Ag for G and G’, such that

/

(2.5) A(hr(2)) = 0(hs (2)).

(See [A12, p. 84].) The mapping on the left hand side of (2.5) is taken relative to the
restriction Ay of Ag to M.

The other example is the differential operator
O5r(2) = 05p (7, 2), z € Z(G, (),

with variable coefficients. It is easy to check that 9;(z) is Wgr(M,T)-invariant [A12,
Lemma 2.3]. It follows that for any transfer factor Ay for M and M’, 9, (2) is a well

defined differential operator on C'*° (fé_reg, Z ). We write

(2.6) 9% (2) = 95 (o', 2), o' €Tk .. (R).

reg(

This notation is motivated by (1.4). For if we apply the transfer identity (2.4) to
a(y) = Iy(y, f) and 0 = 9§, (2), we see that 9§/ (0’,2) is an analogue for differential
operators of the function Ip;(o’, f) in (1.4). In particular, 9$;(0’, z) can be regarded as
the stabilization of 0§, (7, 2) in 7.

The stabilization of 9§, (7, 2) in 2 follows the construction used to stabilize I5(y, f)
in f. In particular, it is formulated in terms of the set £ys/(G). The inductive definitions
(1.8)—(1.10) all have natural infinitesimal analogues, with the injection z — 2z’ playing
the role of the transfer mapping f — f’. They give rise to differential operators on

c> (fé_reg, ¢’) that could be written naturally as 6’]?4’5 (0, 2) and §§;(M’, o', 2). However,
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we will not need to use this notation, since the infinitesimal analogue of Theorem 1.1 is
already known. It is the main result of [A12]. We can therefore state the infinitesimal

analogues of the definitions and the theorem together, following [A12].

Proposition 2.1. For each z € Z(G, (), there is an identity

(2.7) 02y = Y (GGG (o', 2),
G'e&yi (G)

where

’

5]\%/(0/; z/)a G' e 5M’(G)a o' € T&—reg(R)a

1s a differential operator on C'™° (Té_reg(R),E') that depends only on the quasisplit pair
(G',M’) and the element ' € Z(é’,g’).

See [A12, Theorem 3.1]. The summands in (2.7) are to be understood in the same
manner as those in (1.8) and (1.9). Each represents a function of a variable transfer factor
Ay, with a specified value when Ay, is the restriction to M of the transfer factor Ag
that defines the image 2z’ of 2. T would like to be able to say that this point was implicit
in [A12], but in truth, it was not considered at all. However, the proof from [A12] does
carry over without change.

In case G is quasisplit, we sometimes write
8§ (0,2) = 6§ (0™, 2"), 0" € Th 0p(R), 2* € Z(G*,C¥),

for o0 as in (1.11), and z the preimage of z* in Z(G, (). This allows us to study stable
distributions on the K-group G rather than the connected group G*.

Proposition 2.1 represents the initial step towards a proof of Theorem 1.1. It implies,
roughly speaking, that the assertions of the theorem are compatible with the differential
equations (2.2). To formulate the implication more precisely, we have to take on a slightly

stronger induction hypothesis than is implicit in the definitions of §1.
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We first observe that the equation (2.2) can be combined with the original definition
(1.4). Using the transfer identity (2.4), one finds [A12, (4.5)] that
(2.8) In(o',2f) = Z ok (o, 2 IL(0, f).
LeL(M)
The functions I,(¢’, f) of o’ here are to be treated as elements in the space of sections
C®(Toyeg: M, T) of the bundle £L*(T¢.,oq, M, (). This is consistent with the definition
(1.4) (with L in place of M, and any endoscopic datum L' € &y (L) in place of M),
since there is a natural bundle mapping from E(Tc’;_reg, L,¢) to E(Té_reg, M, ) given by
the restriction Ay — Ajs of transfer factors.

The theorem will ultimately be proved by a double induction, based on the two integers
dder — dim<Gder) — dim(GL,der);
and
Tder = dim(AM N Gder) = dim(AML N vader), L€ ﬂ'o(G).

We will not adopt the full induction hypothesis until we have to in §6. However, we do
assume henceforth that Theorem 1.1(b) holds if (G, M, M’) is replaced by any quasisplit
trlplet (Gl, M17 M{) with

dim(Gl,der) S dder

if G is not quasisplit, and with
dim(Gl,der) < dder;

in case G is quasisplit. This obviously includes our earlier ad hoc assumption that the
summands in (1.7) and (1.8) be well defined. Proposition 2.1 then has the following

corollary, which applies to operators z € Z(G, () and functions f € C(G, ().

Corollary 2.2. (a) If G is arbitrary,

(2.9) 5o’ 2f) = Y On(o’, z)IE (0 ).
LeL(M)
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(b) If G is quasisplit,

(2.10) SI\GJ(av zf) = Z (5]%/[(07 ZL)Sg@'v f);
LeL(M)

for o as in (1.11), while

(2.11) SG(M' o', 2f) = d(hr(2)) SS (M, o', f),

if M" £ M*.

The corollary is proved by combining the proposition with the original equations (1.8)
and (1.9). See [A12, Proposition 4.1].

The terms with L # M in (2.8), (2.9) and (2.10) can be simplified by the formulas of
descent satisfied by the various distributions. Let us recall these formulas.

Suppose that the torus 77 € M’ is not elliptic. Then it is contained in a proper Levi
subgroup M| C M’. We are assuming that 7" is an M-image. It follows easily that there
is a proper Levi subgroup M; of M for which M/ represents an elliptic endoscopic datum.
This allows us to identify M’ with an element in & My (M). Given a transfer factor Ap
for M and M', with auxiliary datum (M’,&},), let Ay, be the restricted transfer factor

for M; and Mj, with auxiliary datum (J\Zf’l,a\dl) The distributions (1.4) and (1.8) then

satisfy the formulas

(212) IM(Ulvf) = Z d?ﬁ (M7 Gl)fjc\?l (U/7fG1)
G1EeL(Mq)

and

(2.13) o' )= Y A, (M, GO (0, fa,)
G1eL(M7)

of parabolic descent. If G is quasisplit and M’ = M*, and the point ¢’ = ¢* is the image

of a point 0 € Tg-reg(R) in M;, we have

(2.14) S§ilo fy= > e (M G1)ST (o, f9),
G1eL(M)
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where

eﬁl(M,Gl):d%(M,Gl)‘Z( ﬂZ Gl ‘_

Finally, if G is quasisplit but M’ # M*, we have

(2.15) SG (Mo, f) = 0.

The descent formulas above are all consequences of corresponding formulas [A4, Propo-
sition 7.1] for the distributions I/ (7, f). They were established in greater generality (and
under more baroque induction hypotheses) in [A11, Theorem 7.1]. It is clear that with a
slight extension of the induction hypothesis on dqe; above (namely, that is applies to both
assertions (a) and (b) of Theorem 1.1), the formulas of descent imply Theorem 1.1 in the
case that T C M’ is not elliptic. It is also clear that they can be applied (with L and M

in place of M and M) to the summands L # M in (2.8), (2.9) and (2.10).
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§3.  Stabilization of elliptic boundary conditions

The next step is to study boundary conditions. We are interested in the behaviour of
the distributions Iy (0”, f), I§,(c¢’, f), and S, (M’,o’, f) of Theorem 1.1 as ¢’ approaches
the boundary of fé_reg(R) in T"(R).

As functions of o', the distributions do not extend smoothly across singular hyper-
surfaces in the complement of f&_reg (R). However, the singularities are quite gentle. One
can modify the functions in a simple way so that their derivatives in ¢’ remain bounded
around any point in general position on a singular hypersurface. Moreover, there are
explicit formulas for the jumps of their derivatives across the hypersurface.

Recall that M, M’ and T" are fixed, while 7" is the extension of T" attached to the
auxiliary datum (M’,(’) of a transfer factor Ay, By a root of T, we shall mean the

transfer

of some root a of (G, T'), where T' C M is a maximal torus over R, and ¢ is an M-admissible
isomorphism (2.3). (A root of (G, T) is of course a root for the component G, of G that
contains 7'.) We can treat o/ as a character on either of the groups 7" or T', or as a
linear form on either of the Lie algebras ' or ¥. Then o is said to be real, imaginary or
complex if its values on t/(R) have the corresponding property. We are interested in the
case that the kernel of o/ in T'(R) (or T"(R)) is a hypersurface, which is to say that it
has codimension one. This rules out the complex roots. We shall treat the hypersurfaces
attached to imaginary roots in this section, and real roots in the next.

We first recall an elementary point concerning the original distributions Ins(7, f).
The weighted orbital integrals that are the primary components of these objects were

1
2

normalized by the factor |Dg(y)|2 obtained from the absolute value of Weyl discriminant
[A6, §1]. Harish-Chandra’s jump conditions about imaginary roots require a more subtle

normalization. We have therefore to introduce a familiar (but noncanonical) normalization

28



for the functions of ¢’ in Theorem 1.1.

An imaginary root of 77 comes from an imaginary root of (G,T), which is in fact an
imaginary root of (M,T), since it vanishes on the split torus Ap;. The renormalization
concerns only the subset of imaginary roots of 7" that are actually roots of (M’,T") in
the usual sense. The set R} of imaginary roots of (M’,T”) is a root system for (Mj,T"),
where M7 is the Levi subgroup of M’ in which 7" is R-elliptic. The elements in R/ divide
the real vector space it'(R) into chambers, on which the Weyl group W7} of R/ acts simply
transitively. If ¢ is any chamber, we write R, for the corresponding set of positive roots in
R’. We then set
(3.1) o) = T[] @—-a'(e") D1 —a (o),

o’ER!,

a function that also equals

and is defined for any strongly M/-regular point ¢’ in T’ (R). The mapping
al E COO (T/7 M7 C)’
in which

C

(3.2) al.(c") =d.(c")a (o), o' e T} —reg(R),

is easily seen to be a linear automorphism of the space C*°(T’, M, () of sections of the
line bundle £*(T", M, (). The jump conditions of interest apply to the images under this
mapping of the functions of Theorem 1.1.

We fix an arbitrary imaginary root o of T”. We also fix a point in general position in

the corresponding singular hypersurface

(T (R) = {0} e T'(R) : o(d}) =1},
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which we may as well continue to denote by ¢’. Given o', we then choose a small open
neighbourhood U’ of the stable class of o’ in the set of strongly G-regular stable conjugacy
classes Ag-reg (M') in M'(R). The distributions of §1 can of course be defined for a class

&' € U’ (in place of a point in Tg-res(R)).

Lemma 3.1. Suppose that

Em(d", f), f€C(G,Q),
is one of the families of distributions Ing (8, f), I5;(8', f) or S, (M', 6, f), defined as in
81 for the transfer factor Ay; and the classes §' € U'. Then there is a function e} in

S(M', (') such that
(3.3) En(6',f) = e/ (8"), § el

Proof. Let U' C Agreg(M') be the projection of U" onto M'(R), and let U be
the set of conjugacy classes v € I'g-reg(M) in M(R) of which some element in U’ is an
image. Then U is a finite disjoint union of sets U(~y;), where ~; ranges over a set of
elements in M(R) of which the projection of ¢’ onto M’(R) is an image, and U(yy) is
a small open neighbourhood of the class of v; in I'greg(M). Any class in U(y:1) has a
representative v € M (R) that commutes with ~1, and is close to ;. It follows easily from
the general position of ¢’ in (") (R) that the centralizer of each ~; in (its component in)
G is contained in M. If we apply [A4, (2.3)] to each of the points 71, we deduce that there

is a function ey in Z(M, ¢) such that

In (v, f) = ep(7), v eU.
It follows from the definition (1.4) that

In (8, f) = €4 (8), § el

where €’ is the transfer of ey to a function in § (M', (). This establishes (3.3) in case
En (8, f) equals Ing (8, f).
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Suppose then that Ep (&', f) equals either I5,(8, f) or S (M, &', f). In each of these
cases, we deduce that (3.3) holds for some function €’ in S (M',¢’) by combining the case
we have just established with an application of the appropriate induction hypothesis to

the summands in either (1.8) or (1.9). O

Remark. It follows from the definitions that e} is compatible with the underlying transfer
factor Ajs, in the sense that it represents an element in C°(7', M, (). In fact, one can
show that it is the image of a function ey € Z(M,(), just as in the special case that

En (8, f) equals In (8, f).

The relation (3.3) we have just established reduces the singularities around o’ of the
distributions of §1 to corresponding singularities of stable orbital integrals. The explicit
description of the latter was one of the initial steps taken by Shelstad [S1] in developing a
theory of endoscopy for real groups.

Since the fixed root o’ is imaginary, its corresponding coroot is of the form
()Y =iH],
for a vector H', = H,, in the Lie algebra t'(R). We write

jor (a'(0")) = lim a'(c'expOH,,) — lim a'(o"expOH),

for any section o’ € C*(T, ’G_reg, M, () for which the two half limits exist. Our concern is

the jump attached to the section
a'(-) = Deec(-),

where e is any function in Z(M,{) and D, is an invariant differential operator on
C>(T",M,(). The existence of the two sided limits in this case is an immediate con-
sequence of a general theorem of Harish-Chandra on invariant orbital integrals. The dif-

ference represents the obstruction to being able to extend D.el to a continuous function
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at o’. The results of Shelstad, which follow similar results of Harish-Chandra, give precise

formulas for this difference. We shall apply them to the functions
€8 = e}(é') =En(d, f)

of the last lemma.

The results of Harish-Chandra and Shelstad are expressed in terms of Cayley trans-
forms. Suppose that o' is the transfer of the imaginary root « of (M,T) under an M-
admissible isomorphism ¢ from T to T’. The projection of ¢’ onto 7" then equals ¢(7),

where « is a point in general position in the singular hypersurface
T*R) = {'y eTR): aly) = 1}.

The centralizer G, of v (in its component G,) is a connected reductive group over R,
whose derived group G ger is three dimensional. Recall that « is said to be compact or
noncompact according to whether the group G der(R) has the corresponding property.

Suppose that a is noncompact. We will again write

for a vector H, in the Lie algebra of T(R) NG, ger(R). The group G, ger is now isomorphic
over R to either SL(2) or PGL(2). Let T,, be a maximal torus in G, over R such that the
Lie algebras of T, N Gy der and T'N G qer are orthogonal with respect to the Killing form
on g der- Then Ty, NG,y ger is a (one-dimensional) split torus in G ger. We write M, for
a maximal Levi (K-) subgroup of M whose intersection with G ger coincides with that of

T,. By a Cayley transform, we mean an isomorphism from 7" to T}, of the form
Cy = Int(s,), 54 € Gy der-

If C, is fixed, we write 3 for the transfer of by C,, to a root of (G, T,). We then form
the vector

Zoy =Hg =" = (dCy)(a")
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in the Lie algebra of T,,(R) N G ger(R).
The pair (T,,Cy) is of course not uniquely determined by « and 7. For example, we

can always replace C, by its complex conjugate

Ca = Cawou

where w, is the reflection in T" about . We set d,, equal to 1 or 2, according to whether or
not wq lies in the subgroup W (M (R), T(R)) of Wg(M,T). Then C, is G, (R)-conjugate
to Cy if and only if d, = 1. In fact, d, equals the number of G, (R) conjugacy classes of
pairs (T,,Cy) attached to o and «. It also equals the number of G, (R)-orbits in g (R)
represented by the pair {a¥, —aV }, or equivalently, the number of G, (R)-conjugacy classes
represented by the pair {7 exp(:I:OHa)} defined for any 6 # 0. These conditions are well
known. They are readily verified with an inspection of the group PG L(2,R) and its abelian
extensions.

