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In the present theory of automorphic representations, a maior coal
is to stabilize the’trace formula. 1Its realizatian will have imnortant
consequences; among which will be the proof of functorialitv in a
significant number of cases. However, it will reaquire much effort, for
there are a number of difficult problems to be solved first. Sore of
the problems, especially those concerning orbital intecrals, were
studied in [9(e)]. They arise when one tries to interpret one side of
the trace formula. The other side of the trace formula leads to A
different set of problems. Amonc these, for examnle, are cuestions
relating to the nontempered automorphic representations which occur
discretely. Our purpose here is to describe some of these problems
and to suggest possible solutions.

Some of the problems have in fact been forrmulated as coniectures.
They have perhaps been stated in greater detail than is justified,
for I have not had sufficient time to ponder them. However, thev seem
quite natural to me, and I will be surprised if thev turn out to be
badly off the mark.

Our discussion will be rather informal. We have tried to keenr
tqinqs as simple as possible, sometimes at the expense of omittinea
pertinent details. Section 1, which is devoted to real croups, contains
a review of known thecory, and a description of gome problems and related
examples. Section 2 has a similar format, but is in the c¢lobal setting.
We would have liked to follow it with a detailed discussion of the
trace formula, as it pertains to the conjecture in Section 2. Fowever,

for want of time, we will be much briefer. After opening with a few



general remarks, we will éttempt in Section 3 to motivate the conjecture
with the trace formula only in the case of PSp(4). In so doina, we
will meet a combinatorial problem which is trivial for PSp(#), but is
more interesting for general aroups.

I am indebted to R. Kottwitz, D. Shelstad, and D. Vogan for en-
lightening conversations. I would also like to thank the Universitv

of Maryland for its hospitality.
§1. A PROBLEM FOR REAL GROUPS

1.1. The trace formula, which we will discuss presentlv, is an ecgualitv
of invariant distributions. The study of such distributions leads to
questions in local harmonic analysis. We will beoin by lookin~ at one
such question over the real numbers.

For the time being, we will take 6 to be a reductive alcebraic
group defined over MR. For simplicity we shall assume that ¢ is
quasi-split. Let TT(G(HQ) {(resp. TTtemp(G(IU)) denote the set
of equivalence classes of irreducible representations (resp. irreducible
tempered representations) of G(R) . In the data which one feeds into
the trace formula are functions £ in CZ(G(EU) . Since the terms of
the trace formula are invariant distributions, we need only specifv £

by its values on all such distributions.

Theorem 1.1.1: The space of invariant distributions on G(Ir) is

the closed linear span of

{tr(m): TTtemp(G (R)),

where tr(m) stands for the distribution £ - trm(£).
One can establish this theorem from the characterization
[1(a)] of the image of the Schwartz space of G(R) under the (operator

valued) Fourier transform. We hope to publish the details elsewhere.

Thus, for the trace formula, we need only specify the function



(1.1.2) F(m) = tr w(f), T € Trtem(c(m)) .

It is clearly important to know what functions on TTtemn(G(ﬁﬂ) are of

this form. The elements in (G(IR)) can be given by a finite number

T&emp
of parameters, some continuous and some discrete. Via these parameters,
one can define a Paley-Wiener space on TTtemn(G(IU) . Tt consists of
functions which, among other things, are in the classical Palev-¥iener
space in each continuous parameter. Ve would expect this Paley-Wiener
space on TTtemp(G(EU) to be the image of C:(G(Iﬂ) under the
map above. This fact may well be a conseguence of recent work of
Clozel and Delorme. We shall assume it implicitly in what follows.
There is one point we should mention before going on. The

function F can be evaluated on any invariant distribution on G(IR},

In particular,
F(r) = <tr =, F> = tr 7(f)

is defined for any irreducible representation #, and not Jjust a
tempered one. If p = @ﬂi is a finite sum of irreducible representa-

tions, we set

Flp) =] F(n,).

Now, consider an ‘induced representation

G(IR)
0 = Ind (0 & id”),
o P(IR) R
where P = NM is a parabolic suboroup of G (defined over R}, ¢

is a representation in TTtemD(M(IU) » and id, is the trivial

representation of the unipotent radical MN(P) . Let X be a complex

valued linear function on a the Lie aloebra of the split cormponent

M’

of the center of M(R) , and let oy be the representation obtained

by translating ¢ by XA. Then Oy is in general a nonunitarv,
)\ -



reducible representation of G(IR). Representations of this form are

sometimes called standard representations. The function F(p_ ), defined
g
A

by the prescription above, can be obtained by analytic continuation from

the purely imaginary values of A, where the induced representation is
tempered. Suppose that © 1is an arbitrary irreducible, but not neces-
sarily tempered, representation of G(R). It is known (see [15] that

tr(n) can be written
(1.1.3) tr{n) = sz(ﬂ,p)tr(p),

where p ranges over a finite set of standard representations of G(R)
and {M(v,p)} 1s a uniquely determined set of integers. Then F(n)
is given by

F(n) = ZpM(n,p)F(p) .

Thus, the problem of determining F(w) is ecuivalent to determinine

the decomposition (1.1.3).

1.2. Among the invariant distributions are the stable distributions,
which are of particular interest for global applications. Shelstard
has shown [11(c)] that these may be defined either by orbital integrals
or, as we shall do, by tempered characters.

We recall the Langlands classification [9(a)] of TT(G(R)) . Tet

3 (G/IR) be the set of admissible maps

¢ W > Le ,
where W]Iz is the Veil oroup of T, and

e = “¢” x v
”na

is the L-qroup of G. The elements in 3(G/TR) are to be given only

up to conjucacy bv LGO. To each ¢ € 9(C/TP) Langlands associates
el C s cs . .

an L-packet TT¢ = TT& consisting of finitelv many representations in

TT(c(®)). He shows that the representations in TT¢ are tempered if



L

and only if the projection of the imace of ¢ onto G° is bounded.

Let (G/R) denote the set of all such ¢.

<I)telrl.p

Definition 1.2.1: A stable distribution is anv distribution,

necessarily invariant, which lies in the closed linear span of

{Zﬂgﬂ(btr(ﬂ): b € @temp(c./ln.)} .

If F 1is a function of the form (1.1.2), we can set

F(¢) = ]  F(m
ﬂETT¢

for any ¢ € ¢ (G/R) . In [11l(c)] Shelstad shows that anv tempered

temp
character on G{R) can be expressed in terms of sums of this form,
but associated to some other groups of lower dimension. Given our
discussion above, this means that any invariant distribution on G(IR)

may be expressed in terms of stable distributions associated to other

groups. We shall review some of this theory.

The notion of endoscopic group was introduced in [9(c)] and

studied further in [11l(c)]. Let s be a semisimple elerent in LGO,
defined modulo

Z = Cent(LG,LGO),

G

. L . L0 . .
the centralizer of G in G~ . An endoscopic group H = Hs for G
. . s . . L I
(over 1R) is a quasi-split group in which 'HG = Hg equals
Cent(s,LGO)O,
. : L.0 .

the connected component of the centralizer of s in G . If G 1is

a split group with trivial center, this specifies E wuniquelv. For
then LGO is a simply connected complex group, in which the centralizer
of any semisimple element is connected ([14], Theorem 2.15). The

aroup H is then the unique split c¢roup whose L croup is the direct



L.0 .
product of H with WI&’ In general, it is required only that each

L0 . . .
element w € W]R act on H by conjucation with some element

g x w, g € 6%,

. L .
in Cent(s, G). Since the aroup Cent(s,LGO) is not in ceneral con-

nected, there might be more than one endoscopic oroup for a given s

and ng. Two endéscopic groups HS and HS. will be said to be

equivalent if there is a g ¢ LG0 such that s equals gs'g_l

modulo the product of ZG with the connected component of gy or
s

and the map

ad(g—l): H - 7(H")

commutes with the action of an (Thus, for us an endoscopic group
really consists of the element s as well as the group H, and should

strictly be called an endoscopic datum. See [9(e)j.)

. . . L L . .
An admissible embeddinc H ¢ "G of an endoscopic croun is one

which extends the given embeddinc¢ of LHO, which commutes with the

projections onto W and for which the image of LH lies in

W
Cent(s,LG). e shall suppose from now on that for each endoscopic
group we have fixed an admissible embeddinc Iy ¢ LG, such that the
embeddinas for ecuivalent c¢rouws are compatible. (The additional
restriction this puts on G 1is not serious. See [9(c)].) We shall

say that H 1is cusovidal if the imace of LH in G lies in no vroper

L

parabolic subcroup of G.

Example 1.2.2: Let ¢ = PSp(4). Then

L0 = spa,@) = {o ¢ GL(4,C):< _11_-1) tg’1< 1-1‘1> = g}
-1t 1

The only cuspidal endoscopic aroups are G and Hg, with

1
- -1_
s = <: llj> . Then



* 0 *
LHZ = 0% * 0 ~ SL(2,€) x SL(2,f) ,
0 * * 0
x 0 0 *
and.
H & PGL{2) x PGL(2) .

L

For each of these oroups we take the obvious embeddinc of H into

L.

If ¢ is any parameter in ¢®(G/R), define
c, = ¢ = cent(stug), ¢ ,

the centralizer in LGO of the imace of ¢. Since the homomorphism

{
¢ is determined only up to LGO conjucacv, C is really onlv a

¢
conjugacy class of subcroups of LGO. However, we can identifv each
of these subaroups with a fixed abstract c¢roup, the identification
being canonical up to an inner automorphism of the given groun. Set

_ 0
C¢ = C¢/C¢ZG '

where, Cg is the identity component of C¢. Then C¢ is a finite
group which is known to be abelian. ([11(c)]. See also [5].) It can
therefore be canonically identified with an abstract croup which de-

pends only on the class of ¢.

For each ¢ € @ (G(R)) , Shelstad defines a pairine <, >

temp
on TT¢ x C¢, such that the map

T > <M, >, T € TT¢ ’

. is an injection from TT¢ into the orour &, of characters of Cy-

¢

Unfortunately, the pairing cannot be defined canonicallv. However .



Shelstad shows that there is a function ¢ from C¢/Zr to {1},

which is invariant on conjucgacy classes, such that
c(s)<s,m>, s € C /7 T €
Cb/ G' W‘b,

is independent of the pairinag. Here, s 1is the projection of s onto
C¢. This latter fuqction can be used to map functions on G{(®) to
functions on endoscopic aroups. \

Given a parameter ¢ € @temp(G/DU and a semisimple element
s € C¢/ZG' one can check that there is a unique endoscopic crour

H = Hs such that

pg) < Tmoe fa .

¢ then defines a parameter ¢l €9 (/R ). For a civen H, everv

temp

parameter in (/R ) arises in this wav. For anv function

®temp

£ ¢ CZ(G(IU , Shelstad defines a function fP € C:(H(EU) , unigue
up to stable distributions on H(R) . 7o do so, it is enouch to

specify the value

£,(0) = L fylm) o= 7 tr T (Fy)

for every such . ¢,. This is done by settinc

(1.2.3) £ (¢l) = c(s) ) <s,n> tr w{f).

H N€TT¢

Actually, Shelstad defines fH bv transferrinc orbital intecrals, and
then proves the formula (1.2.3) as a theorem. However, we shall take

the formula as a definition. Shelstad shows that the mappinc £ - fP

is canonically defined up to a siecn. (It also depends on the embeddinc

LH « LG which we have fixed.) We shall fix the sicns in anv wav,

asking only that in the case HE = G, fr be consistent with the



notation above. That is, c¢(1l) = 1.

1.3. It is important for the trace formula to understand how the

notions above relate to nontempered parameters ¢. Shelstad defined
the pairings <g,7> only for tempered ¢, but it is easv enouch to
extend the definition to arbitrary parameters. For one can show that

there is a natural way to decompose any parameter ¢ bv

o(w) = dglwre, (W), o, € (G/B), ¢, € o(a/R)),

®temp
so that the images of ¢0 and ¢, commute, and sc that ¢ itself is

tempered whenever ¢+(WHQ = {1}. The centralizer in LG of the image
of ¢+ will be the Levi component LM of a parabolic suboroup of LG,

and ? will consist of a positive guasi-character v of M(RR).
+

+
The image of ¢0 must lie in LM, so that ¢O defines an element in

1) (M/TR) . There will be a bijection between ﬁ and g , the
0

temp
elements in ? being the Lanclands quotients obtained from the tem-—
L?

pered representations in M and the positive cquasi-character v

$o

of M(R). On the other hand C? equals Cg , so we can define the
- 0

pairing on Cg x ] ® to be the one obtained from the pairing on
M —M

< T
C¢O ¢0.

However, simply defining the pairineg for nontempered ¢ is not satis-

+

factory. For it could well happen that the distribution

)
HGTT¢t

is not stable if the parameter ¢ 1is not tempered. A related Adif-

r(m)

ficulty is that (1.2.3) no lonocer makes sense if ¢l is not a tempered
parameter for H. We shall define a subset of ©&(G/R) for which
these difficulties are likely to have nice solutions. The subset will

contain (G/IR), and oucht also to account for the representa-

Qtemp
tions of G(R) which are of interest in olobal apovlications.

Let VY(G/IR) be the set of LGO—conjuqacy classes of maps
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i Mp % SL(2,0) > La

such that the restriction of y to W]R beloncs to (G/®) .

<I>~t:e1'n.;:~

For any ¢ ¢ ¥(G/IR) define a parameter in 3(G/R) bv

by

¢\P(W) = \lf(W, 0 ]‘w[—l/z ): w € W‘_]‘D .

Here it is hélpful to recall that

wi /2
v +< twl—l/2>

is the map from W]R to

sn(2,€) = “(ran(2))°

which assigns the trivial representation to PGL(2,IP.). Recall also
that the unipotent conjucacv classes in anv complex croup are hijective
with the conjucacy classes of maps of SL(2,€) into the ¢roup. The
unipotent conjucacy classes for complex croups have been classified bv
weighted Dynkin diagrams. (See [131.) MNow ahv Y € ¥(G/R) can be

identified with a pair (¢,p), in which ¢ ¢ ¢ (¢/IR)Y and p is

termn

a map from SL(2,€) into C civen up to conijucacv bv C From

¢’ ¢°
the classification of nilpotents it follows that p 1is determined bv

its restriction to the diaconal suboroup of SL(2,C). TWe obtain

pProposition 1.3.1: The map

ll)‘*%), Yy o€ Y (/P),

is an injection from ¥(G/IR) into ¢(G/R).
Thus, ¥(G/IR) can be reaarded as a subset of ¢&(r/R). It

contains ®temp(G/IR) as the set of y = (¢,p) with p trivial.



1"

Conjecture 1.3.2: For any ¢ € ¥(G/R), the representations in

TT¢_ are all unitary.
Y

Suppose that ¢ = (¢,p) is an arbitrary parameter in ¢(G/® ).

Copying a previous definition we set

= & _ ’ L.0
Cw = Cw = Cent(w(UIR x SL{2,€)),7¢)
and ' ’
— G _ 0
CW = CW Cw/Cch .

The croup C alwavs equals Cent(p(SL(2,¢),C.)), and in particular

¥ ¢
is contained in C¢. Therefore, there are natural mars Cw - C¢ and
Cw - C¢. It is easy to check that this second man is surjective- In
other words, there is an injective map
¢~ ¢
¢W v
from the (irreducible) characters on C¢ to the irreducible characters
v
on C, .
¥ .
Fix ¢ € ¥(G/RR). Take one of the pairincs <,> on C¢ x TT¢
¥ ¥

discussed above, as well as the associated function ¢ on the conijucacv
classes of C¢ /ZG. ¥We pull back ¢ to a function on the conjucacy

classes of Cw/ Z,. We conjecture that the set TT can be enlarced

by

and the pairinc extended so that all the theorv for temvered parameters

holds in this more ceneral settinc.

Conjecture 1.3.3: There is a finite set TTW of irreducible

representations of G(R) which contains TT¢ , a function
Y

which ecuals 1 on TT¢ , and an injective map
¥
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T > <, T>, T € TTW'

from TTw into ¢ all uniquely determined, with the followinec nro-

wl
perties.