The notions above have obvious analogues if the K-group M is replaced by the con-

nected group M’, and « is replaced by our fixed imaginary root . If o/ belongs to the set

/

T.ne Of noncompact roots in R7, we can form objects Ty, = T,,, M/, = M, w, = wq,

Cl =Cy, (0 and Z!, = Z,/, as above. In this case, we write
oo (r) = o'exp(rZy,),

for any small number r # 0. We also write ¢, = ¢/, for the chamber in it/ (R) defined by
the system R, of positive imaginary roots that are mapped by the transpose of Ad(CY,)
to RY.

We will now state the jump conditions. They include a vanishing assertion, which

/
I,nc

pertains to the set R} (') of noncompact roots in R} of the form w’a/, for some w’ € W7,

and the set Ry nc(c’) of noncompact roots of (M, T) (for some T') that transfer to o'.

Proposition 3.2. Suppose that Ey (&', f) represents one of the three families of distribu-
tions Ing (8, f), I§, (8, f) or SG(M', 8, f), as in Lemma 3.1.
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(i) Suppose that o’ is a noncompact root in R’ that is the transfer of a noncompact

root a of (M, T), as above. Then
(3.4) Jor (DiEare(0’, f)) = lim D B e, (04(r), f),

where Dy, , = Dy . is an invariant differential operator on C*°(Ty,, M, () attached to the

invariant differential operator D!, on C*°(T', M, () and the chamber c.

/
I,nc

(ii) Suppose that one of the two sets Ry (') or Ry ne(@’) is empty. Then

jor (DLEc(0', f)) = 0.

Proof. Applying Lemma 3.1, we write

(35) ja’ (DQEM,C(O-/7 f)) = jO/ (D,ceff,c(o-,))’

for a function €} € § (M’,¢"). The required assertions then reduce to statements about
singularities of stable orbital integrals on M’ (R).

The reduction (3.5) holds without restriction on o'. If o belongs to R}, it gives rise
to an associated Cayley transform on M’. In this case, we can use Shelstad’s result [S1,

Lemma 4.3] for stable orbital integrals on M’(R). It implies that

(3.6) Jol (Dée’f’c(a’)) = lir% Dé,a/e},ca (U;(T)),

for an invariant differential operator Dy, ,, on C* (T, G-reg> (') attached to D!, and Ay, If
o/ is also the transfer of a noncompact root v of (M, T), one sees easily that the operator
D;, .= D, . represents an element in the space C°°(T}, g_,qs Ma, (). Part (i) follows.
Part (ii) really contains two assertions. For the first, we recall that any conjugacy
class in the stable class of ¢’ in M’(RR) can be represented by a point w'e” in (T7)*' (R),

for some w’ € Wj. The orbital integral of any function in C (]\Zf !, CN’ ) extends to a smooth

function around this point, unless w'a’ is a noncompact root in R7. The jump (3.4)

!/

therefore vanishes if the set Rj .

(o) is empty, and in particular, if o/ is not a root of
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(M’',T"). For the second assertion of (ii), we assume that Ry n.(a’) is empty. We can also

!/

T.ne(@) is non-empty, since we have just seen that the jump would otherwise

assume that R

vanish. Since the quotient

(3.7) (67 0 w')(00) ™ = (Oury-10)(0)

extends to a smooth function on 7" (R), for any element w’ € Wy, €’ . extends to a
smooth function around w’c’ if it extends to a smooth function around o’. We may
therefore assume that the root o' itself is noncompact, and hence that (3.6) holds. But
our assumption that o’ transfers only to compact roots of M implies that the point o, (r)
in 7”.(R) on the right hand side of (3.6) is not an image of any point in M (R). This means
that G is not quasisplit, and hence that Ey (8, f) equals either In (8, f) or I§, (8, f). Tt
then follows, from either the definition (1.4) or the local vanishing property [A11, Theorem
8.6], that the right hand side of (3.6) itself vanishes. So therefore does the jump on the

left hand side. The required assertion follows from (3.5). O

We supplement the proposition with a few elementary remarks. Suppose for a moment
that o/ is a variable index, as in (3.1). If the derived group of M is simply connected, the

linear form

pc:% Z o

a’eR/,
lifts to a character
¢ (exp H') = ePet), H' €¥(C),
on T'(C). In this case, the product
(o) (ep ) = [ (e300 —em 2 W) |1 — et
a’eR/,
is a locally constant function on ﬁ’eg(R), since o/ (H') is purely imaginary for H' € ¢ (R).

Since £/ is a smooth function on 7”(R), the singularities of the function Ey; (-, f) of the

proposition are similar to those of the product of the original function Ej;(-, f) with the

35



locally constant function £/0.. It is in terms of this second normalization (or rather, a local
version that applies to the case that M lor 18 not simply connected) that Harish-Chandra
first expressed the jump conditions satisfied by invariant orbital integrals [H2, Theorem
9.1]. Since its normalizing factor is locally constant, this normalization offers the minor
simplification of commuting with differential operators on T (R). The first normalization

satisfies the slightly more complicated formula
(D'a’). = D.a! a € C™(T' M,(),

c’cy

where D’ — D! is the isomorphism of the space of invariant differential operators on

C>(T'", M, ) induced by the mapping
H' — H' + p.(HI, H' €¢(C).

(See [S1, p. 24].)

Suppose again that o’ and ¢’ are fixed as in the proposition. Replacing o by (—a’), if
necessary, we can assume that o’ belongs to R.. Consider the original normalizing factor
d.(c'expOH!) as a function of 6 around 0. The term corresponding to o’ in the product

(3.1) that defines ¢’ is then
(1—a'(c’expfH,)")[1— o/ (0"exp HH&)*l{_l.

Since

this equals

where

(3.8) e(f) = —i - sign 6.



The other factors in (3.1) all extend to smooth functions of § at § = 0. We can there-
fore normalize E)ys(o’exp@H! , f) by multiplying it by the locally constant function £(8).
We conclude that there is a linear mapping D’ — D! between the spaces of invari-
ant differential operators on C*°(T", M, () and C*°(T/,, M, () such that the assertions of
the proposition hold with (8)Ey (o'exp8H), f), En (oL (r), f), D' and D, in place of
Eyc(o'exp0H), f), Ene, (04,(r), f), D. and D, ,, respectively. This is essentially the

normalization of Harish-Chandra mentioned above. It is simpler, but has the disadvantage

of applying only locally in a neighbourhood of ¢’.

/
c,x

We will not need to know much about the differential operator D/, , in the formula

(3.4), but it is easy to describe in terms of D’. It satisfies the formula
Dy = ko (CLD")e,,

where k., = k. is a constant, D’ is the preimage of D/ under the mapping D’ — D!, and
C! D’ is the differential operator on C*° (77, M, () obtained from D’ and the isomorphism
C!.. (See [S1, p. 24].) The operators D" and D/ that apply to the normalization defined

by ¢(6) satisfy the simpler relation
D! =K. (C! D".

The function E (o), (r), f) that gives the jump in this second normalization is symmetric
in r about 0. It follows that if D’ is antisymmetric with respect to reflection about o’ in
T'(R), then

lim D}, E (o, (r), f) = 0.

r—0
In this case, the function

D' ((0) Eas (0'exp 0HY, f)), 640,

extends continuously about # = 0. Such matters are of course well known. We mention

them only to clarify some aspects of the discussion of the next section.
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The constant k/, depends on the choices of measures in the weighted orbital integrals
that are the source of the various distributions. We have implicitly normalized the measures
by the conventions of Harish-Chandra [H2, §7] rather than those of Shelstad [S1, §4]. (See
[A6, §1].) For example, if T is elliptic in M, the Haar measure on T'(R) is given by the
measure on the group A, (R)% = ay; attached to a fixed Euclidean norm ||-|| on the vector
space ays, and the normalized Haar measure on the compact group T(R)/Ay (R)Y. The
norms || - || on the various vector spaces aas, aar,, a,7,, etc. are understood to have been
chosen so that they satisfy all the natural compatibility conditions.

It is easy to describe the value of k!, with these conventions on the measures. We shall
infer it from the exact jump formula, stated in the special case that D’ =1, G = M and
M quasisplit, and with (M, a, o) in place of (M’, o o). If h € C(M, (), Harish-Chandra’s

original jump formula for the invariant orbital integral

hat(yexpOH,), 0 # 0,
takes the form
(3.9) Ja(ehar (7)) = =i | Hall hoaz,, (),

expressed in terms of the obvious variant of notation above. (See [H2, Theorem 9.1], [A2,

Lemma 6.3].) Shelstad’s jump formula for the stable orbital integral

M (o exp 0H,), 0 #0,
becomes
(3.10) ja(eh™(0)) = —midq |Hal KM (0),

for d, € {1,2}, as above. It can be derived from (3.9) in the same way that [S1, Lemma

4.3] was proved on p. 30 of [S1] from Lemmas 4.5 and 4.2 of [S1], provided of course that
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one takes into account the different normalizations of measures. The original constant is
thus given by
k/a = _ﬂ'idla HHétH7

where d!, = d, is the analogue for o of d,,.
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§4.  Stabilization of parabolic boundary conditions

In this section we shall consider the boundary component defined by a real root 3’
of T". We will again obtain jump conditions for the discontinuities of our distributions.
In this case, it will be necessary to describe the values of the jumps quite precisely. To
simplify matters, we may as well assume that 7" is R-elliptic in M’.

The problem is to stabilize the corresponding discontinuities for the basic invariant
distributions Ips(7, f). Suppose that T is a maximal torus in M over R for which 7" is
an M-image in M’. Then T is R-elliptic in M. The real root 3’ corresponds to a real
root 3 of (G,T). As in §3, we shall sometimes treat v as an element in T'(R) rather than
an elliptic conjugacy class in M (R). In particular, we often regard Iy/(v, f) as a smooth
function of v € T reg(R).

The discontinuities for Ips(7, f) about  are expressed in terms of a modified distri-

bution. Let Mg D M be the Levi subgroup of G for which
arg = {H € ay - ﬁ(H) = O}.

We then set

I (v, f) = Ing (v, ) + 18Y [ log [B(y) — BOY) ™ ary (v, ),

where ||3V]| is the norm of the coroot 3V, relative to the inner product on a,; that is implicit
in the definition of Ips(v, f). (It is understood that Ins, (7, f) is defined with respect to
the restriction to ap, of the inner product on ap;.) This the modified distribution. We
shall review the jump conditions it satisfies about 3, and then see how to stabilize them.

There is a preliminary matter to be treated first. It is to reformulate the definitions
of §1 in terms of the S-modified distributions I ]@ (7, f). In proving the required compat-
ibility conditions, we shall introduce some notions that will also be needed in our later

stabilization of the boundary conditions.
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The objects M’, T' and 3’ are fixed. We again work with a given transfer factor Ay,
with associated data (]\27 ! g?w) and 17, even though A, is ultimately supposed to vary. A
root 3 of (G,T) that transfers to ' is unique, in contrast to the case studied in the last
section. This is because (3 can be identified with a character on the split component Ay,
of the center of M, (and hence also a character on each split component Ay, ). It therefore

transfers under the canonical isomorphism between A,; and Ay, to a character on Ay,

which can be identified with 3.

The coroot 3V can be identified with a character on M. The kernel
Zg={zeZ(M)": p¥(z) =1}

of its restriction to Z (M\ )b will be of special interest. Observe that Z (]\/4\5)F is a subgroup
of Zg, with finite quotient
Ks = Z5/Z(Mp)".

We shall write 554, (G) for the subset of data G’ € Ey;/(G) such that ' is a root of (G, T").
Recall that €y (G) is parametrized by the set of points s’ in S’MZ(]\/J\)F, taken modulo
Z (@)F . An element G’ in &),/ (G) belongs to &b ,(G) if and only if the corresponding point
s’ lies in

ng ={s' ¢ Sy Z(MDOY . BY(s) = 1},
a set on which 25 acts simply transitively.

Let o’ be a point in Tvé_reg(R). We define modified forms of distributions in §2 by

Iy (o', f) = In (o', f) + 118 [ log |8/ (o) — B'(0") "M Tag, (0, f)
and

120" f) = I5(0' ) + [18¥]|1og |8'(0)) — B'(0)) T3, (0 f)-
If G is quasisplit, we set

S5i° (0, £) = S50, f) + IKg| 1|8 | log |8(0) — B(o) 1S5, (0. ),
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for any 0 € Tgreg(R). We also set Sﬁ,’ﬁ (M',;0’, f) equal to the original distribution
SC(M' o', f) if M’ # M*, and equal to the distribution
§]?4**,B* (0_*7 f*> — S]%B(O', f)
if M = M* and (3, 0) maps to the pair (8*,0*) = (6',0’). It follows inductively from the
descent formulas (2.12)—(2.15) that the §-versions of the distributions satisfy the obvious
analogue of Theorem 1.1 if and only if the original distributions satisfy the theorem itself.
We will need to know that the §-distributions also satisfy analogues of the relations (1.4),
(1.8), (1.9) and (1.10).
It follows from the definitions that

I = > Auld NIy, f),

WGFG-rcg(M)

since '(0’) = B(v) whenever Ap;(o’,v) # 0. This is the analogue of (1.4). If G is
quasisplit, the analogue

13°(0" f) = Iy (o', f)
of (1.10) holds by definition. To formulate analogues of the other two relations, we define
§]§’/,B’ (o, f) for any G’ € Ex(G) by using the prescription above if G’ belongs to £, (G),
and setting it equal to §C:;/,(a’ , f') otherwise.

Lemma 4.1. (a) If G is not quasisplit,

PG N A (e e Al AN O
G €€ (@)

(b) If G is quasisplit,

SO M o ) =I5 ) = > wn(G,G)SE (0 f).
G'egl ,(G)
Proof. Following [Al1, §3], we set £(G) equal to 1 or 0, according to whether G is

quasisplit or not. The formulas (1.8)—(1.10) can then be combined as an identity between

the difference
(41) IJ%(O-/M]C) _S(G)S](\;I(M/7U,7f)
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and the sum

(4.2) S (G688 (o f).
Gregl ,(G)

We need to establish a similar identity between their G-analogues

(4.3) 130" f) = e(G) Sy (M, 0, f)

and

(4.4) S (G,6NSL (0 ).
G'eed,, (@)

By definition, (4.4) equals the sum of (4.2) and the product of

(45) 18 110g|8'(o") = 5'(")|
with
(4.6) > Kl an(G.G)SE (o f).

Greel (GNEY,,(G)
We have written M for the Levi subgroup Mj, € L(M') of G’ defined for the real root
3’ as above. We identify it with an element in 8]’?4,(M 3) by projecting the point s’ in ng
that represents G’ onto its image in 2;{ /Z (Z\//T 3)L. This allows us to decompose the sum

over G’ in (4.6) into a double sum over My € Ef/‘,,(Mg) and Gy € &} é(G). Since
LM/(G, G/> = LM/(Mg, Mé) L]w;3 (G, GIB),
the expression (4.6) becomes

S Kl (M, M) Y LMé(G,G’)@%(a',f').