(i) 7 belonos to the subset TT; of TTw if and only if the

function <. ,7> lies in the image of 6¢ in Cw.
Y
(ii) The invariant distribution

(1.3.4) : Y e, {m) <l,m> tr{w)

TE€ " k4

is stable. (If ( is abelian, which is certainly the case most of

v

the time, the distribution is

X ey (m tr(m,

TE

v
which except for the sions ew(w) is just the sum of the characters
in the packet TTW') We shall denote the value of this distribution

on the function (1.1.2) by F(y).
(iii) Let s be a semisimple element in C¢/ZF' Let E = Hs

be the unique endoscopic group such that

vy x SL(2,0) < "nc fe,
so that, in particular, ¢ defines a parameter in V¥(H/R). Then if
f ¢ C:(G(I{)), and s is the imace of s in CW'
£, = c(s) ) 8w(ﬂ)<§,ﬂ> tr 1(f) .
e
Y
It is not hard to check the unigueness assertion of this conjecture.

The third condition states that

() = o)y W)
]

X (9, %)
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depends only on the projection x of s onto and that for anv

w"
irreducible character © in

‘pl

e {mMtr m(f), if 6 = <.,m> for sore w€ TTW ,

Y
1 ~ ——
(1.3.5) — ] X(w,x)(f)@(X) B 0, otherwise .

Assume inductively that the distribution (1.3.4) has been defined and
shown to be stable whenever G -is replaced bv a proper endoscopic

group H = HS./ Since the function fH has alreadv been defined on
s

any stable distribution, the numbers fH (¥) and X with

s

w,x)

s = x # 1, then make sense. To define fp(w), take © = 1. 1If

T is the representation in TT¢ such that <',ﬂl> equals 1, we
¥
obtain
1.3.6 C |tr 7. (£) = X £) .
( ) e, ler 7y (£) Lo T
Y

The distribution

£o(0) = X gy (0
is then equal to
(1.3.7) [Cwitr T (f) - Xécwx(wlx)rf) .
x#1

To complete the inductive definitidn, it is necessarv to show it is
stable. The formula (3.1.5) would then ¢ive the elements in TTw

uniquely, but only as virtual characters. The remaininc problem is

to show that the nonzeroc elements amonca them are linegrlv independent,
and that up to a sion (which would serve as the definition of ew)
they are irreducible characters.

The packets TTw should have some other nice vpronerties. For

example, one can associate an R~group to any ¥ ¢ ¥(G/IR). Define
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’ Rw to be the quotient of C@ by the group of components in Cw/zc
which act on the identity component by inner automorvhisms., If Rw'

is not trivial, the identity component will also not be trivial. fhe
image of Y will be contained in a Levi component of a wroper parabolic

L L -
subaroup of G. . Let M be a minimal Levi suboroup of LG which

contains the image of . Then Y also represents a parameter in

¥(M/R). There is a short exact seauence
M G
120 -C, >~ R > 1.
5 Y Y

The group R should covern the reducibility of the induced representa-

Y
tions
G(R) -
p, = 1Ind (0 ®idy), o € TTw ,
P(R)
where P = MN 1is a parabolic suboroun of G. Note that o is obtained
by unitary induction from a representation which is in ceneral not
tempered.
Finally, the conjecture should admit extensions in two directions -
to real groups which are not necessarily guasi-split, and to pairs
(G,00), where a 1is an automorphism of G (modulo the caroup of inner

automorphisms). Both will eventually be needed to exploit the trace

formula in full cenerality.

1.4. Conjecture 1.3.3 is suagested by the clobal situation, which we
will come to later. I do not have much local evidence. The larcest
croup for which I have been able to verifv the conjecture completelv
is PSp(4). However, even this croup is instructive. We shall look
at three examples whichbillustrate why it is the parameters ¢, and
not ¢¢, which covern questions of stability of characters. 7Tn each
case, TT¢ will consist of one representation r such that tr(w)

is not stable. However, each aroup C will be of order two, and the

1
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sets TTw will consist of 7 and another representation, It is onlv
with these larger sets that we obtain a nice theorv of stability.

In each example we will consider parameters Y for G = PSp(4)
such that the projection of ¢ onto LG0 factors through the

endoscopic group

SL(2,€) x SL(2,€),

o
1]
jae]
iR

with

()

As we have said, TT¢ will consist of one representation m. Tt will
be the Langlands gquotient of a nonunitarily induced representation p

of G(IR). We shall let o denote the unique representation in the

packet TT? = TTg , and we shall let of be the nonunitarilv induced
1

representation of H(R) of which ﬁH is the Lanclands gquotient.
In order to deal with VY-parameters on G(R), we must first

know something about the ¢-parameters. The L-packets

TT¢ ' ¢ € 3(G/R),

contain one or two elements. Those with two elements contain discrete

series or limits of discrete series. They are of the form
ch = {MynrThot !t

where w has a Whitaker model, and is the irreducible

Wh "hol

representation of PSp(4,R) which combines the holomorphic and anti-
holomorphic (limits of) discrete series for Sp(4,R). We take the
pairing <, > on C¢ x TT¢ so that <-,mg, > is the trivial character

on C, =~ ®&/2%Z , and <- is the nontrivial character. It is

o = ""ho1”
not hard to verify that with this choice of pairine, all Shelstad's
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functions c(s) may be taken to be 1. In our examples, we shall
consider only representations with sinaular infinitesimal character,
since these are the most difficult to handle. For this reason,

{

Wh’nhol} will now denote the L-packet in G(IR) which contains

the lowest limits of discrete series. If ngsc is the lowest discrete
series for H(R),

tr ﬂH. (£) = trw_. (f) - tr = (£)

2 disc ' "H Th hol'™" '

for any £ ¢ CZ(G(H&)). On the other hand, it will be clear in each

example that
H
tr o (fy) = tr o(f) ,

with p and pH as above. As a distribution on G(R), this last
expression is stable.

We will prove the conjecture in each example by lookinca at the
expression (1.3.7) for fG(W). If 7 is the unique representation

in TT¢w’ it will equal

2 tr n(f) - fH(¢) .

To check the stability of this distribution, we will need to express

it as a linear combination of standard characters on G(IR). To then
construct the packet TTW' we will have to rewrite the expression as

a linear combination of irreducible characters. The term 2 tr m(f)

is handled by computinc the character formula (1.1.3) for the revresen-
tation 1 of G(R). This can be accomplished bv reducinc to the case
of recular infinitesimal character throuch the procedure in [12] and
then using Vocan's algorithm obtained from the Kazdan-Lusztig conijectures
[15]. We will only guote the answer. 7o deal with fH(W), we shall
first write the character formula (1.1.3) for the representation n

of H(R). Since H{R) is isomorphic to PGL(2,R) x PGL(2,P),
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such formulas are well known, We will then 1lift the resultinc standard

characters on H(IRR) to characters on G(R) using the rermarks above.

Example 1.4.1: Let ¢ be given by the diacram

W x SL(2,C)

l H id

SL(2,€) x SL(2,¢) = bg°

r

in which the vertical arrow on the left is the parameter for PGL(2,R)
which corresponds to the lowest discrete series, and the imace of u

in SL{2,C) is contained in { #1}. The centralizers are given as

follows.

c c c c
%y ¢y v v

Z /27 x € {1} T 27 X T )27 7 /27 .

We write ﬂu for the representation in TT¢ . As we have aoreed,
pu then denotes the standard representation of which ﬂu is the
guotient, and wﬁ and pﬁ denote the corresvondine representations

of H(R). The character formula (1.1.3) is easily shown to be

(£) .

£) = £f) -
Fr ﬂu(_) tr pu(_) tr T

H
On the other hand, from the well known character formula for n; we

obtain
fH(w) = tr ﬂﬁ(fH)
= tr pﬁ(fH) - tr ngsc(fH)
= tr pu(f) - tr th(f) + tr ﬂhol(f) .

From our formula for tr ﬂu(f) we see that this egquals



ho1 (£ -

tr ﬂu(f) + tr 7w

Thus, the distribution

L) = 2T (5 - £)

on one hand edguals

i+

) - tr Whol(f) ’

tr T (
u

but can also be written as

tr pu(f) - (tr ﬂwh(f) + tr ﬂhol(f)) .

From the second expression we see that it is stable. From the first
expression we see that the other assertions of the conjecture hold if

we define

TTW {"u’ﬁhol} !
SW(WU) = 1, ew(“hol) -1,
and
<s, WU> = 1, <y Tyo1” < -1 .

7e could have defined ¥ so that the vertical arrow on the left
corresponded to a hicher discrete series of PGL(2,R). Evervthina
would have been the same except that {ﬂWh,ﬂhol} would stand for a
pair of discrete series of (R ). These exarples are the local
analocues of the nontempered cusp forms of PSop(4) discovered by

Xurakawa [7]. (See also [9(d),§3].)

Example 1.4.2: Define ¢ by the diagram
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WTR x S1.(2,€)

2 ,
1d s
Ul l id
0

snL{2,¢) x  SL{2,f) = LH ,

in which the imaces of Hy and u, are contained in {:1}, and
My # LPY The centralizers are
C ¢ C C
¢¢ ¢W Y v
bl x
€ x € {1} 2 /27 x T J27 7 /27

We write 7 for the representation in TT , and follow
) ¢w

the notation above. The character formula (1.1.3) can be calculated

to be
tr ﬂul,uz(f) = tr pulluz(f) - tr pul(f) - tr ouz(f) + tr ﬂwh(f) .
On the other hand, from the character formula for ﬂil’uz we obtain
£, = tr ﬁﬁl,uz(’EH)

= tr pi‘lluz(f}l) - tr pﬁl(fﬁ) - tr p’jz(fH> T (F)

= tr pulluz(f) - tr pul(f) - tr puz(f) + tr wwh(f) - tr ﬂhol(f)

= tr ﬂul'uz(f) - tr Whol(f)
Thus, the distribution

f,y) = 2 tr L (£) - fH(w)
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on one hand equals

tr ™ (€)Y + tr =«

Hy e, ho1 (F) -

but can also be written as

t f) - £) = f
r pul,uz( ) tr pul( ) tr puz(.) + (tr TTY-‘,,h\(f) +trom L (F)) .

From the second expression we see that it is stable. From the first

expression we obtain the other assertions of the coniecture if we

define
Ty = o, ™ot
Ew(ﬂul,uz) = 1 ew("hol) ,
and
AT o B A

This example is the local analocue of the nontemrered cusn forms Ais-

covered by Howe and Piatetski-Shapiro ([31].

Example 1.4.3: Define ¢ as in the last exarmnle, except now take

Uy = dy, = . This example is perhans the most strikinc. Tt is different

. . . T
from the previous two in that ¢ factors throuch a Levi suboroun ™M

. L . . .
of a proper parabolic subaroup of G. (It is the maximal parabolic

subaroup LP = LMLN whose Unipotent radical is abelian.) This shows

up in the fact that CW is infinite.

C ¢ c ¢
%y ®y ¥ v

GL{2,T) {1} 0(2,¢c) 77 /27,
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We write LETIRY for the representation in TT¢ , and follow the

14

notation above. The character formula for WU . is the most complicat-
14

ed of the three to compute. It is

tr 7w (£) = tr pu'u(f) - tr pu(f) - tr Whol(f) .

We also have
fH(w) = trow (£.)

H H H
= _ £ 1
tr pulu(fH) 2 tr Du<‘H) + tr pdisc(f)

tr ou,u(f) - 2 tr pu(f) + tr 7. (f) - tr w (£) .

Wh hol
From our formula for tr WU U(f) and the formula for tr ﬂu(f) in
1
Example 1.4.1, we see that this equals
tr w (f) - tr 7 (f) .
H,u ) U( )
Thus, the distribution
£ = 2 ¢tr 7 £y - £_(Y
G(w) r u,u( ) H(ll))
on one hand eqguals
tr w £) + tr 7 (f
u,u( ) u( ) o

but can also be written as

tr p (£) - (tr 7
u

", (£) + tr Whol(f)) .

Wh

From the second expression we see that it is stable. From the first
exvression we obtain the other assertions of the conjecture for the

endoscovic aroups G and H if we define

T, =

u u’ﬂu} !
r



€ T = 1 =
w‘ u,u) ew(ﬂu) ’
and
<-,nu'u> = 1, <-,nu> = -1 .
In this example we have a third endoscopic oroup to consider -
the Levi subaroup M, which we can identifv with GL{2). Since ¥

L . .
factors throuch -™M, it defines a parameter in VY¥(M/IR). To complete

the verification of the conjecture we must show that

fM(W) = tr ﬂulu(f) + tr Wp(f) .

The packets TT$
Y

M .
and TTW both consist of one element, the represen-

tation
o{m) = u(det(m)), m € CL(2,T).

The definitions of Shelstad are set up so that the mao

M

is dual to induction. Therefore, we will be done if we can show that

the induced representation

_ G(IR) .
b = Indp(g)lo ®idy
is the direct sum of ﬂu " and 7T . MNow, ¢ 1is a nontempered unitarv
7

character of M(R). It is the difference between a nontemnered
standard character on GL(2,R ) and a lowest discrete series on
GL(2,R). The induced character tr(po) is the difference between the
corresponding two induced standard characters. The first is just
tr(pnlu). The second is a tempered charaqter on G(R) which is re-
Therefore, our induced

ducible; its constituents are and T

T9h hol®

character equals
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tr(pu,u) = (b)) + trlm 1))

which, as we have seen above, is just

tr(ﬂu,u) + tr(wu) .

It follows that

as reauired.

Notice that Cw = 0(2,€) acts on Cg = 80(2,€) bv outer

automorphism. Consequently,

Rw = cwgzz/zz .

Therefore the order of the R «aroup is equal to the number of irreduc-

ible constituents of the induced representation

G(R)
0 = Ind (o0 ® id) ,
g P(R) ja

as we would hope. Observe that the analocue of the R crour for the

parameter is trivial. Thus, we see a further examnle of behaviour

%y
which is tied to the parameter ¢ rather than ¢W'

This sucoests a concrete problem.

Problem 1.4.4: Let be the Lie alcebra of the svlit component

M

of the center of M(R ). The Weyl croup of is in this case iso-

M
morphic to Rw. Let w be a representative in G(R) of its non-
trivial element. It is known that the correspondine intertwinine
operator between and o can be normalized accordince to the
a o}
-2

prescription in [9(b),Appendix II]. Let MN(w) be the value of the
normalized intertwinine operator at 2 = 0. It is a unitarv operator

whose square is 1. 1Its definition is canonical up to a choice of the
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representative w in G(R). The problem is to show that N(w) is
not a scalar, and more precisely, to show that if the determinant of

w 1s positive, then

tr(N(w)pG(f)) tr w u(f) - tr ﬂu(f)

H

= ]  <s,m> tr ®(f) .

WETTW

§2. A GLOBAL CONJECTURE

2.1. The conjecture we have just stated can be made for anv local
field ¥. 1If F 1is non-Archimedean, however, the Weil croup must be

replaced by the aroup

W% = WF X SL{(Z,C)

introduced in [9(d)]. If G 1is a reductive cuasi-split croupr defined
over F, 0(G/F) must be taken to be the set of equivalence classes

of maps

w, x sL(2,0) » U,

while @temp(G/F) will be the subset of those maps whose restriction
LGO

to WF has bounded image, when projected onto . In oxder to

define the parameters ¢ we rust add on another SL{2,€). WYe teke
Y{(G/F) to be the set of LGO conjuaacy classes of maps

Y: W, x SL(2,€) x SL(2,C) -~ d

such that the restriction of ¥ to the product of WF with the first

SL(2,€) belonas to 9 (G/F). For anv such ¢, the rarameter

temp
w]l/z 0

(WIU) = U)(Wrgr ) ‘ﬁQW’F" a€sSL(2,T) ’

¢
v 0 jw| L/2
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belongs to ¢ (G/F).
The conjecture also has a global analogue. Let F be a global
field with adéle ring A, and let G be a reductive group over F.
If G 1is not split, there are minor complications in the definitions
related to endoscopic groups. (See [9(e)].) To avoid discussing them
we shall simply take G to be split. Then the global definitions con-
nected with endoscopic groups follow exactly the local ones we have given.
The conjecture will describe the automorphic representations which
are "tempered" in the global sense; that is, representations which occur
in the direct integral‘decomposition of G(A) on L2(G(F)\G(4H).
However, we cannot use the global Weil group if we want to account for
all such representations. For even GL{2) has many cuspidal automorphic
representations which will not be attached to two dimensional representa-
tipns of the Weil group. The simplest way to state the global conjecture
is to use the conjectural Tannaka group, discussed in [9(d)]. 1If certain
properties hold for the representations of GL(n), Langlands points out

that there will be a complex, reductive pro-algebraic group ¢
TTtemD(F)

whose n-dimensional (complex analytic) representations parametrize the
automorphic representations of GL(n,A) which are tempered at each
place. For each place v, there will also be a complex, reductive pro-

algebraic group GTT (F.) equipped with a map
temp v’

G - G 1
TTtemp(Fv) TTtemp(F)

whose n-dimensional representations parametrize the tempered representa-—
tions of GL(n,FV). The composition of this map with an n-dimensional

representations of G will give the F_-constituent of the cor-
TTtemp v

(F)

responding automorphic representation.