MLEE], (Mp) SO
The sum over G5 equals

I, (0", f) — e(@) ST, (M, o, f).
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The coefficients in the sum over M é satisfy
KCpr| ™ enar (Mg, M)

=25/ ZQ1)" || ZQI) /Z(M)T|| Z(0T )" /2 (M) |

=12p /Z(Mp)" || Z01")" 2 ()"

=|25/2(Mp)"| !

=|KCs| ™",
since every class in Z(M')T/Z (]\/4\ )'' has a representative in the subgroup 25/ of Z(MV')T.
The expression (4.6) therefore equals the difference

ol ™ Y I (0, ) = 1KCal ™ Y e(G)SHy, (M. o', ).

Mg My

From the descent formula (2.13) (with Mg in place of M), we see that I ]“f/‘,ﬁ (o', f) is in-
dependent of Mj. Since M ranges over a set on which K acts simply transitively, the
first term reduces to [ﬂﬁ(a’ , f). By the descent formula (2.15) (applied again to Mg),
the distribution §f4ﬁ (M}, o', f) vanishes unless M} equals Mj. If M} does equal My, M’

equals M*, and the distribution equals Sﬁﬁ (o, f), for a point o that maps to o/ = o*. It

follows that (4.6) equals
L5, (o' f) = sl t (G, M) S§, (0. f),

where
1, if G is quasisplit and M’ = M*,
e(G,M') =
0, otherwise.

We can now add (4.1) to the product of (4.5) with the expression we have obtained
for (4.6). The resulting expression equals (4.3), according to the definitions above. Since
(4.1) equals (4.2), we conclude that (4.3) does indeed equal (4.4).

If G is not quasisplit, e(G) = 0 and £, (G) = Epr(G). The equality of (4.3) and (4.4)

then reduces to the required formula of (a). If G is quasisplit, e(G) = 1 and I]ff (o', )
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equals ]@(0’ , f). In this case, the equality of (4.3) and (4.4) becomes the required formula
of (b). O

We now recall the jump conditions about [ satisfied by [ J/@ (v, f). Following §3, we

change notation slightly, taking v now to be a point in general position in the subgroup

T9(R) ={y e T(R): B(r) =1}

of T(R). The centralizer G is a connected reductive group over R, whose derived group
Gy der 18 isomorphic over R to either SL(2) or PGL(2). Let T be an elliptic maximal
torus in G such that the Lie algebras of T3 N G qer and T'N G ger are orthogonal with
respect to the Killing form. Then T} is R-elliptic in the Levi subgroup Mg. This takes us
back to the setting of §3, with M, T', Mg and T here in place of the groups denoted M,,

T., M and T in §3. In fact, if we fix an inverse Cayley transform
Cﬁ = IHt(Sg), sp € G’y,dera

that takes 17" to T, and let o be the root of (Mpg,Ts) corresponding to 3, we have
(Mg)o =M, (Ig)q =T and C, = C’gl. In particular, we have the elements Hg = Z, and
Z3 = H, in the Lie algebra of G qer defined in §3.

Suppose that D is an invariant differential operator on C*°(T', (). If wg is the reflection

in T" about 3, the composition
wgD:u)goDou)ﬁ_1
is also an invariant differential operator C*°(T', (), and the transform
Dpg = Dp.c, = Cp(wsD — D)
is an invariant differential operator on C*° (13, (). We write jg (DI f/f (y, f)) for the jump
lim DI]’?/[(’}/GXPTHB, f) — Tl_i)%l_ DII@(’yexerg, f).

r—0+
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The jump condition for I f/[ (7, f) is the identity

(4.7) js (DI (7, 1)) = lim £(6) Dlag, (15(6), ).

for

as in (3.8), and

v5(0) = v5(Cp, 0) = yexp(0Zp).

It of course includes the existence of the two half limits on the left hand side of (4.7). The
existence of the limit on the right hand side follows from the fact that Dgs is antisymmetric
with respect to reflection about « in T3. (See [A2, Theorem 6.1 and Corollary 8.4] and
[A3, Lemma 13.1]. The factor £(f) was inadvertently omitted from the second reference.)

Our task is to stabilize (4.7). The starting point will be a fixed element ¢’ in general
position in the kernel (T)7 (R) of 8’ in T'(R), and an invariant differential operator D’
on C®(T’,M,({). We note that o’ is still strongly M-regular, even though it is not G-
regular, since 3 is not a root of (M, T). The transfer Hj of Hg under any M-admissible
isomorphism from 7T to T” depends only on 3’. We write

jpr(a'(0)) = lim a'(o’exprHp) — lim o' (o’exprHj),

r—0+ r—0—

for any section a’ € C°°(T¢_ e, M, ¢) for which the two half limits exist.

Our main concern will be the jump attached to the section
d(-) = D'In (- f).

According to the definition (1.4), we can express this jump as a sum over classes
v € Tyeg(M) with Ap(o’,y) # 0.. Writing v also for a fixed representative in M (R)

of a given class, we obtain a unique M-admissible isomorphism from the maximal torus
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T = M., to T" that takes 7 to the image of ¢’ in T". We use it to transfer D’ to an invariant
differential operator D on C*°(T, (). It then follows from (1.4) and (2.4) that
(4.8) o (D' D) = D Ao’ 7)is(DIy (v, f).
YE reg (M)
The formula (4.7) allows us to express the right hand side of (4.8) as a limit
lim e(0) >, Ao’ ) Dslu, (16(0). f),
YE reg (M)

in which the differential operator Dg on the right depends on D',y and Cz. We would
like to express this limit in terms of endoscopic data M é for M. The basic problem is to
inflate the sum over I'yeg (M) to one over I'yeg(M3).

The right hand side of (4.8) amounts to a sum over the finite subset of elements
v € Dyeg (M) with Apr(o’,7v) # 0. We fix one such element . The sum can then be taken

over the set of v; € I'ieg (M) in the stable class of v. There is a bijection

(4.9) Y1 — inv(y,71),

from this set onto the group
E(T) =Im(H' (R, Ty.)—H' (R, T)),

whose definition we recall.
Since M is supposed to be a K-group in its own right, it comes with an isomorphism
1,,, from the component M,, of «; onto the component M, of 7. The image 1,,, (1) of 71

is M,-conjugate to v. We can therefore write

Y= hwul (VI)h_lg

for some point h € M, s.(C). If 7 belongs to the Galois group I' = Gal(C/R), we have
v =7(7) = (W7 Yoy (1)) 7(A71)
= 7(h) (7(Yur)) ()7 (R71),
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since v and ~; are both defined over R. It follows that

= (T(Wuy) Lo Tnt (r(R) ) (),

and consequently that
v = (Int(h) 0 ¥y, ) (1)
= (Int(h) © o, © 7(vu,) " o Int(7(h)) ") (7)
= Int (hu,,, (1)7(h) ") (7),

in view of condition (i) on [A11, p. 212]. Since 7 is strongly M-regular, the function
T — hu,,, (1)7(R) 7!, Tel,

takes values in the preimage T of T in M, .. This function is a 1-cocycle, by virtue of the
fact that M is a K-group. We define inv(7y,71) to be its image in H!(R,T). It is then easy
to check that the mapping (4.9) is a bijection from the original set of conjugacy classes
onto the group £(T'). (The surjectivity of the mapping also relies on the fact that G is a
K-group.)

We recall that by Tate-Nakayama duality, there is a canonical isomorphism from £(7")

onto the dual of the finite abelian group
K(T) = mo(T"/Z(G)Y) =T )Z(M)F.

(See for example [K2]. The second equality is a consequence of the fact that T is elliptic in
M. Tt is easy to see that KC(T') is in fact a 2-group.) Keep in mind that there is a unique
admissible isomorphism from T = M., onto T” that takes ~ to the image in 7"(R) of ¢’. We
write k', = k(o’,~y) for the projection onto I(T') of the image of s}, in TT under the dual
isomorphism from T’ to T. We recall here that sh; denotes the element in the subgroup

Z(M"T of (T")T attached to M’. The transfer factors in (4.8) then satisfy an identity

(4.10) Ani(o',7) = Ap (0, 7) (K, inv (y, 71))-
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(See [A11, p. 224] or [KS, Lemma 5.1.D]. The usual custom [LS1] to take T" to be a maximal
torus in the quasisplit inner twist G* of G that we have generally suppressed here. The
preimage k%, in TT, denoted by (shy)r in [LS1], then depends on a choice of admissible
embedding of 7" into G* with image T'.)

We need to relate both £(7") and IC(7) with the corresponding groups £(73) and
K (1) attached to T3. Our discussion at this point is motivated by that of [S1, §4]. The
inverse Cayley transform Cs = Int(sg) is an isomorphism from 7" to Ts. We use it to

identify the dual group T 3 with T. Then
K(Tp) = mo (T /Z(G)'?) = T" /2 (My)"™,

where I's = {1, 07, } represents the action of the Galois group I' on T obtained from Ts.

The nontrivial operator in I'g satisfies
UTB = O'TUJE;/,

where o7 is the corresponding operator on T obtained from T, and wg = wgv is the simple

reflection in 7' about 3. In particular,
Z(Mp)" = Z(Mp)",

since wyj centralizes Z (]T/[\ 3). Following standard notation, we write
wy (1) = t(8%(£) ", teT.

The group 25, defined prior to Lemma 4.1 as the kernel of Y in Z (]\/4\ )F, is therefore

contained in 777, Its quotient
Kp = Z5/Z(Ms)" = Zp/Z(Mp)"*
is a subgroup of (T}3), whose associated quotient in K(7j3) we denote by

Ks(Tp) = K(Tp)/Kp.
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As a co-root for G , B represents a mapping of GL(1, C) into T whose image is contained
in Z (]\//T )F, since 3 is real and T is R-elliptic in M. Any point ¢t € TT therefore has a
Z(]\/Z)F—translate

tg =1z, zZ € Z(]/\J)F,

with 5Y(tg) = 1, and which consequently lies in TTs. Since z is uniquely determined
modulo 25, the correspondence t — tg gives a well defined injection from K(7T') into
Ks(Tp). Since Y is trivial on 25, it descends to a character on the quotient Kg(7j3) of

IC(Ts). The image of the injection is then the kernel
Ks(T) = {t € Kg(T3): B'(t) =1}

of ﬁv in K@(Tﬁ).

We have constructed a commutative diagram

K(Ts) — Ks(Tp) <« Ks(T)

(4.11) Tg
K(T)

homomorphisms of (abelian) 2-groups. This in turn is dual to a commutative diagram

E(Tp) <« &s(Tp) — Ep(T)
(4.12) .
E(T)

of homomorphisms among corresponding dual groups. The group £3(13) is the annihilator
of Kg in £(Tp). As a character on K3(Tj3), of order dg equal to 1 or 2, 3¥ generates a
subgroup of £g(1;3) of order dg. The group £3(T) is the associated quotient. (Notice that
by regarding 5Y as an element in £3(T3), we are identifying it with the coroot . This is

of course a consequence of our having identified 7] 3 with f)
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The mappings in (4.11) were defined in terms of the inverse Cayley transform Cpg.
Now Cp is determined by 7" and T3 only up to the action of I'. If U is replaced by its
complex conjugate

6/3 = Cﬁ’wg = wan,

the isomorphism of 7" with Tz, which was attached to Cg and allowed us to identify T B
with T , has to be composed with wg. However, it follows from the definitions that the
vertical mappings on the right hand sides of (4.11) and (4.12) do not change, and are

therefore independent of C'3. This is essentially equivalent to the identity

(4.13) inv (vg, wa (v8)) = 8"

of elements in £(Tj) attached to any G-regular element g in T3(R). (See also [S2, Propo-
sition 2.1].) The identity (4.13) implies also that the order ds equals the integer d, of
§3.

Suppose now that M} belongs to 554,(M5). Then ' is a real root of (Mj,T"). It
provides the setting for an inverse Cayley transform C; = Cfj, from 7" to an elliptic
maximal torus Ty = T, in M. This gives us an element Zj = Zg in the Lie algebra of

T4(R), and a strongly G-regular point
03(0) = o'exp(6Z5)
in T’ 5(R) for each small 6 # 0. It also attaches an invariant differential operator
Djy = D = Ch(wz D' — D') = Cp(wa D' — D)

on C*°(T5, Mg, () to the original differential operator D’. One sees easily from the defi-
nitions that D/’8 is the transfer of the differential operator Dg, relative to the admissible
isomorphism from Tj to T} that takes y3(0) to oj5(6). In other words, it fits into the

commutative diagram
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D'—>D’5

(4.14) l J

D — Dg

Lemma 4.2. Suppose that Ay is the restriction of a transfer factor Ay, € T (Mg, Mp)
to M. Then

AM(U,77) = AM,@ (0,6(0)7 ,7,3('9))’

for any v € T'1eg (M) and 6 # 0.

Proof. This lemma is implicit in the work of Shelstad, specifically the transfer of
elliptic boundary conditions that was part of her proof of the transfer of functions. The
proof was actually carried out before the introduction of general transfer factors, but was
later shown to be compatible with the transfer factors [LS2, Theorem 2.6.A]. Rather than
attempt to relate Shelstad’s original arguments [S1] to the later transfer factors of [LS1],
we shall work backwards. We shall deduce the lemma from the existence of the general
transfer mapping for Mpg.

We can assume that ¢’ is an M-image of v, since both sides of the putative for-
mula would otherwise vanish. As a nonvanishing function on a domain in the product
of T/é,G—reg(]R) with T3 G-reg(R), the transfer factor Apz,(-,-) is the product of a locally

constant function with a character on M 5(R). It follows that the function
Any = Ay (Ufa(@)mﬁ(@)), 0 >0,

of 0 is actually constant. In fact, it follows from (4.10), (4.13) and the fact that oj(0) is

stably conjugate to oj3(—0) that

A, = Do, (05(8).75(0)) = A, (55(6).75(-9)). 040,

Our task is to show that Apz, equals Aps(o’,7).
We shall compare the explicit jump conditions for invariant and stable orbital integrals

discussed at the end of the last section. Recall that these conditions are formulated in
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terms of the imaginary noncompact root a of (Mg, T3) attached to 8 and Cp, and the

corresponding integer d, = dg. These objects of course have analogues o and d], = d
Vi

for M.

Suppose that h is any function in C(Mp, (). We then have the formula
Jar (el (0")) = —midy, | Hy || Iy (o),

for the jump

jar (el (0)) = 91—i>%1+ (e(O)' (03(0)) — e(—0)h/ (o5(—0)))

= lim (—%)(h'(o(0 h (o(—6

Jim (=) (P (05(0)) + 1’ (95(=0))),

given by (3.10). Suppose further that h is a non-negative function with h(y) # 0, and is
supported on a small neighbourhood of . The right hand side of the formula then reduces

to

—mid, | HL | Ans(0”,7) e (7)-

Moreover, if 8 # 0 is small, the points y3(f) and ~vg(—6) represent the only classes in
['G-reg(Mp) in the support of hys, of which oj(0) is an image. We recall that d, equals 1

or 2, according to whether or not these points represent the same class. Therefore

( ( )) AM hMg (7,8(9))7 if da =1,
W (o5(0)) =
’ Aot (ot (45(8)) + bty (v5(=8))), if du = 2.