Tne sets W(G/FV) which we have defined could also be described

as the set of LGO conjugacy classes of maps

L
¢ G x SL{(2,€) »~ n
v TTtemp(Fv)
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N . L .
The centralizer in G0 of the image of wv is the same as the central-

izer of the image of the corresponding parameter associated to the Weil

group. In other words,

c, = cent(y_(G x snL(2,0)), 6%
wv v TTtemp(Fv)
and
0
C = C 4
wv lj)v/cwv?G

We make the same definitions olobally. Assumince the existence of the

aroups G and G + let Y(G/F) be the set of
TTtemp(F) TTtemp(Fv)

LGO conjugacy classes of maps
L
v: G x SL(2,C) -~ "G .
TTtemp(F)

If ¢ € Y(G/F) 1is any such global parameter, set

L.0
C = Cent(\P(G ] x SL(Z,@)) ’ G ) 2
v temp(F)
.and
0
c = C, Z .
v Cw/ v G
The composition of the map
G x SL{2,€) + G x 8L(2,¢)
TTtemp(Fv) TTtemp(F)
with ¢ gives a parameter ¢ ¢ W(G/Fv). There are natural maps
c, »C
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and

Assume that the analogue of the local Conjecture 1.3.3 holds
for each field F. Fix ¢ € ¥(G/F), Then for anv place v we have a

finite set TTw ;& function ¢,

on TTw , @ pairinc
v v v

<X TL>y T, € TTWV' x, € va ,

and a function c, on the conjucacy classes of C /ZF. Define the

Y

v
global packet TTW to be the set of irreducible representations

m= %, 7, of G(a) such that for each v, m_ belonss to TT¢ .
v

Define the global pairing

<X,T> = <X T >
r v 7 v

and the global function
ew(w) =TIy £y (n,)

for m = ®_ 7, in TTW and x in C, with imace x _ in CW .

v

Almost all the terms in each product should equal 1. It is reasonable

to expect that for any element s ¢ Cw/ZG , with image S, in Cw /ZG ’
v

TTV cv(sv) = 1.

If this is so, the global pairing will be canonical.

Conjecture 2.1.1: (A) The representations of G(£) which occur

in the spectral decomposition of L2(G(F)\G(A)) occur. in packets rara-
metrized by ¥(G/F). The representations in the packet corresponding to

¥ will occur in the discrete spectrum if and only if C¢ is finite.
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(B) Suppose that CW is finite. Then there is a positive

integer d and a homomorphism

1

Ew: Cw + {+1}

such that the multiplicity with which anv 1w ¢ TTW occurs discretelv

in L?(G(FN\G(A)) equals

d
v
Tl e, 77 B0
¥

In particular, if C and each ¢ are abelian, the multinlicitv of

v v

v
7 is d if the character <+,7> equals §g

v

and is zero otherwise.

w'

2.2. BSome comments are in order. First of all, the introduction of
the Tannaka groups would seem to put the conjecture on a rather shakv
foundation. However, everythine may be formulated without them. The
set Y¥(G/F) 1is the same as the collection of pairs (¢,p), where

o € & (G/F) and p is a map from SL(2,C) into C civen un to

temp ¢’
conjugacy by C¢. Included in the conjecture (and also irnlicit in
[9(d)]) 1s the assertion that ¢temp(G/F) is the set of 1. equivalence

classes of automorphic representations of G(/A) which are tempered at

every place. We could simply take this as the definition of o

To avoid mentioning the Tannaka group at all, we would need to define

eWD(G/F)'

(G/F). For then Cw would just be the cen-

tralizer of the image of p in C¢. If one grants the existence of cer-

C¢ for each ¢ in ¢temp

tain liftings, one can show that C¢ is equal to the centralizer in
LG0 of an embedded L-group in LG.

Notice that the conjecture does not specify whether an automorphic
representation which occurs in the discrete spectrum is cuspidal or not.
Indeed, it is quite possible for a global packet TTw to contain one re-

presentation which is cuspidal and another which occurs in the residual

discrete spectrum. {See [2] and also Example 2.4.1 below.) I do not
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know whether there will be a simple explanation for such behaviour.
Multiplicity formulas of the sort we conjecture first appeared in

[8]. The integer dw was needed there, even for subgroups of

Res GL(2)), to account for distinct ¢lobal parameters which were

g/F
everywhere locally equivalent. The sign characters §
LGO

are more myster-

¥

ious. Suppose that is the set of fixed points of an outer auto-
morphism of GL(n,C)." Then one can observe the existence of éuch charac-—
ters from the anticipated properties of the twisted trace formula for
GL(n). The character will be 1 if ¥ corresponds to a pair (¢,p)
with p trivial; that is, if the representations in TTW are tempered
at each local place. In general, however, &w will not be trivial, and
will be built out of the orders at 1/2 of certain L-functions of ¢.
Incidentally, in the examples I have looked at, both local and c¢lobal,
the groups C have all been abelian. The extrapolation to nonabelian

v

is no more than a guess. In fact if C is nonabelian, the func-

1 ¥

tions < ,7m> may turn out to be only class functions on ¢C

c

v’ and not

irreducible characters."

2.3. Let us look at a few examples. Consider first the group G=GL(n).

The centralizer of any reductive subgroup of LG0=GL(n,C) is connected.

This means that the packet TTW {(both local and global) should each con-

tain only one representation. The groups C¢ will be of the form
GL(nl,C) X, eaX GL(nY,C) ’

so that a paraméter ¥ will consist of the tempered parameter ¢ and

a map of SL(2,C) into this c¢roup. The representations in TTw

should belong to the discrete spectrum (modulo the center of G(A) )

equals ¢®. This will be the case preciselv when

w —

C¢ equals GL(nl,C) and p 1is the irreducible ny dimensional re-

if and only if C

presentation of SL(2,C). Then n will necessarilv divide n,

1
n = n,m, and ¢ will be identified with a cuspidal automorvhic re-
presentation of GL(m,A), enbedded diaconallv in GL(n). This

prescription for the discrete spectrum of GL(n,A) (modulo the center)

is exactly what is expected. (See [4].) It is onlv for @IL(n)
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(and closely related croups such as SL{(n)) that the distinction
between the cuspidal spectrum and the residual discrete srectrur will
be so ciear.

The multiplicity formula of the conjecture is comnatible with the
results of Labesse and Lanclands [8] for SL(2). More recentlwv, Flicker
[2] has studied the cuasi-split unitarv croup in three variahles. The
conjecture, or rather its analogue for non-split groups, is compatible
with his results.

Langlands has shows [9(b), Appendix 3] that for the split group G
of type G, there is an interesting automorphic representation which
occurs in the discrete noncuspidal spectrum. Its Archimedean component
is infinite dimensional, of class one and is not tempered. The existence
of such a representation is predicted by our conjecture. LGO is just

the complex group of type G It has three unipotent conjugacy classes

2-
which meet no proper Levi subgroup. These correspond to the principal

unipotent classes of the embedded subgroups

LHg - Ll i=1,2,3,

where

L.0O _ L.

Hy = G

L0 . +1

H, = SL(2,C) xsSL(2,C)/{*1} ,
and

LHg = SL(3,€) .