The left hand side of the formula consequently equals

9£%1+(—i)da Aty (hagy (78(0) + hasy (78(—0)))

= Hm, do A (e(O)hn, (v5(0)) — e(=0)ar, (v5(—0)))
= do Aniy ja(ehar, (7))
= —mida || Hall Anry har(7),
by (3.9). The norms ||H. || and ||H,|| are equal, since it is understood that the underlying

. ~!
inner products on the spaces a§, and a%

/7

match. Moreover, d, equals d,. This is a conse-

quence of the properties of the diagram (4.11) and the identity d, = dg, or alternatively,
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Proposition 4.4 of [S1]. Since hps(7y) # 0, the required identity
AML} == AJ\4<O-/7 ’y)

then follows from the jump formula. U

Corollary 4.3. If v and v1 are as in (4.9), inv(v5(6),71,5(0)) belongs to the subgroup
Es(T3) of E(1), and its image in E(T) under the mappings of (4.12) equals inv(~y, 7).

Proof. If xy; = r(0’,7) and rj = K}, = n(ag(e),%(e)), we can write

(K, 0 (43(0),71,5(6)) )
~1

= A, (05(0),71.5(0)) Ay (05(6),75(6))

= An(0’, 1) Aw(a’,7)

= <I€9\J7 iHV(’}/, ’71)>7
by the lemma and (4.10). If Mj ranges over groups in Sﬁ,(Mg), Kj3 ranges over the
preimage in K(T3) of the image of x; in Kg(1j3) under the mappings (4.11). It follows
from the last identity that inv(vy3(6),71,3(f)) belongs to £3(T). The endoscopic datum
M’ is supposed to be fixed. However, we can still let it vary here in order to establish the

corollary. Since r’y; will then vary over K(T'), the second assertion of the corollary also

follows from the identity. O

We can now apply what we have learned to the jump formula (4.8). It follows from

(4.7) and Lemma 4.2 that the right hand side of (4.8) equals the limit
(4.17) gig(l) e(0) Z Ay (0/6(9)7 ’Yﬁ(‘g))DﬁIMﬂ (75(9)> f)
Y€l reg (M)

Let I'3(Mg, 6) be the set of classes in I'g-eg(Mg) that lie in the stable class of v3(6), for
some v € I'teg (M) in the stable class attached to o, and whose invariant relative to v3(6)
lies in the subset £3(T) of £(13). By Corollary 4.3, I'g(Mga, 8) consists of the classes of

elements of the form ’)/ﬁ(ég,g), where 7 ranges over the given stable class in I'yeg(M),
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and 5’5 ranges over inverse Cayley transforms. Since the right hand side of the original
limit (4.7) does not depend on the choice of Cayley transform, we can sum over the set of
G (R)-conjugacy classes of Cayley transforms, a set whose order d, = dg is independent
of 7, provided that we divide by the order dg. Changing notation, we write vz in place of
fyﬁ(éﬁ, ). The expression (4.17) then equals
dztlime(®) Y A, (05(0).v8) Dalus, (s f).
Y8€l3(Mp,0)

Keep in mind that the differential operator Dg here is attached to D’ and ~g, according to
our earlier conventions. It is defined in either of two equivalent ways by the commutative
diagram (4.14).

As an endoscopic datum in 854,(M 3), M é corresponds to an point s’ﬁ in the subquo-
tient

K& =Z}/Z(Mg)"

of sh,Z (]\7 )I" on which the group Kz acts simply transitively. If s belongs to Kg, we write
M}  for the datum in 5][\34,(M) attached to the point sjs, and oy ((0) for a representative
of the corresponding stable class in M .. Suppose that 75 belongs to I'g(Mpg,0). By

Lemma 4.2, we have

AMB (0’675(9),,)@) = AM(OJ?V) = AMﬁ (U,IB(Q)?’YB)a

for some 7 € I'yeg(M). We also have

/

K(JB’S(Q), 75) = m%s,

where /-123 = /@(023(0),75). If v3,1 is a general element in the Mpg-stable class of v3, an

application of (4.10) to Mp tells us that
Aty (05,4(0),75.1)
= D, (0,6(6). 78) (s, inv (5, 75.1))
= Ay (0, 1)l (73, 781)) (s, i0v (38, 98,1))
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Suppose that 31 lies in the complement of I'g(Mg,#). As a function of s € Kg, this
product is then a nontrivial affine character on Kg. Its sum over s vanishes. We can
therefore inflate the last sum over v from I'g(Mp,8) to I'g-reg(Mp), provided that we
also replace o(0) by o5 ,(0), and then take the normalized sum over s € Kg. For a
general element s of which o7;(0) is an image, we can still define objects T3 and Dg by
the natural transfer of the corresponding objects attached to any element in I'g(Mg, 6), or
equivalently, by the transfer of objects T , and Dj _ attached to oj ,(0) (defined by the
upper horizontal and right hand vertical arrows in (4.14)).

We have now shown that our expression for the right hand side of (4.8) can be written

as the product of the constant

-1 _
ep =dg KCa| ™

with the limit

lim 6(9) Z Z AMB (0'/573(9)775)D,3IM5(757](‘)‘

6—0
SEICB 'Y,BGFG—reg(M,B)

Recall that dg is equal to the order of 3¥ as an element in £(73). An inspection of the
diagrams (4.11) and (4.12) reveals that the constant eg then equals the order of £(T)
divided by that of £(Tj). In the last limit, the sum over s can be replaced by a sum over
M} in éﬁ,,(Mg), if we replace o (6) by the associated point o05(f) defined by Cayley
transform in the given group Mj. The differential operator Dg on C*°(1}, () transfers to
the operator Dj; on C>°(T, Mg, () attached to Mé, and can be taken outside the sum over
78, by (2.4). The limit becomes

lim Z S(Q)D%IMB (U,/ﬁ’(g),f)a

6—0 B
MéESM,(Mg)

since

Y8 ET Greg (M)
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We have at last obtained a satisfactory formula for the jump in (4.8). Let us write

(4.18) ep(0) =epe(t) = |E(T)||E(Tp)| " (—isgnb).

Our formula is then
(4.19) Jo (D'Tyy (0", 1)) = lim e5(0) Y DI, (05(0). f).
M/
5
where Mj is summed over the set Eﬁ,(M 3).

Proposition 4.4. Suppose that M', T, ', o’ and D" are as above, and that M} represents
a variable element in €5, (Mp).

(a) If G is arbitrary,

(4.20) Jo (DT (o', f)) = lim e5(0 ZDﬁIMB 0), f).

(b) If G is quasisplit,

. G,
(4.21) Jo (D'Sy" (M 0", f)) = lim e5(0) ) DSy, (M, 05(0), f)-
M/
5
Remarks. 1. It is implicit in the assertions that the half limits defined by the left hand
sides of the two formulas all exist.
2. In the special case that M’ = M*, Theorem 1.1(b) asserts that the sum in (4.21)

can be taken over the single element M, = M 5. Assuming the assertion, the formula

(4.20) could then be written in this case as

(4.22) Ja(DS5 (0, f)) = lim £43(0) DpS5, (05(0), ),

6—0

where D, o and Dg denote analogues for G of the objects D’ = D*, o' = ¢* and Dj; = Dj.

Proof. We assume inductively that the analogue of (b) holds for any pair (G’, M) in
which G lies in both £2,,(G) and 554, (G). At the end of §2, we took on a similar induction

hypothesis for the assertion of Theorem 1.1(b). This means that the analogue

. oG’ B Yy ac
(4.23) 3o (D'S)3,7 (o', 1) = lim £5(0) DS, (o5(0), ')
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of (4.22) for (G', M') holds. If G’ belongs to the complement of 81[\34,(63), B’ is not a root
of (G',T"), and the point ¢’ is strongly G’-regular. In this case §]§/,”8/(0’, f') is smooth at
o', and the jump on the left hand side of (4.23) vanishes.

The proof is now similar to that of Lemma 4.1. It follows from Lemma 4.1 and the

definition of jg that the difference
(4.24) o (D'I30 (07, £)) — £(G)js (D'S5° (M, 0, f))

equals

Y w(G.@) e (D'SET (0 1)),

G’eg? ,(G)
The last expression can in turn be written as
/ . 1 QG (1 ’
> (@6 (lim =5 (8) DS, (5(0).£)).
G'egl,, (G)NEY (@)
by the discussion above. Following the proof of Lemma 4.1, we decompose the last sum
over G’ into a double sum over M € £V, (Mjg) and Gy € €3, (G), and write
s

LM/(G, G/> = L]\/p(Mﬁ,Mé) LM,Z-; (G, Gb)

We then write
e (Mg, M) eg (6)
= |Z(0)" Z(M)"|| 20 )" /2 (Mg)" | 7H|(T) /204 |[(T)T /20 05) | e(6)
= |T"/2(M)"||T/Z(Ms)" | "< (0)
=¢e5(0).

The difference (4.24) therefore equals the sum over M é of the expression
I D},5%, (o / b EEY (G).
Z im £3(0) ear, (G, G) DSy, (95(0), 1), Gj € £y, (G)
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The last step is to take the limit operation outside the two sums, and then apply the
definitions (1.8)—(1.10) (with Mz in place of M) to the resulting sum over Gg. We conclude
that the difference (4.24) equals the limit
(4.25) lim e4(0) > (D!, (05(0), ) — £(G) DS (M, o(0). f)).
Mg

If G is not quasisplit, e(G) = 0. The equality of (4.24) and (4.25) then reduces to the
required formula (4.20) of (a). If G is quasisplit, ¢(G) = 1, and the formula of (a) follows
from (4.19) and the definition (1.10). In this case, the equality of (4.24) and (4.25) reduces

to the required formula (4.21) of (b). O
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§5.  Stabilization of the asymptotic formula

There is one more ingredient we need for our proof of Theorem 1.1. It is the invariant

asymptotic formula

(5.1) lim In(yr, fr) = / 01 (v, ) IE (7, f)dr
T Tepp (M)

that was the main result [A14, Corollary 6.2] of the last paper. We can in fact regard this
formula as a boundary condition at infinity in the noncompact torus T(R). An essential

object to be stabilized here is the linear form

(5.2) 157, f) = /T R AT

that occurs on the right hand side of the formula. We begin by recalling some of the terms
in the formula, as we will be applying them here in slightly greater generality.

First of all, the function f in (5.1) and (5.2) has to be taken from a subspace of C(G, ()
for the formulas to make sense. It suffices to let f be a function in the ¢ ~!-equivariant

Hecke algebra
H(G,¢) = P H(G.,G)

Lemo(Q)

on G(R). The mapping f — fq takes H(G, () to a subspace
I'H(G,¢) = P TH(G.. ()

of Z(G, ¢). As a space of functions on Iiemp (G, ¢), IH(G, ¢) was characterized in [CD]. One

can also identify I'H(G, ¢) with the Paley-Wiener space on the space of virtual characters

Ttemp(G7 C) = H Ttemp(GLa QL)

(See [A6]. For any ¢, Tiemp(G.,(,) is the subset of virtual characters in the set denoted

T(G,(R)) in [A6] whose Z,(R)-central character equals ,.)
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We write a}, , for the kernel of the projection of a}, onto a. There are then free
actions m — my and 7 — 7\ of ia}, ; on the sets iemp (M, ¢) and Tiemp(M, ). These
mappings can obviously also be defined if A is any element in the complexification a}, , ¢
of a}; , but their images will then consist of nontempered virtual characters. If ¢ belongs

to the real space aj; ,, we write T.(M, ) for the set of virtual characters
{ra: Aee+iay gz T € Tremp(M, ()}

The asymptotic formula (5.1) depends on a fixed parabolic subgroup P € P(M). The
domain of integration on the right hand side of the formula is then defined by a small
point € = ep in general position in the corresponding chamber (afm Z)JIS in aj; 7. The limit

on the left hand side is over points 7' in the set
ap ={H €ay: a(H)>r|H|, « € Ap},

defined by the simple roots Ap of (P, Ay), and a fixed, small positive number r.
The other ingredients in (5.1) are given essentially by the definitions of [A14]. For

example
yr = 7y expT,
while f — fr is the isomorphism of C(G, () defined as in §1 of [A14]. The function 6 (y, T)

is the kernel of the transformation

ant(7) = /T g Pl Tase () art € T(M, 0),

that relates to two ways of viewing a function in Z(M, (). The linear form I, (7, f) is the

invariant distribution

I (7, f) = tr(ma (1, P)Ip(7, f)) = ma (7, P) far (1),

where
fu(7) = fa(r9)
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is the restriction of fg to the induced image of Tiemp (M, ¢) in Tiemp (G, ¢), and mp (7, P)
is defined in terms of Plancherel densities as in [A14, §6].

What does it mean to stabilize I, (7, f) ? In theory, the process entails repeating the
definitions of §1 with I (v, f) in place of I/ (7, f). However, the distributions I, (v, f)
are much simpler than the original ones. The basic step will be to stabilize the function
mpr (7, P) by an analogue of Theorem 5 of [A10].

We write ®iemp(M, () for the set of (]\7 -orbits of) tempered Langlands parameters
¢: Wp — M
whose central character on Z(R) equals . Any such parameter ¢ determines a finite packet

Hd) - H H¢L7 H¢L - Htemp(ML, CL)’

of representations in Iiemp (M, (), and a finite packet

T¢ - HT¢L7 T¢L C Ttemp(Mw CL)?

of virtual representations in Tiemp(M, (). The packet 1y, for the connected group M, is
defined as in [L3], with the understanding that it is empty if ¢, is not relevant to M,. The
packet Ty, is defined as the subset of Tiemp (M, () whose linear span equals that of Ily,.
The Langlands classification for real groups asserts that both Iliemp (M, ¢) and Tiemp (M, ¢)
can be decomposed into disjoint unions over ¢ of the associated packets. Our notation is
not completely standard here, since ®iemp (M, ¢) usually denotes the subset of parameters
¢ that are relevant to M. In the present context, this means that any Levi subgroup of
L M that contains the image of ¢ is dual to a Levi K-subgroup of M, or equivalently, that
the packet I, (or Ty) is nonempty.

There is a free action ¢ — ¢y of ia}; ; on Premp (M, (), obtained by identifying ay; » ¢
with a subspace of the Lie algebra of Z (]\/4\ )F'. This action is compatible with the two kinds

of packets, and the two actions of iy 7 on iemp (M, ¢) and Tiemp (M, ¢). It again extends
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to the complexification aj, , ¢, but if A lies in the complement of iay, ,, ¢ — ¢\ maps
Piemp(M, €) to its complement in the set ®(M, () of general Langlands parameters. We

again write

O (M, Q) = {dr: N€c+ialy, &€ Premp(M, ()},

for any point € in aj; ;.