Let wi = (¢,pi) be the parameter in V¥ (G/F) such that ¢ is trivial
and Py is the composition

SL(2,C) ~ LH? R

in which the map on the left is the one which corresponds to the
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L.0

principal unipotent class in “H,;. The packet TT contains one ele-

Y1
ment, the trivial representation of G{A). It is the packet TTw

which should contain the representation discovered by Langlands. The

remaining representations in 7| which occur in the discrete spectrum,

by

as well as all such representations in TT¢ , are presumably cuspidal.
3

2.4. Finally, considér the global analogues for PSp(4) of the three
examples we discussed in §1. The global conjecture cannot be proved
yet for this group, for there remain unsclved local problems. However,
Piatetski-Shapiro has proved the multiplicity formulas of the first two
examples below by different methods. (See [10(a)]l, [10(b)]}, [10(c)I.)
Uging L-functions and the Weil representation, he reduced the proof to

a problem which had been solved by Waldspurger [16].
In each exarple ¢ will be c¢iven bv the diacram for the corres-

ponding local example in §1 excent that W“R is to be rerlaced hv

the Tannaka croup GTT or, as suffices in these examrles, bv

F
temp( )
the clobal Weil caroup o RBach y will be a Gr8ssencharacter of
order 1 or 2, since the one dimensional reovresentations of

. x X L
GTT (F)’ UF and F\A all co-incide. In each example the
temp
intecer dw will be 1.

Example 2.4.1: This is the example of Kurakawa. Take the
diacram in Example 1.4.1, lettinc the vertical arrow on the left

parametrize a cuspidal automorphic representation =< = %v Ty

of PGL(2,A). As in the local case, we have

~ ZB/2T ¢ = ®m/2% .
cw /2%, " /.

The character should be 1 or -1 accordine to whether the

Ey
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order at s = 1/2 of the standard L function L(s,t) is even or od¢
Our conjecture states that a representation 7 in the packet TTw
occurs in the discrete spectrum if and onlv if the character <7,.>

on C¢ equals EW' The local centralizer croup C will be of

v

v

order 2 or 1 dependinc on whether the representation Ty of
PGL(Z,FV) beloncs to the local discrete series or not. Suonnose that
Ty belongs to the local discrete series at r different rlaces.
Then the c¢lobal pocket TTw will contain 2% representations.

Exactly half of them will occur in the discrete spectrum of

L?(G(F)\G(a)). (If r = 0, the one representation in TTW will
occur in the discrete spectrurm if and only if gw =1.)

For a agiven complex number s, consider the representation

s
(x,a) > T(x)p(a)]aif, x € PaL(2,A), a € A¥ ,

of PGL(2,A) x A¥. It is an autormorphic revresentation of a Levi
suboroup of G which is cuspidal modulo the center. The associated
induced representation of G(A) will have a clobal intertwinine
overator, for which we can anticipate a clobal normalizing factor

equal to

(LS, 1) L(s, 1)) (L(= $,)L(-s,1.) 7" .
From the theory of Eisenstein series and the exvected proverties of
the local normalized intertwininc operators, onecan show that TTw
will have a representation in the residual discrete svectrum if and
only if the function above has a pole at s = 1. This will be the
case precisely when L(1/2,t) dJdoes not vanish. Thus, the number of
cuspidal automorphic representations in the packet TTw should ecual

2r—l or 2]’:_1 - 1, dependin¢ on whether 1.(1/2,1) vanishes or not.
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Example 2.4.2: This is the example of Howe and Piatetski-shapiro.
Take the diacram in Example 1.4.2 with My # By Then

c, ¥ B/2Z x m/27 , c, = B/2% .

The character gw should always be 1. Our conjecture states that a
representation w € TTW will occur in the discrete spectrum if and
only if the character <-,%> ecguals 1. Each local Eentralizer croun

Cw will be isomorphic to %/2%. It follows that the packet TTw

v
will contain infinitelyv many representations, and infinitelv manv

should occur discretely in LZ(G(F)\G(A)).

Example 2.4.3: Take the diacram in Example 1.4.2 with Hy = Uy

Then

Cw >~ 0(2,C), Cw = B/27% .

Each local centralizer croup C will be isomorphic to #%&/27%, so

2

v

the packet TTw will contain infinitelv manv representations. Fowever.
since Cw is infinite, the conjecture states that none of them will
occur discretely in L2(G(F)\G(@)).

§3. THE TRACE FORMULA

3.1. The conjecture of §2 can be motivated by the trace forrula, if
one is willing to orant the solutions of several local nrobhlems. We
hope to do this properly on sorme future occasion, but at the moment
even this is too larce a task. W"e shall be content here to discuss =2
few problems connected with the trace formula, and to relate them to
the conjecture in the example we have been lookinc at - the aroup
PSp(4). For a more detailed description of the trace forrula, see the
paper [1l(b)] and the references listed there.

Let G be as in §2, but for simplicity, take F to be the

field of rational numbers §. The trace formula can be recarded as an



equality

(3.1.1) I (£) = VI,(6), £fec (a(m)),
0é0 © xéx ¢

of invariant distributions on G(A) . The distributions on the left
are parametrized by the semisimple conijucacv classes in G{(®), while
those on the richt are parametrized bv cuspidal automorphic renresenta-
tions associated to Levi components of parabolic subcrouns of G.
Included in the terms on the left are orbital intearals on G(A)
(the distributions in which the semisimple conjugacy class in G(0)
is regular elliptic) and on the richt are the characters of cuspidal
automorphic representations of G(®) (the distributions in which the
Levi subgroup is G itself). In ceneral the terms on the left are in-
variant distributions which are obtained naturally from weichted orhita
inteagrals on G(A) . The terms on the richt are simpler, and can he
given by a reasonably simple explicit formula. (See [1(k)]1)}.

The coal of [é(c)] was to begin an attack on a fundamental
problem - to stabilize the trace formula. The endoscopic croups for
G are guasi-split gréups defined over @: thev can be reacarded as
endoscopic groups over the completions o, of ®. As in §1, we
suppose that for each endoscopic aqroup H we have fixed an admissible
erbedding LH C LG which is compatible with equivalence. We also
assume that the theory of Shelstad for real aroups has been extendéd
to an arbitrary local field. Then for any function f ¢ C:(C(m))
and any endoscopic croup H we will be able to define a function fH

in CZ(H(AJ) . For example, if £ is of the form @va, we simplv

set

5 o= 3% ¢

However, fH will be determined onlv up to evaluation on stabkle dis-

tributions on H{A). To exploit the trace forrmula, it will bhe
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necessary to express the invariant distributions which occur in terms
of stable distributions on the various croups F(A).
Rottwitz [6] has introduced a natural ecuivalence relation, called

stable conjucacy, on the set of conjucacy classes in G(®) on the

regular semisimple classes. If 0 1is the set of all serisimnle con-
jugacv classes in G(Q), let 0 be the set of stable conjucacy class-

es in 0. For any o € 0, set .

I_(£) = I (), £ecC (a(m).
= L% (9 S(G(m))

If H is an endoscopic croup for G, it can be shown that there is

a natural map

=1
o

¥

<

from the semisimple stable conjucacy classes of H(®) to those of

G(f®). One of the main results of [9(e}] was a formula

(3.1.2) I—(£f) = [ .1(GH) ) s (£,

&= e ) Sy (Ey)
{OHEUﬁ.oH+0} H

for any £ € CZ(G(A)) and any class o € 0 consistinc of regular
elliptic elements. For each endoscopic ¢roun H, {(G,H) is a constant

and SE is a stable distribution on H(A) . The sum over ¥
0
H
(as well as all such sums below) is taken over the ecguivalence classes

of cuspidal endoscopic c¢roups for G.

problem 3.1.3: Show that the forrula (3.1.2) holds for an

arbitrary stable conjucacy class o in 0.

This problem is similar in spirit to that posed bv Conijecture
1.3.3. It is not necessary to construct the stable distributions

S~ . One would assume inductively that thev had been defined for anv

B

ol o

H # G. (Of course we could not continue to work within the limited
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category we have adopted for this exposition - namely, G is a split

L

group with embeddings H CLG.) The problem would then amount to showing

that the invariant distribution

£ I () - ] 1(GH _] _sE g
B#G {OH*U} “H

H

was stable. However, this assertion is still likely to be quite diffi-
cult. The problem does not seem tractable, in general, without a good
knowledge of the Fourier transforms of the distributions I _.

¢
In any case, assume Problem 3.1.3 has been solved. Define

I(F) = I7(f) = I £ ,

EEU o
and

8%,

0€0 0

for any f ¢ CZ(G(AA)). The expression for I(f) 1is just ecual to

each side of the trace formula (3.1.1). It is clear that it converces
absolutely. The same cannot be said of the expression for S(f).

The problem is discusses in [9(e),VIII.5]. We must make the assumntion
that there are only finitely many H such that £, # 0. (See Lemma
8.12 of [9(e)].) This is certainly true if G is adjoint

for then there are only finitely manv endoscopic c¢rouns (up to equiva-

lence, of course). Since the constant (G,G) equals 1, we obtain

_3 s8¢
0€0 o
= T (I (H - T em T st
0€0 0 H#G1 {OHGUH:OH*O} Ty K
= JI1(5 - Jem _ I stg)
c 0 H#G OHEOH O
= 1(6) - ] emstiEy

H#G
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if we assume inductively that the expression used to define SH con~-
verges absolutely whenever H # G. It follows that the expression for

> G * . . .
Sc(f) converces absolutely, and S is a stable distribution on G(Aa).

Moreover,

(3.1.4) e = ] emsi ,
L ;

for any f € C:(G(&)).

3.2. An identity (3.1.4) could be used to yield interestinc information
about the discrete spectrum of G, since there is an explicit formula

for

(3.2.1)

H

th

~
[]

IoI(f) .
x€x X

The formula is given as a sum of intecorals over vector spaces
* *
iaM / iaF, where P = MN is a parabolic suboroup of 6 (defined
- T
over @), AM is the split component of the centér of the Levi cormpo-

nent M of P, and Ay is the Lie alaebra of AN(EU . The most

interesting part of the forrmula is the term for which the intecaral is
actually discrete; in other words, for which P = G. It is onlv this
term that we shall describe.

Suppose that P = MN is a parabolic suboroup and that ¢ is an
irreducible unitary representation of M(A) . Let Py be the induced

representation

G(R) 2
Ind (L

0 .
Ay (R) " M@ \M(A)), ® id.) ,
P(R) M o M

disc

where idN is the trivial representation of the unipotent radical

N(a), and L (AM(IR)OM(Q)\M(A) )(T is the o-primary component

2
disc
of the subrepresentation of M(A) on LZ(a,(R)*M(@\M(A)) which

decomposes discretely. Let W(aM) be the Weyl c¢roup of Ty s and let
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W(aM)rea be the subset of elements in W(aM) whose space of fixed

vectors is LI For any w in w(aM) let 7T{(w) be the (unnorralized)

global intertwining operator from g to Pug+ For any function

f € CL(G(R)), define

G
(3.2.2) I () =I(f)
= ] lwel™ T jeeta-w, | TH(ene, (6)
{(M,0)} i wew(aM)req Al

where the first sum is over pairs (M,c) as above, with M given up to
G(0) conijugacy. Then I, is the "discrete part"” of the explicit
formula for (3.2.1). Here we have obscured a technical complication
for the sake of simplicity. It is not known that the sum over o in.
(3.2.2) converces absolutely (althouch one expects it to do so). In
order to insure absolute convercence, one should really crourn the sum-
mands in (3.2.2) with other components of I(f) 1in a wav that takes
account of the decomposition on the rioht hand side of (3.2.1).

We expect to be able to isolate the various contributions of
(3.1.4) to the distribution I+. This would mean that we could find

(for every G) a stable distribution Sf on G(A) such that

(3.2.3) I(6) = ] ((GHSE(E)
& 1
for any f ¢ CZ(G(A)). said another way, the distribution

B
£ > I+(f) - H;GI(G,H)S+(fH) ,

would be stable. Now this is actuallv a rather concrete assertion.
The distribution I, is certainly oiven bv a concrete formula, and the
distributions SE are defined inductively in terms of the formulas

H

for I+. Moreover, Kottwitz has recently evaluated the constants
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1{(G,H). We will not give the general formula, but if G and H = H

are both split groups, (G,H) ecuals

IZH/ZG[_l ]Norm(sZG,LGO)/LHO[_l ’

L.0

LGO) denotes the group of elements o in G which

where Norm(sZG,

normalize the coset SZG'
A formula like (3.2.3) will have interestinc implications for the
discrete spectrum of G. Consider the one dimensional autormorphic
representations of the various ‘endoscopic croups F. Our examnles for
PSp(4,1R) suggest that for H # G, the contributions of such one di-
mensional representations to the right hand side of (3.2.3) will not
be stable distributions of ' £. Thevy will have to corresvond to somethinc
in the formula (3.2.2) for I+(f). Suppose that some one dimensional
representations cannot be accounted for bv anv terms in (3.2.2) indexed
by (M,c), with M # G. Then thev will have to correspond to terrs with
M = G. In other words, they ought to give rise to interestinc nontermper-
ed automorphic representations of G(A&) which occur in the discrete

spectrum.

It is implicit in our conjecture that we should index the one di-

mensional automorphic representations of H(A) by maps
L
“]m x SL(21¢) > H,
. N . . L0 . L0 .
in which the image of Wm in H commutes with " and the imace
of SL{(2,C) corresponds to the principal unipotent in LHO. (For the

correspondence between unipotent conjucacy classes and representations
of SL(2,€), see [13].) It is of course easvy to do this. What is not
clear is why we should do it. Whv introduce an SL(2,f) when the one
dimensional representations of H(A) can be described nerfectlv well
without it? According to the conjecture, the SL(2,€) factor will be

essential in describino the correspondine automorphic representations
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of G(A) . In particular, a one dimensional automorphic renresentation
of H(A) should give rise to automoprhic representations of G(A)
which occur discretely (modulo the center of G(A) ) if and onlv if

the imacge of WD x SL(2,C) under composition

W, ¥ SL(2,8) ~ Ly 5 Ig

.

. . s L . . .
lies in no proper Levi suboroup of G. e shall exarmine this ocuestion

for PSp(4).

3.3. Consider the example of G = PSp(4). As a reductive aroup over
©, G has only two cuspidal endoscopic groups (up to equivalence) =

G itself, and

H = HS ~ PGL(2) x PGL(Z2) ,

with

).

Let us look at the formula (3.2.3) in this case. The constant (G,G)

equals 1. The c¢roup

Norm(sZ(.,LGO)/LH0

has order 2, the nontrivial element beina the coset of the matrix

0 1 o] 0

1 0 0 0

0 0 0 1

0 0 1 o}
Since

2./ Z ~ ®m/27% ,

G
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we have

PN

1(G,H) =

The group H has no proper cuspidal endoscopic ¢oroum. This means tha
Sf eaguals IE, and so is civen bv the formula (3.2.2). Forrula

(3.2.3) is then eguivalent to the assertion that the distribution

G H *
£+ I(5) - 3 I (£ £ e o),

]

is stable. Since the distribution
H
£ - I+(fH)

is neither stable nor tempered, the assertion would cive interestinc
information about the discrete spectrum of G.

The one dimensional automorphic representations of F are -just

(3.3.1) (hl'hZ) - ul(det hl)uz(det h2) ’ h h2 € PGI(2,A)

11

where uq and u, are Grossencharacters whose imaces are contained

in {+#1}. For anv such representation define
Vs My X SL(2,0) > SL(2,0) x SL(2,®) x g = Ly
by
Ylw, o) = (uy(w)euy(whe,w)

where w' 1s the projection of w onto the commutator guotient of W
and each ui(w‘) is jidentified with a central element in SI.(2,T).
As we did for real groups, we define a mao

byt Vg > H

t

®

[
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as the composition of the map

w2 o

w > (w, - Yy w o€,
0 ',n] 1/2 e

with . Then the global L-packet TTg ecuals TT$, and contains

1

exactly one element, the representation (3.3.1). Bv commosinc with

the natural embedding LH c LG, we identifyv each ¢ with a mapovinc

of WO x SL(2,C) into LG. In this wav we obtain parameters in
¥(G/Q). They are just the ones considered in Examples 2.4.2 and 2.4.2.