Suppose that {r\} is the ahs z.c-orbit of an element 7 = 79 in Tiemp(M,C). The set
of values {my; (7, P)} assumed by the function used to define I, (7, f) is a meromorphic
function of A, whose restriction to iaj}, , is analytic. It is defined in terms of the (inverses

of) Plancherel densities

moip(Ta) = pigp(Ta) ™ Qe P(M),

attached to the virtual character 7). One forms the (G, M)-family

mq (¢, 7, P) = mqp(72) " mqp(Tag1a); Q € P(M), A €iayy 4,

and then defines the function my; (7, P) as the associated limit

(53) mM(T,\,P)ZI{iL% Z mQ(A,T,\,P)QQ(A)il.
QeP(M)

(See [Al4, §5,6].) Let ¢ € Premp(M,() be the parameter such that 7 lies in Ty. The
functions mq p(¢r) = mg|p(7x) then depend on 7, through ¢x. To be more precise, let
pq|p be the representation of LM on the intersection of the Lie algebras of the unipotent
radicals of % and @ If A\ is purely imaginary, the inverse Plancherel density is defined

explicitly in terms of archimedean L-functions by

mqp(Px) = cqip|L(0, pgip © ¢A)|2}L(1,PQ|P o ¢>\)|_27

where cg|p is a constant that depends only on the choice of Haar measure on

Np(R) N Ng(R) implicit in the Plancherel density [A5, §3]. For general A\, mg p(¢x)
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is defined by meromorphic continuation of the real analytic function given by imaginary

A. Since this function depends only on ¢, so does the limit
mM(qu? P) = mM<T>\7 P)

Suppose that M’ is the elliptic endoscopic datum for M fixed earlier, with auxiliary

—~

datum (M’,€). The embedding of Z(M)T into Z(M)' allows us to identify a3y 7 With

the subspace a*- c of the Lie algebra of Z(M)". We therefore have an action ¢’ — o

/7Z~/7
of ia}, ; on @temp(M’,E’). From our point of view, the most important aspect of the
Langlands parameters for M’ is that they form the domain of a canonical mapping ¢’ — ¢
from Cbtemp(ﬂ’, ') to Diemp(M, ¢). Indeed, the central character n’ of any ¢’ on C’'(R) is
derived from ¢ in such a way that ¢’ descends to an L-homomorphism ¢ from the Weil

group Wx to M’. We define ¢ to be the composition & o ¢’ of the two horizontal arrows

in the diagram

Jv |7
e 2 om0 I
The mapping ¢’ — ¢ is compatible with the actions of 103 7 o0 Peemp (M’, Z’) and ®(M, ().
The stabilization we seek takes the form of an inductive family of identities among

the functions

mM(QbA?P) = m?/[(QSA,P)

The identities are parallel to those of Proposition 2.1, and relate quantities defined in-

ductively by varying GG, M and (. In particular, they are formulated in terms of the set

Enm(G). Recall that any element G' € £yy/(G) comes with an implicit choice of embedding

M’ C G’ for which M’ C G’ is a dual Levi subgroup. A parabolic subgroup P’ € PGl(M’)

can therefore be identified with a chamber a;, in the space ap;r = ap;. We use this to

define a mapping P — P’ from P(M) to PE (M’) by requiring that a}, be contained in
+

ap-
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Proposition 5.1. For each ¢’ € @temp(]\?, Z"), there is an identity
(5.4) m§ (e P) = Y (GG (8, P),
G'eE i (G)

where

ng, (6h, P), G € Enr(G), ¢ € uemp(', ),

is a meromorphic function of A € a}; 5 that depends only on the quasisplit pair (é’,M’),
and the elements ¢ € ®emp(M’, (') and P’ € PE (M),

Proof. The proposition is reminiscent of Theorem 5 of [A10]. Since the proof is quite
similar, we can be brief.

If G is quasisplit, the “stable” function

n%(QSA?P) = TL?/;* (¢§7P*)7 d) € étemp(Ma C)a

is uniquely determined by the required identity. We define it inductively by setting
nfi(én P) = m§p(éxn, P) = > - (G, G (63, PY).
G’e€9,.(G)
Having made this definition, we then fix general objects G, M, ¢, P, M’ and ¢'. We have
to show that if ¢ is the image of ¢’ in ®yemp (M, ¢), the original function m§; (¢, P) equals
the endoscopic expression
(5.5) mii (66 P) = > (GG g, (64, P').
G'e€ (@)
By analytic continuation in A, it would be enough to consider the case that A is purely

imaginary. As in [A10], it will be best to establish a slightly more general identity.
For any Q € P(M), let

PQ|P = @ Pa

be the decomposition of the representation pgp of Wg relative to the adjoint action of

Z (]\/4\ )Y'. The elements a range over characters on Z (]\/4\ )Y that are trivial on Z (@)F, with
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the subrepresentations p, being nontrivial only if a lies in the intersection $(Q) N (P) of

the sets of roots of @ and P. Then

L(s, pqip o ¢x) = [ [ (5, pa © 62)-

Since A is purely imaginary, we can then write

mq|p(Px) Hma (Px),

for functions

Ma($2) = mE (d2) = ca| L(0, pa 0 6x)°|L(1, pa 0 62)|

defined for constants ¢, whose product equals cgp. The constants are actually irrele-
vant, since it is only a logarithmic derivative of m,(¢,) that contributes to the function
m§r(ox, P).

Suppose that a represents any character on Z(M ) /Z(G)T. The kernel Z, of a in
Z(]\/f\) acts by translation on Z (M ) /Z(G ) and hence on Eyp (G). We write Ea/(G)/ Zy
for the set of orbits. If G’ € £y (G) is elliptic, the canonical mapping from Z (M ) /Z(G)T
to Z (J\L/:f Yz (5’ )¥ is surjective with finite kernel, and if a is trivial on the kernel, it transfers
to a unique character a’ on Z/( 7 W)z (5’ )F'. One establishes a decomposition

L(s,paodn) = ]  L(s.parodh),
G'E€EN/ (G)) Za

in which the factor corresponding to G’ is understood to be 1 unless G’ is elliptic and a
transfers to a character ¢’ in this way. The decomposition follows from the proof of Lemma
4 of [A10] with the family of conjugacy classes ¢ in [A10] replaced by the Langlands
parameter ¢\ here. (One observes that the factors do depend only on the /Z\a—orbits in
Env(G) and in the special case of M’ = M*, that there is only one nontrivial factor.) We
can then arrange that

(5.6) mSe = J[  mS @)

G €€y (G)] Za
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by choosing the constants {c, = caé,/} appropriately.
The generalization of (5.5) is provided by a finite set A of characters on Z (]\//7 AE)

As in p. 1144 of [A10], we define a (G, M)-family

ma(A, ¢, P, A) = 11 Ma(P2) " Ma(Prs14)

acANS(Q)N=(P)

of functions of A € it} 7z, with values in the space of meromorphic functions of A. This
yields in turn a meromorphic function m§; (¢, P, A) by the analogue of the limit (5.3).

We define generalizations n§;(éx, P, A) and mff (), P, A) of the original functions

1S (6, P) = nSs (6, P, S(P))

and

~

mGE (94, P) = m$E (84, P.2(P))

by setting

nSr(on, P A) = m§r(ox, PA) — Y (G, GG (65, P, A”)
G'egl, . (G)

for G quasisplit, and

mi (G PA) = > (GGG (¢, P A
G'€€x ()
in general. We have written A’ here for the set of characters a’ on Z (]\? Nz (5/ )T obtained
as above from elements a € A. These definitions set the stage for proving the equality of
mfj‘g( L, P, A) and m§; (¢, P, A) by induction on A.
The main step is when A consists of one element a. In this case, the relevant functions
m§; (¢x, P,a) and mff( %, P,a) both vanish if M is not a maximal Levi subgroup. As-

sume therefore that M is maximal. Then m§, (¢, P,a) is a logarithmic derivative of the
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function mq(¢,) (relative to the coordinate fa(A)). Since logarithmic derivatives transform

products to sums, the formula (5.6) gives rise to an identity

mir(éx, Poa) = > m (e, Pd).
G/ €€\ (G)] Za
We can then show that the right hand side of this identity matches the right hand side of

the formula

mGE (S Pa)= Y (GGG (¢4, P, d),
G'e& (@)

if we set

n]\GNZ//(¢/>\7P/7a/) = }261’/2&' N Z(é/)F’_lmg//(qﬁ/)\,Pl,a,).

The argument is identical to that of [A10, pp. 1145-1146], and is also reminiscent of a part

of the proof of Lemma 4.1 from the last section. One shows that

-1

o (GGG (85, P'yd) = |Za) Za 0 Z(G)T| ' (¢, P',d)

by a simple comparison of the relevant coefficients. (In the analogue of this formula on
p. 1146 of [A10], the intersection Z, N Z(G)T was mistakenly written as Z, N Z(G')T,
or rather Z, N Z(@’)F, since Z, was denoted by Z, in [A10].) This establishes that
m§; (¢, P,a) equals mff(d)\, P,a).

With the required identity established in the case that A consists of one element a, we
apply the standard splitting formula for (G, M )-families to prove it inductively for general
A. The argument is identical to that in [A10, pp. 1146-1147]. It allows us to conclude that
m§;(éx, P, A) equals mf/jg( \, P, A) for any A. Taking A equal to E(ﬁ), we then obtain

the required result that m§; (¢, P) equals mff( ", P). O

We will now be able to stabilize the linear form I, (v, f) on the Hecke algebra H (G, ¢).
The objects M’ and T are fixed, while T" is the extension of 7" attached to the auxil-

iary datum (M’,€’) that comes with the transfer factor Ay;. The first ingredient in the
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stabilization of I (v, f) is the function

(5.7) I )= > Anle NI, f)

’yepG'reg(M)

of o/ € Tv’G_reg(]R) that is analogous to (1.4). Then If (o', f) equals the integral over
T € T..(M,() of the product of

(5.8) > Ao’ )0 (7, 7)
with
(5.9) m (7, P) far (7).

In [S3, §4-5], Shelstad establishes a spectral theory of endoscopy that is dual to the
geometric theory she had developed earlier. We shall briefly review the results here, in the
context of the K-group G and our discussion at the beginning of the section.

Suppose that ¢ belongs to ®emp (M, (). Then the linear form

WM(¢) = > hau(r), h e C(M, (),

T€TY

on C(M, () is a stable distribution, called the stable character of ¢. In case G is quasisplit,

it attaches a continuous linear form
h*(¢*) = h(¢), h* € S(M*,(*),

on S(M*,(*) to every parameter ¢* € Piepmp(M™, ("), since there is a bijection ¢ — ¢*
from ®iemp (M, ¢) t0 Premp(M™,(*). Assume that G is general, but that ¢ is the image in

Piemp (M, ¢) of a parameter ¢’ € Piemp (M’, Z’) Then the mapping

h —s B (), h € C(M, ),
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is an invariant, tempered distribution on M (R). Shelstad shows that it is a linear combina-
tion of characters of representations in the packet II,. It is therefore a linear combination

of virtual characters in the packet Tys. In other words
M) = An(d (1),
T€T¢

for coefficients Ajps(o’, 7) that depend on the transfer factor A ;.
It follows from the existence of the function 0y;(y,7), together with the results of

Shelstad, that we can write

WM (o) = / nar(o, SR (6)do, o € Tg(R), h € C(M, 0),
Piemp (M,Q)

for a smooth function

T]M(Ua ¢)7 o€ Treg(R)a (b € (I)temp(Ma g)

This function satisfies

UM(U, ¢>\) = e_)\(HM(U))nM (07 ¢)7 A€ Z.a}k\/[,Z'

It therefore continues analytically to a tempered function of ¢ in the space ®., (M, (). The
integral can consequently be deformed from ®iemp (M, () to @, (M, (), if we take h to be
in the Hecke algebra H(M, (). We shall write

/ /

nM(J 7¢/) = 771\2/(0 7¢/)

for the analogue of 7 (0, ¢) for M.

We claim that the sum (5.8) in the formula for I1 (o’, f) equals
> (e ) Am(¢, 7).
¢'EPep (M)
To see this, we need only integrate the two functions of 7 € T, . (M, () against an arbitrary

function aps(7) in IH(M, (), and then observe that the resulting integrals are equal by the
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definitions above. It follows that
Ing(o', f)

e (St s 67 s, P) o

/ S (o, o ymar (6, PP (¢)do,

sp(M C) ¢/

since the function mas(¢, P) = mp(7, P) depends only on ¢. The last sum over ¢’ is
understood to be taken over the preimage of ¢ in @EP(~’, E’) It can be combined with

the integral over ®., (M, () to give an integral

[ o (o, PP ()
ep(M',¢7)

over O, ( V', Z ’). Substituting the formula (5.4) of the proposition into this expression, we

find that I (o', f) equals
/ (o) T (G GG (8, PO (¢)d
ep(M',¢7) Ge€yy (G)

If G is quasisplit, we define

(5.10) SSP (0, f) = / nar (o, D), (6, P) M (9)do
ep (M,QC)

and

Sy (o ) = Sy (o ),
for any point o0 € Tg-reg(R) with image 0 € Tg ., (R) in G*(R). The linear form
S%P(cr, f) on H(G, () is stable, so the last definition here makes sense. Applying it to G,
M’, P' and o', where P’ is the preimage of P’ in pE’ (M "), we conclude that
(5.11) e . n=3  w(Ga)8T( f.

G'e€ i (G)

This formula represents a stabilization of the right hand side of (5.1). It amounts to a

single assertion that combines the definitions of §1, but with 1%, (v, f) in place of I/ (7, f)
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and f taken to be function in H(G, (), with the corresponding assertions from Theorem
1.1.

To exploit (5.11), we shall need also to stabilize the left hand side of (5.1). We begin
by noting that any character on A/ (R)° can be lifted to a character on A7, (R), since
A7, (R)Y is isomorphic to the additive group of the real vector space a,z,. It follows from

[LS1, (4.4)] that we can choose the representative data (M’,€') and Ay for M’ so that
(5.12) Ay (o', ya) = Ap(o!,7), a € Ay (R)Y,
where a is the image of @’ in Ay (R)?. If

ol = o'expT, T € ay,

the distribution Ins(o7, ) then depends only on the image of 7" in the quotient ans of a,,
(which we continue to denote by T'). It follows from (5.1) that

(5.13) A Lo fr) = 150/, )

Py
Incidentally, the original limit (5.1) was shown in [A14] to be uniform for v in any relatively
compact subset I' of Treg(R). It follows that the limit (5.13) is uniform for ¢’ in any
relatively compact subset I of Té_reg(]R).

The function fr represents the image of f under the Schwartz multiplier cvp introduced
in [A14, §1]. To help us understand its transfer, we shall say a word about the transfer of
general multipliers.

The notion of a Schwartz multiplier in [A14, §1] extends in a natural way to the space

C(G, () of this paper. A Schwartz multiplier for C(G, () is an endomorphism
a: f=Pf— fo=P foa f€C(G,0),

where for each ¢ € mo(G), f, — f.a, is a continuous endomorphism of C(G,,(,) that

commutes with left and right translation. It is characterized by the property

(5.14) m(fa) = a(m)w(f), 7 € Iemp(G, €), f € C(G,Q),
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where @& is a smooth complex valued function in Iliemp(G, ¢), of which any derivative is
slowing increasing, and for which the value @(7) depends only on the imaginary part v,
of the infinitesimal character of 7. We can identify & with a function @(7) on Tiemp(G, (),
thereby treating « as a multiplier in the invariant Schwartz space Z(G,(). We write
M(G, ) for the algebra of multipliers on C(G, ().

We shall say that a multiplier « € M(G, () is stable if its value a(7) depends only on

the L-packet of 7. With this condition, a can be identified with a smooth function

a(¢) = &<7—)7 ¢> € cI)ternp(Ga C)7 T € T¢7

on Piemp(G, ). Suppose that G’ is an endoscopic datum for G, with transfer factor Ag,
and that ¢’ € @temp(é’, Z’) maps to a parameter ¢ € Piemp(G, (). Then if o is a Schwartz

multiplier, we see that

(fa) () =D Ac(¢,7)(fa) ()

T€Ty
=Y Ag(¢/,m)aln)f'(r) =a(d) f'(¢).
T€Ty
It follows that
(fa)l = (f/)a/7

where o is the stable multiplier for (G’,(’) defined by setting

(515) a/<¢/) = a(¢)7 ¢/ € Qtemp(éla E/)a

for the image ¢ of ¢ in Piemp(G,(¢). We write SM(G, () for the subalgebra of stable
multipliers in M(G, ().
We can regard the multiplier aep that gives rise to the function fr = f,, in (5.1) as
an element in M(G, (). It is given by a double sum
ar = Z Z (IUT,
{L} weU(M,L)
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in the notation of [A14, §1]. More concretely, we have

aT(ﬂ'G) = Z 67/”(uT), T e Htemp,cusp(La C)a
weU(M,L)

where 7% = Zg(n) is the induced representation, and v, is the imaginary part of the
infinitesimal character of 7. Since it is defined in terms of the infinitesimal character, ar
is stable. The same goes for the multiplier o attached to any point S € ar. Notice also

that

friz = ((exp Z) fr, Z € ag,

from which it follows that the function Ip/ (o7, fr) in (5.1) depends only on the image of
T in ay/ay.

To study the stabilization of the left hand side of (5.1), we fix a relatively compact
subset TV of fé_reg (R). For the moment, we may as well take f € C(G, () to be a general

Schwartz function. Beginning with the usual argument, we write the difference

(5.16) 15 (o, fr) — e(G) S5 (M o7y, fr)

as a sum

(5.17) S wr(G,GHSS ok, 1)
Gregl (@)

The function f7. = (fr) = (far)’ here equals the image of f’ under the multiplier (ar)" in
SM(E, ¢ ). However, ()’ is not generally equal to the multiplier (o/)7. In other words,

f7 need not equal (f’)r. The following lemma tells us that this discrepancy is not serious.

Lemma 5.2. For any G’ € €3,/ (G), we have

(5.18) i (S5 (o, 1) = 53, (o, (f)7)) =0,

P,r

uniformly for o’ € T".
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Proof. We assume that the implicit transfer factor Ag that defines f’ satisfies the
obvious analogue for G of (5.12). The terms in (5.18) are then well defined functions of
T e€ay/az.

Consider a G-relevant parameter ¢’ € @temp(é’ ,Z’) for G', with image ¢ in
Piemp(G,¢).  Then ¢’ and ¢ are induced respectively from cuspidal parameters
Py € @temp,cusp(i'l,&) and ¢1 € Piemp,cusp(Mi,(), for Levi subgroups L} C G’ and

My C G. We have
(fr)(#) = (far)'(8")

(X et

u€U (M, M)
where vy € ia}, represents the imaginary part of the infinitesimal character of ¢;. For
the given L} and M;, we fix an admissible embedding ar, < dp,. By this, we mean the
injection attached to an admissible embedding of a maximal torus of L} over R into G
that takes A L, into A, - It is a consequence of the construction (and the condition above
on Ag) that we can choose the embedding so that 14 lies in the subspace iaz,l of iay, ,

thereby representing the infinitesimal character of ¢’. We have then
(f)7(8") = (f)iary (¢)

> D).

u' €U’ (M’,L,)

We have written U’(M’, L) = U (M’, L) here for the set of embeddings from a,; into

ar, induced by the adjoint action of G’. This set comes with embeddings
U/(M/a Lll) - U(Ma Ll) - U(Ma M1)7

where U(M,L;) = U%(M, L) is the associated set of embeddings of ay; = ap into
ar, = ay; attached to G, and U(M, M) is the larger set that indexes the earlier sum.

(We have written Ly € L(M;) here for the Levi subgroup of G corresponding to the
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subspace ar; of ap,.) We conclude that

F1(8) = (F)2(&) = a1 any ()8,
where
(5.19) ar par, (¢) = > el

weU(M,M;)—U’(M',L})

The pair (L}, M7) is not uniquely determined by ¢’. The correspondence that assigns

any such pair to a given ¢’ gives rise to a mapping

¢/ - {(LllaMl)}7

from the set of G-relevant parameters in q)temp(é’ ,5’ ) onto a finite set of equivalence
classes of pairs. It is not hard to see that ar, L Ml(gb’ ) depends only on the equivalence
class {(L}, M)} of (Lj,My). This function represents a stable multiplier o Loy 1D
SM(@’, z’), whose value at any ¢’ € @temp(é’, Z’) equals the finite sum (5.19) if ¢’ maps

to {(L}, M)}, and equals 0 otherwise. It follows that
(5.20) fr=Nr="Y fruan
{(L/17M1)}

where f7, LMy denotes the transform of f’ by the multiplier a7, LM, Observe that any

summand on the right hand side of (5.19) satisfies

e () _ i ((WT))

where (uT')} is the projection of the point uT" € apz, onto ar,. Using the definitions (5.19)
and [A14, (1.12)], it is then not hard to show that

(5.21) Froian =9 (Fas = > (1), S = (uT)5,

u u

where the sums are each taken over the complement of U’'(M’, L)) in U(M, M).
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To complete the proof, we must show that the contribution to the limit (5.18) of a
summand f7. Ly, 0 (5.20) vanishes. This requires another lemma. We need the stable
analogue of an important estimate (5.16) from [A14], which applies to the case that G
is quasisplit. We state it in terms of a minimal Levi subgroup My C M, with minimal
parabolic subgroup Py € P(My) for which both M and a second given Levi subgroup M;
are standard. The lemma pertains to an open cone ¢y = car in aaL = aJISO, points S € apy,

and T € a}, such that T is (cg, S)-dominant, and the associated distance function d,, (T, S),

all introduced in the preamble to Lemma 4.4. of [A14].

Lemma 5.3. Assume that G is quasisplit, and that T is a relatively compact subset of

TG-reg(R). Then for any n > 0, there is a continuous seminorm || - ||, on C(G, () such that

n

(5.22) |55 (o, f)] < NI flln (1 +deo (T, 5)) ™,

foranyo €T, f € C(G,(), T € af and S € apy, such that T is (co, S)-dominant.

Proof. The derivation of (5.22) from the inequality [A14, (5.16)] is similar in principle
to the argument [A14, Corollary 5.2(b)] by which the earlier inequality was deduced from
its noninvariant analogue [A14, (5.15)]. It is an inductive proof, with the mappings f — f’
taking the place of the earlier mappings f — ér(f).

By definition, S§, (o7, f°) equals

(5.23) Lu(or, %)= Y (G, G)SS. (0%, (£5)').
G'e€9,. (G)

The analogue of (5.22) for Ins(or, f) follows from (1.4) and the estimate [A14, (5.16)] for
It (yr, £°). To estimate the summands, we need to say something about the function

(f%) = (fas) = (f)(”), G’ € &3 (G).

The argument at this stage becomes a little more elaborate than that of [A14]. How-

ever, the complications can be treated as a special case of the discussion above that led to
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the decomposition (5.20). It follows easily from this discussion that there is a decomposi-

tion

(Y = w7t >0 Y ()

weW (M) i
for any given G’ € £Y,.(G), where i indexes a finite set of Levi subgroups {L.} of G’, with
admissible embeddings ar; C ap,, and (wS)} is the projection of wS onto the subspace
ar: of apy,. This is the analogue of the decomposition [A14, (5.17)] from the proof of [A14,
Corollary 5.2(b)]. We are assuming that G is quasisplit and that M™* is a Levi subgroup of
G’. We can consequently fix a minimal Levi subgroup M of G’ that is at the same time a
quasisplit inner form of M. We take Pj € P(M{) to be the minimal parabolic subgroup of
G’ whose chamber aJlgé in the space apg = G, contains the chamber Clg_ = ajSO, and hence
also the open cone ¢g. We are free to choose the Levi subgroups L} of G’ to be standard
with respect to Pj. For any 4, and any element w’ in the Weyl group W (M{), w'(wS); is
easily seen to belong to the convex hull of W(M)S in apy,. It follows from the definitions
n [A14, §4] that if T is (co, S)-dominant (relative to G), it is also (co, (wS)};)-dominant

(relative to G’). Moreover, the corresponding distance functions satisfy
deo (T, 8) = dS (T, S) < dS (T, (wS)}).

We assume inductively that the analogue of (5.22) holds for each group G’ € £%,.(G).
The required inequality for G then follows from what we have just done, and the formula

(5.23) for S§, (o7, f7). This completes the proof of Lemma 5.3. O

Returning to the proof of Lemma 5.2, we write the left hand side of (5.18) as

(5.24) Jim YT S TSE (o (1)), S’ = (uT);,
pr {(L},My)} v

with {(L], M)} and u summed as in (5.20) and (5.21) respectively. We shall apply Lemma
5.3 to each of the summands. We can choose the representative (L}, M7) of a given class

so that both M’ and L} are standard with respect to a fixed minimal parabolic subgroup
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P} € P(M|}), both M* and M; are standard with respect to a fixed minimal parabolic

subgroup Py € P(Mg) for G* and so that there is a fixed admissible embedding a My > ang

+
/
PO

such that the intersection ¢, of the closure of aJISO* with the chamber a7, is an open chamber
in ap. As an elliptic endoscopic datum for M, M’ comes with an admissible isomorphism
ay —ap = apr. The chamber a’s is an open cone in the chamber aJIS, in ap; attached
to a unique group P’ € P(M'). We claim that if T" lies in a5, and S" = (uT')] as in (5.24),
then T is (¢, S’)-dominant, and the distance function

de (T,8") = inf || T —w'Y|
0 w €W (M})

is bounded below by a constant multiple of ||T'||. The first assertion follows from standard

properties of convex hulls, and the fact that the dual chamber *¢ of ¢ in ayg; contains

the dual +C|,P6 of a},,. The second assertion follows from the fact that the closures of a7,
0

and w'ua’, in ap intersect only at the origin if u belongs to U (M, Ly), and the fact that
[0S = [[w' (D)1 = (D)1l < &[T,

for some fixed §; < 1, if w lies in the complement of U(M, Ly).

We can now apply Lemma 5.3, with G’ in place of G, to each summand in (5.24). We
have just shown that the conditions of this lemma apply to any point 7" in the subset a’p
of ¢, and that

dc6 (Ta S/) > €||T||7

for some € > 0. We conclude that the limit (5.24) vanishes uniformly for ¢’ € I''. The orig-
inal limit (5.18) therefore also vanishes uniformly for o’ € I, as required. This completes

the proof of Lemma 5.2. U

Lemma 5.2 allows us to replace (5.17) by an expression whose limit we can handle
inductively. The process can be regarded as a stabilization of the left hand side of (5.1),

for any Schwartz function f € C(G, ().
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In fact, we have done enough to stabilize the entire limit formula (5.1), so long as
we again restrict f to the Hecke algebra H(G, (). We state the final result formally as a
corollary of Proposition 5.1, though it is really a culmination of all the discussion of this

section.

Corollary 5.4. (a) If G is arbitrary, then

lim I (o7, fr) = Ii;(o', /), f € H(G,0),

P,r

T

uniformly for o’ € I'. In particular, this limit equals the limit on the left hand side of
(5.13).

(b) If G is quasisplit, the limit

Lim SC (M, ol fr), f e H(G, (),

converges uniformly for o’ € I, and vanishes unless (M',0") = (M*,0*), in which case it

equals :S’\J?Z*’P* (o*, f*). In particular, we have

(5.25) Jlim 8§ (or, fr) = S5 (0 f), 0 € Tgures(R),

P,r

so this last limit is stable in f € H(G, ().

Proof. We assume inductively that for any G’ € £3,,(G),

(5.26) Jlim SE (o (f)r) = 57 (0 f),
}5/,7’

uniformly for o’ € IV, Together with the assertion (5.18) of Lemma 5.2 and the fact that
a’s, contains ap, this implies that

/

lim Z //M’(G7 G/)gj\%/(Ué”afé’)

T—

oo
P,r GIGSE\)/I, (G)

= Y w66 tim 8G (o, (f)r)

lim _
Gregl (G) Pr

/\é/’ﬁ/
= Y. ww(G.G)S (0 ),
Gregl (G)
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uniformly for o’ € I". According to the stabilization (5.11) we have deduced as a conse-

quence of Proposition 5.1, this last sum can be written in turn as

(5.27) I3 (0" ) = (G, M85 (07, 1),
for e(G, M’) as before. We recall that (G, M’) = 0, unless G is quasisplit and (M’, ")
equals (M*,0*), in which case (G, M') = 1.

We have established a uniform limit formula for the sum (5.17). The same formula
therefore holds for the difference (5.16) with which we began. Namely, the limit of (5.16)
converges uniformly for ¢’ € T” to (5.27). The assertions of the corollary then follow
directly from the definitions, as for example in the proof of Lemma 4.1. Notice that the
induction argument based on (5.26) is resolved by the formula (5.25) (together with the
running induction assumption that S@/,(J’T, -) is stable, which will be resolved finally in

the coming section). O
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§6.  Proof of the theorem

We are now ready to prove Theorem 1.1. We recall that M’ is an elliptic endoscopic
datum for M with a maximal torus 7" C M’ over R, that Aj; is a transfer factor for M
and M’ with auxiliary datum (M " E;W), and that o’ represents a strongly G-regular point
in the corresponding torus 7”(R). The assertions of Theorem 1.1 can be formulated as the
vanishing of certain functions of o’.

We define

en(o’, f) =I5 (0", f) — Tn (0, f), fecG,o).

Part (a) of Theorem 6.1 asserts that this function vanishes. If G is quasisplit, we also set
(o', f) = S5 (M, f), f€C(G,0).

In the further case that M’ = M*, we assume implicitly that f is unstable, in the sense that
f¢ = 0. With this condition on f, part (b) of the theorem is the assertion that EM/(O'/, 1)
vanishes. In general, it is clear that as Ay and o’ vary, epr(o”, f) and eM /(0' , f) represent
sections in C°°(T¢.,qq, M, (). It suffices to fix Ay, and study these objects as functions
i O (T4 yeq,C).

If G is quasisplit, epr(0’, f) vanishes by definition. We can therefore treat both cases

of the theorem together by setting

epm (o', f), if G is not quasisplit,

(6.1) (e ) =4
eM(a', f), if G is quasisplit.