The contribution of ¥ and H to the richt hand side of (3.2.3)

o

ecuals the product of with the character of the renresentation

{3.3.1) evaluated at fH’ Assume that the Examples 1.4.2 and 1.4.3
for G(IR) carrv over to each local aroun C(QV). Then to the local

parameters ¢ ¢ W(G/mv), obtained from ¢, we have the local

nackets TT¢ . On these packets, the sicns €, ~areall 1. TIf
v v

£ = », £, £, € co(e@my)) .

the contribution of ¢ and H to (3.2.3) is just

1
)

i
[

fH(w) TTv fV,H(wv)

i
NI

1T, (cv(sv)7T % <§§,ﬂv>tr T (£

v TTwV

where s 1is the image of s in c, /%5 and §v is its proiection
v

onto C, . This becomes

Yy

|

(3.3.2) TT.¢ 3 <§V,nv>tr T (E,0)

v
wvéTva

if we assume the product forrula
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TTy eylsy) = 1.

Suppose that My = Hy = M. The conjecture requires that (3.3.2)

should be cancelled by a term in (3.2.2) indexed bv (M,c) with

M # G. The proiection of the imace of ¢ onto LGO

(3.3.3) {(h ”): h € snL(2,€)} ,
0 nh

a suboroup of

is conjucate to

g 0
Ly _ {< ) -« € GL(2,0)) ,
0 a(a)
1 0 10
GO
0o -1 0o -1
0 1 0 1
a{c) =< >t9_l< > .
10 1 0

But M is the identity component of the L-group of a Levi subcroun

where

" and

M of G which is isomorvhic to GL(2). Set
“o(m) = p(det(m) , m € GL(2,8).

Then ¢ can be recarded as an automorphic representation of M which
occurs discretely (modulo the center of M(Aa)). It is the pair
(M,0) whose contribution to (3.2.2) we will compare with (3.3.2).

Let w be a representative in G(®) of the nontrivial element
of the Weyl group W(aM). The representation o 1is a 1lift to GL{(2)
of an automorphic representation of PGL(2). It is fixed by ad(w).

The contribution of (M,c) to the formula (3.2.2) for I+(f) is
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(3.3.4) F Er(Two_(6)
since
|W(aM)['1 Idet(l—w;aM‘-l _ % i % _ %
We can expect a decomposition
T(w) = mnWTT, N, (w)
of T(w) into local normalized intertwining operators. (See [%(b),

p. 2821.) If $q is the three dimensional revresentation of I ob-

it

tained by composing with the adjoint representation of the aroup

by

(3.3.3), and ¢y is its contragradient, the c¢lobal normalizina factor

m{w) equals

L(s,il)

Ln st

s>0
One checks that it equals 1. Therefore, (3.3.4) equals

1
7 10, tr (Nv(W)pov(fv)) '

where g, is the character uv(det («)) on GL(Z,QV), with g the

local component of the Grdssencharacter u. %ith a resolution to

Problem 1.4.4, or rather its analocue for each place v, the expression

would become

ISy

TTV ) <§v,wv>tr Wv(fv)) .

T €
v Tva

This is just (3.3.2).
Thus, when By T My T so that 1y factors throuch a Levi sub-

group, the contribution of ¢ and H to (3.2.3) would be completelvw
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cancelled by a term in (3.2.2) with M # G. This succests that such
¢ contribute nothinc to the discrete spectrum of G(A) , as predicted

by the conjecture.
3.4. 1In order for the two terms above to cancel, it was essential that

1(G,H) = Jw(aM)]’l |det (1-w) l’l ’
- M

the comrmon value, we recall, beinc % . This fact mav be interpreted

as a combinatorial property of the complex c¢roupn

cw = 0(2,¢) .

The generalization of this oroperty will be a kev to affectinc similar
cancellations for arbitrary c¢roups. e shall describe it.

Let C be the set of complex points of a complex reductive

. . 0
algebraic group. We do not assurme that C 1is connected. TLet C be

the identity component of C. Let TO be a Cartan subgroup of CO,

and let W be the normalizer of T0 in €, modulo TO. Then W is

an extension of

WO = Wn C0 ’

0

the Weyl oroup of (CO,T ). It acts on TO and on its Lie alcebra.

Let Wr be the set of elements in ¥ for which 1 is not an eicen-

value. If w 1is any element in W, set

ew) = (-1W

where n{w) eguals the number of positive roots of (CO,TO) which are

mapped by w to necative roots. (e(w) is independent of how the
positive roots are chosen.) For each connected component x of C

we define
i) = w7ty e (w)|det(1-w) | 7L
wEWrec(x)
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where W i i i i
reg(x) is the set of elements in Wrec induced from voints

in x. The number i(x) is a sort of scalar analocue of the invariant
distribution (3.2.2).

For each component x of C, let Orb(CO,x) be the set of
Co—orbits of elements in x for which the adjoint map (as a linear

operator on the Lie algebra of CO) is semisimple. If s belonos

to any of the orbits,:the croup

Cs = Cent(s,CO)

satisfies the same hypothesis as C. Its conjucacv class in CO de-
pends only on the orbit of s. The number

0,-1
lcg/Cql

" of connected components in C_ also depends only on the orbit of s.

It is possible to define uniquely a number ¢(C), for every group
C, which depends only on CO, and vanishes unless the center of C0

is finite, such that
., .0 0,-1

(3.4.1) i) = 73 lc_scll™ac,)

0 0 s’ s s

s€0rb(C,CT)

for every group C. Indeed, there are only finitely manv orbits s in
Orb(CO,Co) such that the center of Cs is finite, so we can define
¢{(C) 1inductively by this last equation. We see inductively that it

n
depends only on CcY. The numbers o¢(C) are scalar analogues of the

stable distribution defined by (3.2.3).

0
Theorem 3.4.2: With the possible exclusion of the case that C
has exceptional simple factors, we have
o -1
(3.4.3) ix) =} . lcg/cl Totcy),
s€0orb(€",x)
for every component x of C.

The details will avpear in [l{c)]. (I have not yet had a chance

to look at the exceptional groups.)
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Equations (1.3.6), (3.1.2) and (3.4.1) are all in the same spirit.
They each provide an inductive definition for a set of objects (stable
distributions, for example) in terms of ¢iven objects (such as invar-
iant distributions). The inductive definition in each case is bv a sum
over indices which are closely related to endoscopic aroups. FEauations
(1.3.6) and (3.1.2) should have twisted analocues. These should be
true identities, involvinc the objects defined by the oricinal eduations.
The twisted analocue of (3,4.1) we have just encountered. It is the

formula (3.4.3).
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Note added in proof: The sign function ew in the local Conjecture

1.3.3 and the sign character gw in the global Conjecture 2.1.1 should

both have simple formulas.

Suppose that

L
Vo W X sL(2,£) -~ G

is given as in Conjecture 1.3.3. Then

belongs to the centralizer C

Then

sy = (0D

Let 5, be the image of 4 in C

A Y Y '

Ew should be given in terms of the pairing on Cw X HW by
T) = <5 ,7> €I, .
ey (M p' " Ty

In particular, if the uninotent element
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. L . .
in G° is even, the Zfunction €¢ will be identically 1.

Suppose that F 1s global and

vt Gy x SL(2,r) » g

“temp<F)

is given as in Conjecture 2.1.1. Assume that C is finite. Let 3

P

be the Lie algebra of LGO, and define a finite dimensional representa-
tion
r :C xG x SL(2,C) »~ GL(s)
U2 T )
by

rw(c,w,g) = Ad{(c + ¥(w,qg)),

for c € C,, w € G and g € SL(2,8). Then there is a

¥ temp(F)
decomposition
Ty = QiEIw (B3 ® &3 ™ py)
where Ei, ¢i and p; are irreducible (finite-dimensional) representa-
tions of C, , G and SL(2,f) respectively. Suppose that for
¥ Htemp(F)

a given 1, the representation ¢i is equivalent to its contragredient.
Then from the anticipated functional equation of the L-function

L(A,¢i), we see that
1
€(§,¢i) = +1.

Let I, be the set of such indices i such that e(%,¢i) actually

v
eguals -1, and such that in addition, the dimension of Py is even.
Then the sign character should be given by
g (e) = T _ det(E,(c)), cec
v . 1
j 1€I
1
Such a formula (assuming it is true) is rather intruiging. It ties
the values of e¢-factors at % in an essential way to multiplicities

of cusp forms, and it also suggests that the adjoint representation of

the L-group might play some role in questions of L-indistinguishability.