Let us also set C'(G, ¢) equal to C(G, {) unless G is quasisplit and M’ = M*, in which case

we take C'(G, () to be the closed subspace of unstable functions in C(G, ¢). The assertion

we have to establish is that €, (o’, f) vanishes for any ¢’ € fé_reg (R) and f € C'(G, ().
We have been working up to this point with a partial induction assumption. We now

take on the full assumption, based on the two integers dge; and r4er at the end of §2. We
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suppose from now on that the required assertion holds if (G, M, M’) is replaced by any

triplet (G1, M7, M{) such that either
dim(G1 der) < dder,
or
dim(G1 der) = dder, €(G1) =1, and ¢(G) =0,
or

dim(Gl,der) = dder, and lel(A]\/[1 N Gl,der) < Tder-

The first two conditions are to accommodate an argument of increasing induction on dge,,
which requires that we treat the case of quasisplit G first. Together, they include the initial
assumption we took on in §1 in order that the terms in the original definitions make sense.
The third condition is designed for a supplementary argument of decreasing induction on
Tder- 1t includes the assumption that £’ (o’, f) vanishes for any Levi subgroup L € L(M)
that properly contains M.

As we noted at the end of §1, the descent formulas (2.12)-(2.15) imply that ¢’,(o”, f)
vanishes if T” is not elliptic in M’. We therefore assume henceforth that 7”7 is elliptic.
Our concern now will be the finer analytic properties of €},(o’, f), as a smooth function of
o€ fé_reg (R). We shall study them by combining our general induction hypothesis with
the results of §2-5.

Consider the differential equations of §2. In the case that G is not quasisplit, we
combine the two sets of equations (2.2) and (2.9) satisfied by In/(o’, f) and I§(o’, f)
respectively. Subtracting one equation from the other, we see that they may be written

together as

em(o',2f) = Y, Oxlo’ z0)en(d, f),

LeL(M)
for any element z € Z(G, (). If L is properly contains M, our induction hypothesis tells

us that 1, (o, f) vanishes. Since

/

oni (o' zm) = 0(hr(2)),
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we see that

en(o’,2f) = 0(hr(2)) en(o’, f).
If G is quasisplit, we apply the equations (2.10) or (2.11), according to whether M’ = M*
or not. In case M’ = M*, our induction hypothesis tells us that S (o, f) vanishes for any
Levi subgroup L that properly contains M, any point ¢ in Tg-reg(R), and any f € C(G, ()

with the required property that f& = 0. It follows from the two sets of equations that
M (o' 2f) = O(hr(2)) e (o', f).
In the case that M’ = M*, the function zf is also unstable since
()% = 2F¢ =0,
so the notation e’ (¢’, zf) here is consistent. We conclude that

(6.2) d(hr(2)) ey (o', f) = ey, 2 ), 2 € 2(G,Q),

in all cases.

Consider next the noncompact boundary conditions of §4. Suppose that (3’ is a real
root of T”. It follows from our induction hypothesis and the definitions at the beginning
of §4 that

em(o’, f) =I5 (0", f) = Tn (0, f)
57
=13/ (0' ) = Iy (o', ).
if G is not quasisplit, and that

Mo, f)=S§(M o', f) =SS o, f),

if G is quasisplit. The formulas (4.20)—(4.22) can therefore be stated uniformly as jump

conditions for the function &},(¢’, f). To do so, we have of course to specialize ¢’ tem-
porarily to a point in general position in the kernel (7)% (R). The jump formulas then
take the form

Jor (D' (e, ) = lim es(6) > Diehy, (05(0), f),

6—0 5
M[;ESM,(M@‘)
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for any invariant differential operator D’ on C'*°(1", M, (). The functions &, (a5(0), f)
on the right are attached to Levi subgroups Mg that properly contain M. They vanish by

our induction hypothesis. It follows that
(6.3) jr (D' (@', 1)) = 0.

The compact boundary conditions of §3 depend on an R-chamber ¢ for 7. For any

such ¢, we form the smooth function

o0’ 1) = 60" )eh (0", £). 0 € Thorog (R,
on Té_reg(R), and the automorphism

D — D.=6.-D o)

of the linear space of invariant differential operators on C°°(T’, M,(). The differential

equations (6.2) can then be written

(6.2)c O(hr(2)), (o, f) =0.

The boundary conditions (6.3) we have already obtained can be written
jor (De ehre(o’, 1)) = 0,

or if we prefer,

(6.:3)c jor (D'ehre(o’s £)) =0,

since D' is an arbitrary invariant differential operator on C*°(T", M, ().

Suppose that o’ is an imaginary root of 7", and that ¢’ is specialized temporarily to
a point in general position in the kernel (T ! )O‘/ (R). Since Proposition 3.2 applies to any of
the functions from which 5’M7C(-, f) was constructed, we can use it to describe the jumps

of e}y (-, f) about o/. If o/ satisfies the condition (i) of the proposition, we have

ja’ (D,c€9\47c(0/, f)) = lim D,c,ag,]\/[,ca (Ula (T)a f)7

r—0
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where Dy, , is the differential operator on C*°(T,,, M, () in (3.4). As a Cayley transform of

/

(), f ) vanishes by our induction

T', the torus T}, in M’ is not elliptic. Therefore ¢}, . (o
assumption. The jump thus equals 0 in this case. If o' satisfies the condition (ii) of the
proposition, the jump automatically vanishes. On the other hand, if o/ does not satisfy
condition (ii), the root w’'a/ satisfies condition (i), for some element w’ in the real Weyl
group Wr(M',T") = Wj. Since the transform of € (-, f) by any element in W} equals

the product of €} (-, f) with a smooth function (3.6), the jump vanishes in this case as

well. We conclude that
(6.4). jor (DLeh (o, ) = 0,

in all cases.

Lemma 6.1. The function

() o — ey oo, f), 0" € Tl 1es(R),

extends to a (C')~'-equivariant Schwartz function on T'(R), and the correspondence
f — €r.e(f) is a continuous linear mapping from C'(G, () to C(T', E’)

Proof. We have fixed a Euclidean norm | - || on aps. Its restriction to the orthogonal
complement of az in ap; can be regarded as a az-invariant function || - ||z on aps, which

becomes in turn an az -invariant function on a;;,. We then obtain a function
o'l = | Hyp: (o)l z, o' € T'(R),

on T'(R)/Z'(R). The Schwartz space C(T",¢’) is the space of smooth (')~ !-equivariant
functions ¢’ on 1" (R) such that for every n > 0 and every invariant differential operator
D’ on T'(R), the seminorm
sup  ([[D"¢'(o")I(1 + [|o"[)")
o' €T"(R)

is finite.
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We have also to introduce a function & () on 7" (R)/Z’ (R) that measures the distance

to the G-singular set. The G-singular set in 7”(R) is a union
S = U {o} € T'(R): o) € T'(R), o/(d}) = 1}

of kernels, taken over all roots o’ of 7" in the general sense defined at the beginning of §3.
The complement of &' in T”(R) is the set of G-regular elements in 7”(R), an open set that

contains the set Tl_,., (R) of strongly G-regular elements. We extend |- ||z to a Euclidean

reg
norm on ¥ (R) /3 (R) whose inverse image under any M-admissible isomorphism from 7' to
T is a Wg(G, T)-invariant norm on t(R)/3(R). Let U’ be a small fixed neighbourhood of

1in T"(R)/Z'(R). We set ¢’(c’) = 1 unless o’U’ intersects S, in which case we set

§' (o) = inf  (log]||A|)).
{heU’o'hes"}

The function &}, (0", f) of o’ € T, G-reg(R) extends to a smooth function on the larger
open set T (R)—8’ of G-regular elements. This follows from a natural variant of Lemma 3.1
that applies to points o} in T’ (R) — S', since the property [A4, (2.3)] on which the lemma
relies holds for any element v; € M(R) whose connected centralizer in G is contained in

M. We claim that for every n, there is a continuous seminorm || - ||, on C(G, ¢) such that
(6.5) Er (@ DI I fln 6" (@) A+ o’ ID7,

for every o/ in T'(R) — &' and f € C'(G,¢). The first step is to show that a similar
estimate holds with I/ (o’, f) in place of €},(0’, f). The estimate in this case follows from
the definition (1.4), the definition [A14, §1] of the invariant distribution Ip;(7, f), and
the original estimate [A2, Corollary 7.4] for its noninvariant analogue Jys(7, f). Similar
estimates for I5,(o’, f) and S§, (M’ o', f) follow inductively from (1.8)-(1.10), and the
fact that f — f’ is a continuous linear mapping from C(G,() to S (é’ , E’ ). The required
estimate (6.5) then follows from the definition of €},(o’, f).

We shall now apply an important and well known technique of Harish-Chandra, by

which we can use the differential equations (6.2) to extend the estimate (6.5) to derivatives.
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The basic idea was introduced in [H1, Lemma 48], and is quite familiar from other contexts
[A2], [L2] and [AC] as well. We shall sketch the technique as it applies here, to see that it
yields the kind of estimates we want at infinity in 77(R).

Suppose that D’ is an invariant differential operator on C*°(T", M, (). According to

[H1, §25], there is an identity

> (0(hr(=))") Eje = (D)6 + -

j=1
of distributions on the orthogonal complement t'(R)z of 3 (R) in ' (R). The notation is
essentially that of [H1, p. 498] and [A2, p. 252], adapted to the context at hand. In

particular, ¢ is the Dirac distribution at 0, € is any positive number with ¢ < %, and

{#z; : 1 <j <r} are elements in Z(G, (), while 5.(H) and
E;e(H) =V.(H)E;(H), l<j<m,

are functions supported on the ball of radius 3e. We are regarding invariant differential
operators on T’ (R) also as differential operators of constant coefficients on the Lie algebra
Y (R), and we are writing X* for the real adjoint of any such operator X. If ¢’ is any given
point in Tvé_reg(R), we set

8 (o).

1
€= —
4

We then evaluate the distributions on each side of the equation at the function
H — &y (d'exp H, f).
This gives a formula for D’e,(¢’, f) as a difference of integrals
32 @tz el (o'esp 1. ) By
j=1

and

/ (0" exp H, )3 (H)dH
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over (R)z. The function E; . is bounded independently of e, while 3.(H) is bounded by

a constant multiple of a power of e7! = 46’(¢’) L. Since

a(hT(zi))le'M(a'exp H, f)=¢\(c'exp H, z; f),

we can apply the estimate (6.5) to each of the two integrals. We conclude that there is
nonnegative integer ¢’, and a continuous seminorm || f||ps ,, for any positive integer n, such

that

(6.6) 1D (0!, A< 1f D 6(0) = (L + [l )7

for any o’ in T'(R) — &’ and f € C'(G, ().

The exponent ¢ = ¢’(D’) in (6.6) depends a priori on D’. However, we can remove
this dependence by selecting a set of generators {Dj,..., D)} for the space of invariant
differential operators on C'*°(7", M’ () as a module over (the image of) Z(G,(). Any

invariant differential operator D’ can then be written in the form
D' = D{0(hr(21)) + - + D4d(hr(za)) .

for elements 21, ...,2q4 in Z(G, (). It follows from (6.2) that

ZD' ehr(o’ zi f).
The estimate (6.6) then holds for any D', if we take

' = D).
7 = max, ¢ (D)

A separate technique of Harish-Chandra [H1, Lemma 49] establishes that one can in
fact take ¢ = 0. The technique is summarized in the following lemma, whose elementary

proof we leave to the reader. (See [L2, pp. 21-22], [AC, p. 169].)

Lemma 6.2. Suppose that Ai,..., )\, are linear forms on R?, and that ¢ is a smooth

function on the set

Brog = {€ € RY: [l <1, H)\ #0}.
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Assume that there is a nonnegative integer q with the property that for any invariant
differential operator D on R?,

k

D6(Q)] < en| [T Ai(0)

i=1

—q
’ 9 C E Brega
for a constant cp that depends on D’. Then for any D, we can choose a constant of the

form
* o
b= o Xen.),
o

where {Dy} is a finite set of invariant differential operators that depends only on D, and

co 1s independent of D and ¢, such that

D§(O)] < e, € € Broyg. O

It is clear how to combine Lemma 6.2 with the estimate (6.6). Together, they imply

that for any D’ and n, there is a continuous seminorm | - || ps,, on C'(G, () such that
(6.7) [D'eh (0", NI < 1 flprm L+ Nlo )7,

for any o/ in T'(R) — &’ and f € C'(G, ().

Suppose that ©Q is a connected component in the complement of S in T” (R). The
estimate (6.7) implies that ¢’,(0’, f) extends to a Schwartz function on the closure of €2,
in the sense that there is a (¢')~*-equivariant Schwartz function on T”(R) whose restriction
to Q equals €/, (d’, f). One observes without difficulty that the factor 0..(c’) extends to a
smooth function on the closure of €2, whose derivatives are tempered. It follows that the
product €}, (o', f) also extends to a Schwartz function on the closure of 2. As () varies,

we thus have a family
{63\4,6(0',]”) o€ Q}
of Schwartz functions. The jump conditions (6.3). and (6.4). imply that these func-

tions have compatible normal derivatives across common hypersurfaces. We conclude
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that €}, (0", f) extends to a (¢')~'-equivariant Schwartz function €ur.o(f) on T'(R). The
estimate (6.7) then tells us that the mapping f — €}, .(f) is continuous. This completes

the proof of Lemma 6.1. O

The next step is to take the Fourier transform of ¢}, .(f), regarded now as a ()1
equivariant Schwartz function on 7”(R). Since the function is invariant under the Weyl
group W(M’,T"), we may as well make use of the family of W (M, T")-invariant eigenfunc-
tions provided by the set Ptemp,cusp (M ! Z ") of tempered, cuspidal, Z '_equivariant Langlands
parameters for M. Any ¢’ in this family has a normalized stable character

(o) = 3 By(o),
m €My
where
Oh (', 0') = | DM (o) |30} (', o), o' € T,

-reg (R)’

is the normalized character of the representation 7’. Set
00 = WL [ (60 (o fd
T'(R)/Z" (R)

We can also write

Sl = WL [ (6,0 (0 o
T'(R)/Z'(R)
since d.(0’) is a complex number of absolute value 1 whose complex conjugate equals
6" .(¢"). The function

o — o9, )

on i’eg(R) extends to a smooth function on T”(R). Its explicit formula as a linear combi-

nation of characters on 7" (R) [S1], coupled with standard abelian Fourier analysis, yields

an inversion formula

(o' ) = / o e DS
Ptemp,cusp (M)
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where

(o', @) =my(¢',07)

is the function introduced in §5. Multiplying each side by d’ .(0’), we see that

G N MCROCYRCN
‘I>temp,cusp (M/3C/)

It is therefore enough to show that &},(¢’, f) vanishes for any parameter ¢’ in
Premp,cusp (M, ).

The smooth function 7y, .(¢',0') on T'(R) is an eigenfunction of the space of in-
variant differential operators on T’(R). It follows from (6.2)., the fact that enrc(o’s f) is
a smooth function on 7" (R), and the second formula above for ¢),(¢’, f), that the linear

form

f—eu(d, 1), fec(G,q),

is an invariant tempered eigendistribution of Z(G, (). In other words,

(6.8) e (@', 2f) = x§ (2)eh (&', f), z € Z(G,Q),

for a character Xg on the algebra Z(G, (). To be precise,

X§ (2) = xo(2u), z € 2(G,0Q),

is induced from the infinitesimal character x, of the image ¢ of ¢ in Piemp (M, (). We
note for future reference that the imaginary part of x4 can be represented by a linear form
ve in ia},. This is a consequence of the fact that ¢ is cuspidal.

The distribution €/, (¢, f) is supported on characters, in the sense that it depends only
on the image fg of f in Z(G, (). This follows from the definitions and the corresponding
property [A7] of the distribution Ips (7, f). (Using the main theorem of [A1], one can in fact
show that any invariant tempered distribution on G(R) is supported on characters.) We

claim that €', (¢, f) actually depends only on the image fis of fo in Z(M, (). To see this,
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we recall that there are free actions ¢’ — ¢, and ¢ — ¢, of the vector space ity 7 that
commute with the mapping ¢’ — ¢. The set Piemp,cusp (M ! E’ ) is in fact a discrete union

of associated iaj}, ,-orbits. The imaginary part v, € ia}, satisfies the obvious identity
Upy, = Vg + A

Consequently, if A is in general position, and 7 is an irreducible tempered representation

of G(R) that is not parabolically induced from a tempered representation of M (R), the
infinitesimal character x, of 7 is distinct from xg4,. Since &,(¢), f) equals a (finite)
linear combination of eigendistributions with infinitesimal character xg,, the support of
its invariant Fourier transform is disjoint from 7. The claim follows from the fact that
/ / . . .

ehy (@4, f) is continuous in A.

We need to say a word about the space of eigendistributions to which &’,(¢’, f) be-

longs. It is composed of induced distributions

fG(pG):fM(p)7 fEC(G,C),

obtained from invariant, (-equivariant, tempered distributions p on M (R). Let T J be the
set of distributions on M (R) that belong to Tiemp(M, (), and whose infinitesimal character
equals x4. The corresponding induced family consists of eigendistributions on G(R) with
infinitesimal character X¢G>7 but it might not span the space that contains €y,(¢’, f). Sup-
pose that 7 € T(;' equals an induced virtual character 7 attached to an elliptic element
71 € Ton(My, ¢), for some Levi subgroup M; C M, and that D is an invariant differential

operator on the space iaj,, /iay,. The linear form

(6.9) har(p) = lim Dhay(117,), har € Z(M, ),

pu—0

is a generalized eigendistribution for Z(M, () with infinitesimal character y,. In other

words,
d
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for a positive integer d. Under certain circumstances, there are nonconstant operators D
for which one can take d = 1. Let f; be the (infinite dimensional) space of distributions on
M (R) spanned by distributions of the form (6.9). It is then a consequence of the various
definitions that if ¢’ is in general position, the image of .7-'; under the induction map-
ping p — pY contains the (finite dimensional) space of invariant, (-equivariant, tempered
eigendistributions on G(R) with infinitesimal character Xg- In particular, it contains the
distribution &', (¢, f).

If A belongs to the space ia}, ,, the twist p\ of any element in FJ belongs to FJA.
Let R;f be a fixed basis of F;’ that contains T(;', and consists of distributions of the form
(6.9). For any A, the family

RS, =1{pn: peRS}

is then a basis of ]—";;. It provides an expansion

Err (B 1) = Y ehr($h o) far(pa)

PER
of the associated distribution, for complex numbers &},(¢%, px) that vanish for almost all
p-

We return to the problem of showing that €,,(¢’, f) vanishes for any given ¢’. It will
be convenient to take ¢’ to be a parameter within a given it} z-orbit, such that the linear
form vy is trivial on the kernel a$; of the projection of aj; onto ag. In fact, we may as
well fix a (noncanonical) isomorphism from ajs/az onto a complement aZ, of az in ay
that contains aIC\'}. For example, we could take afé, to be the orthogonal complement of az
relative to underlying (noncanonical) Euclidean inner product. We then take ¢’ to be the
parameter within the given iaj, ,-orbit such that vy vanishes on aZ,. With this restriction,
our task is to show that £,(¢), f) vanishes for every A € ia}, ;.

It is here that we will use the limit formula from [A14], or rather its stabilization

obtained in the last section. We are free to express €},(¢’, f) as an iterated integral

() = / eni(d, X, F)dX.

CLM/CIZ
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for the function

(6.10) (6. X, f) = (W, )| / (8!, 0"V (", £)do,

T’ (R)X

defined in terms of an integral over the compact subset
T'(R)X = {o' € T'(R)/Z'(R) : Hyy.(d') =X}

of T'(R)/Z'(R). Suppose for the moment that f belongs to the Hecke algebra H(G, (), as
in §5. We continue of course to assume that f& = 0 in the case that G is quasisplit and

M’ = M*, which is to say that f belongs to the subspace
H'(G,¢) =H(G,()NC'(G, )

of H(G, (). It then follows from Corollary 5.3 and the definitions at the beginning of this
section that

Jlim_&hy(o, fr) =0, PeP(M), >0,
P,r

uniformly for o’ in the compact set 7”(R)¥ attached to a given X in ay;/az. Since we are
taking the limit of an az-invariant function of T' € aj;, we may as well restrict T' to points

in our complement af/‘, of azy. We write

5/]\4(¢/7 X + T7 fT)

_ |W(J\4’,T’)|—1/~ nh (&, 0" )ehs (o' fr)do
T/(R)X+T
= WM, T | ny(¢or)eh (o, fr)do.
T/(R)X

Since the normalized stable character n,,(¢’,07%.) is bounded independently of o7., we

conclude that

(6:11) i (&h(8 X + T, f1)) =0, fEM(GQ).

In order to apply (6.11), we need to examine ¢’,(¢’,Y, fr) as a function of T', for
any Y € apr/ag. We shall do so with f in the Schwartz space C'(G, (), and T in the

complement aZ; of az.
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We can obviously write the function (6.10) as a Fourier transform

(2

(6.12) (8. Y, f) = / (s Fe VN, fec(G.o),

ANz
on iay, z. Then

(0, )= eh(d,p, Y, ),
pER;f

where

7

@YD= [ @) i

.
ALz

The coefficient €’,(¢, pr) is a smooth function of A, any derivative of which is slowly

increasing. Allowing a minor abuse of notation, we write

5?\4(¢/7P7H)7 HECLM/C(Z,
for its Fourier transform as a tempered distribution (of rapid decrease) on aps/ag. Since
fau(pa) is a Schwartz function of A, its Fourier transform

fu(p, H) =/ Far(px)e M ax, H cay/az,
ia*

M,z
is a Schwartz function on ay;/az. We then write
A p V) = [ 0~ H) o H)AHL
am/az

where the integral represents the convolution of a tempered distribution with a Schwartz
function. It remains to describe fr as(p, H) as a function of T

The Langlands parameter ¢’ for M’ is cuspidal, but its image ¢ in Piemp(M, () of
course need not be. We have already accounted implicitly for this possibly in the form
(6.9) taken by elements p of the basis ]:J. Consider such a p. The associated virtual

character 7 = 7™ in TJ is induced from a linear combination of constituents of a rep-

M,

5+ of Mi(R) that is induced in turn from a cuspidal representation

resentation m; = 7

Tp € Htemp,cusp (M), ¢). The distribution p is thus attached to a chain

MPCM1CM

96



of Levi subgroups of M. We can therefore identify the imaginary part v4 of x4 with an
imaginary linear form v, on ay,, which represents the imaginary part of the infinitesimal
character of p. Of course v, still lies in the subspace ia}, of ia*Mp, and by the condition
we have placed on ¢', it vanishes on the subspace aZ, that contains 7. The value of
fr.m at any deformation 7'1]‘7/5\ of 7 by a point A € ia}, , is given by a sum over the set
U(M,M,) =U%(M,M,) of embeddings of ays into ans,- Since the imaginary part of the

infinitesimal character 7i"y corresponds to the linear form v, + A, and

e(up+A)(uT) — el/p(uT)eA(uT) — eA(uT)’ = U(M, Mp);
we can write
froo(mh) = D T ().
welU (M, M,)

We shall apply this formula, with
A:/,L+)\, Hela}kwhz, Aela}(w,z,

to compute fr ar(px)-
The differential operator D in (6.9) is defined on ia}, /ia},. It acts on functions of

1+ A through the variable p. It follows from Leibnitz’ rule that

np
: A) (uT M : M AuT
/E%D(e(wr A ))fM(Tl,MJr)\) = ;pi(D,UT)(ilir%)DifM(TLw)\))@ wT),

for invariant differential operators {D;} on ia},, /ia}, and polynomials {p;(D,-)} on ajf .

The distribution p in (6.9) consequently satisfies

from(pr) = Z (Z]h’(ﬂ; UT)fM(pi,A)>€>\(UT)7
weU(M,M,) i
where

fau(pin) = ilil}) D; far (1104 2);
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and
We can therefore write

froa(p, H) = / froar(py)e *EHa)

N *
8Nz

= Z sz‘(p,UT>fM(Pi;H_ (uT) ),

weU(M,M,) i
where (uT") s is the projection of uT" onto ap;. Notice that if u equals the identity embed-

ding 1 of a;s into anm,, then
D(e(“+’\)(“T) fM(T%JFA)) — e(qu/\)(T)DfM(T%H)_

In this case, np = 1, p1(p,uT) =1 and p; = p.

We conclude that

@ Y =Y | &\0,Y — H) frar(p, H)dH

pER] M/az

_Z Z Zpl p,ul)e ¢ p,Y (UT)Maf)’

P ueU(M,M,) i

where
S US) = [ il U~ H)faslps H)E,
CLM/CI(;

for any U € ap/ag and f € C'(G,(). It is a consequence of the discussion that
ei(¢',p,U, f) is a Schwartz function of U. If u = 1, the corresponding inner sum is taken
over the one element ¢ = 1, and reduces simply to ¢, (¢', p,Y — T, f).

We apply the last expansion to any function f € H'(G, (). We have established that

?W(QSI, X + T7 fT) equals

Z Z szp, (¢',p, X +T — (uD) 1, f)-

pe R u€U(M,My) i

If u#1, |T — (uT)p|| is bounded below by a positive multiple of ||T'||, for any T € a5.

Since (@', p, -, f) is a rapidly decreasing function on ays z, and p;(p, -) is a polynomial on
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ay,z, the summands corresponding to any u # 1 approaches 0 as T" approaches infinity in

ap. If w =1, the inner sum over ¢ reduces simply to the function

€M(¢/,p,X +T - <UT)M’f) = 8/]\/1(¢/7/)7X7f)'
Combining these observations with the limit formula (6.11), we conclude that

(@, X, 1) =D el p. X, [)

+
p€R¢

- Th_I>noo€§\4(¢/7X + T, fT) = 07

P,r

for any X € apz and f € H'(G,¢). It then follows from (6.12) that &, (¢, f) = 0 for
any A € iay, , and f € H'(G, ().
We have agreed that €', (¢}, f) is supported on characters. In other words, it descends

to a continuous linear form

é\lM(d)l)nfG) :‘S?W(Qﬁl)\vf); fGC/(G,C),

on the image Z'(G,() of C'(G,(¢) in Z(G,¢). From what we have just seen, &},(¢),-)

vanishes on the subspace
I'H'(G,¢) = TH(G,¢) NT'(G,¢)

of Z/(G,¢). But by the two versions [CD] and [A8] of the trace Paley-Wiener theorem,
I'H'(G, () is dense in Z'(G, ¢). We conclude that €', (¢}, f) vanishes for any f € C'(G, ().
This is what we had to prove. As we have seen, it implies that £’,(c’, f) vanishes for any

o’ € T'(R), the uniform statement to which we have reduced all the assertions of Theorem

1.1. Our proof of Theorem 1.1 is at last complete. O

We close with a couple of comments. For fixed f, the objects of Theorem 1.1 belong
to the space

Cg‘?reg(Tlv M, () =C> (T/G— M, ¢)

reg’
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of smooth sections of a line bundle over T,

G-reg(R). We have been treating the variable o’

as a representative in T&_ R) of a point in the base space

reg(
Toreg(R) = Toreg(R)/Z(R) = T (R)/ Z'(R).

The associated functions of Theorem 1.1 depend only on the stable conjugacy class ¢’ of
o in M’ (R). They can in fact be regarded as sections of a line bundle that depends only
on the isomorphism class of M’.

Let us change notation slightly. We write ¢’ in place of ¢/, and we let M’ denote
simply an isomorphism class of elliptic endoscopic data for M. We still take 7 (M’, M)
to be the associated set of transfer factors A = Ay, with the understanding that any
A now includes an implicit choice of representative within the isomorphism class M’, as
well as an auxiliary datum (N’ ,E’ ) for that representative. We can then define a bundle

LG-reg,en(M', M, (), consisting of the set of equivalence classes of pairs

(A, 8, AeT(M,M), §eM,... .(R).

reg,ell

The prescription is similar to that of §1, except that it has an extra condition of equivalence,
corresponding to isomorphisms of endoscopic data. Then Lg-regen(M’, M, () becomes
a principal U(1)-bundle over the space Ag-reg,eni(M’, Z) of isomorphism classes of pairs
(M',5"), where M’ is the quotient by Z of a representative within the class M’, and &' is
a strongly G-regular, elliptic element in M’(R). We set Cg2 reg.el (M’ M, C) equal to the
space of smooth sections of the line bundle dual to Lg-reg,en(M’, M, (). One can then show
that for fixed f, the objects In (8, f), I5,(0', f) and S, (M’, 4", f) of Theorem 1.1 belong

to C (M’, M, (). We refer the reader to forthcoming papers [A15, §1-2] and [A16,

reg,ell
§4], where these notions are treated in greater generality.

Suppose that v is a strongly G-regular, elliptic conjugacy class in M (R). If Ay
belongs to 7 (M’, M), the function

0 — Apc(d,7) = Y Am(d,2y)¢(2) 7
ze€Z(R)
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can be regarded as a section of Lg-reg.en(M’, M, () of finite support. Set

AM@(’V? 5/) = n’;lAMyC(dla 7)’

where n., is the number of M (R)-conjugacy classes in the stable class of . If 4 is another

strongly G-regular, elliptic class in M (R), the sum

Z Z Aprc(7,6)An,c (0, 71)

M’ 5/€AG—reg(M/)

vanishes unless 71 = 7z, for some element z € Z(R), in which case it equals ((z). This

relation follows from [A11, Lemma 2.3|. It provides an inversion formula

IM(’V?f) :Z Z AM,C('Va(s/)IM((Slaf)

M’ 6/€AG—reg(M/)

for the function (1.4) that is the source of Theorem 1.1. Set

(6.13) I 0= > Auc(nd)I50 f)

M’ 6/€AG-reg(M/)

The statement (a) of Theorem 1.1 is then equivalent to the identity

(6.14) 15 (v, f) = In (v, ).

The statement (b) of Theorem 1.1 is of course unchanged if o’ is replaced by §’. It is in
this form that Theorem 1.1 was conjectured [A11, Conjecture 3.3], and later applied as
[A13, Local Theorem 1 (p. 775)].
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