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THE TRACE FORMULA FOR REDUCTIVE 'GROUPS* 

James ARTHUR 

This paper is a report on the present state of the trace formula 

for a general reductive group. The trace formula is not so much an end 

in itself as it is a key to deep results on automorphic representations. 

However, such applications have only been carried out for groups of low 

dimension ( 

For reports 

groups, see 

proceedings 

5 1 ,  171, [8(c)], [ 3 ] ) .  We will not try to discuss them here. 

on progress towards applying the trace formula for general 

the papers of Langlands [8(d) I and Shelstad [ll] in these 

Our discussion will be brief and largely confined to a description 

of the main results. On occasion we will try to give some idea of the 

proofs, but more often we shall simply refer the reader to papers in the 

bibliography. Section 1 will be especially sparse, for it contains a re- 

view of results which were summarized in more detail in [l(e)]. 

This report contains no mention of the twisted trace formula. 

Such a formula is not available at the present, although I do not 

think that its proof will require any essentially new ideas. Twisted 

~ectures for Journges Automprphes, Dijon, Feb. 16-19, 1981. 
I Wish to thank the University of Dijon for its hospitality. 
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trace formulas for special groups were proved in r8(c) I and [ 3 1 .  As 

for the untwisted trace formula, we draw attention to Selberg's origi- 

nal papers [10(a)l, [10(b)], and also point out, in addition to the pa- 

pers cited in the text, the articles [51,  [l(a) ], [ 4 ] ,  [12], [9 (a) l and 

C9 (b) I .  

1, THE TRACE FORMULA - FIRST VERSION, 

Le G be a reductive algebraic group defined over 2) .  Let AG be the 

split component of the center of G, and set 

where X(G)̂  is the group of characters of G defined over 9. Then is 

a r e  vector space whose dimension equals that of AG. Let G(A) be the 

kernel of the map 

H : G (A) * ^ , 
which is defined by 

Then G (Q) embeds diagonally as a discrete subgroup of G (A) and the 

coset space G (Q) \G (A) has finite invariant volume. We are interested 

1 in the regular representation R of G (A) on (G (Q) \G (A) ) . If 
1 2 1 f e c (G (A) ) , R(f) is an integral operator on L (G (Q) \G (A) ) . The sour- 

ce of the trace formula is the circumstance that there are two ways to 

express the integral kernel of R(f). 

We shall state the trace formula in its roughest form, recalling 

briefly how each side is obtained from an expression for the integral 

kernel. This version of the trace formula depends on a fixed minimal 
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parabolic subgroup Po, with Levi component Mo and unipotent radical No, 

1 and also on an appropriate maximal compact subgroup K = II K of G ( A )  . 
v 

In addition, it depends on a point T  in 

which is suitably regular with respect to P o ,  in the sense 

that a ( T )  is large for each root a of Po 
On A0 = \. 

The trace formula is then an identity 

We describe the left hand side first. 0 denotes the set 

of equivalence classes in G ( $ ) ,  in which two elements in 

G(Q) are deemed equivalent if their semisimple components are 

G ( Q )  conjugate. This relation is just G ( Q )  conjugacy if G  

is anisotropic, but it is weaker than conjugacy for general G  . 
If P is a parabolic subgroup of G  which is standard with 

respect to P o ,  and o- e 0 ,  set 

where N is the unipotent radical of P and Mp is the unique 

Levi component of P which contains M . Then 
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is the integral kernel of the operator Rp(f) obtained by 

convolving f on L ( N  @)M (Q) \G (A) I). If P = G , it is 

just the integral kernel of R(f). Define 

T dim ( A / A  1 k(x,f) = I (-1) I K (fix,<5x)~p(~p(5x)-~). 
P3P0 6eP (Q) \G (Q) p'e 

The function Tp ( H  ( -  ) - T) , whose definition we will recall in 
a moment, equals 1 if P = G ,  and vanishes on a large compact 

neighborhood of 1 in G ( A ) I  if P s G . In other words, 
T k&(x, f) i$ obtained by modifying KG , &(x , y) in some neighbor- 

T hood of infinity in G ( @ )  \ G ( A )  . The function k(x,f) turns 

out to be integrable, and the distributions on the left of the 

trace formula are defined by 

,, 
If P is a standard parabolic subgroup, T is the P 

characteristic function of a certain chamber. Write a = en. 

- and Ap - AMp If Q is a parabolic subgroup that contains 

P I  there is a natural map from -o<_ onto a. 
Q' We shall 

write 

for its kernel. Let Ap denote the set of simple roots of 

(P ,A). It is naturally embedded in the dual space 



The trace formula 

of . There is associated to each a e Ap a "co-ro~t" av 

* * 
in . Let 8 be the basis of t^-p/Ag which is dual to 

{av  : a e A }  . ,Then < is the characteristic function of 

Let Hp be the continuous function from G(A)  to % defined 

by 

T In the formula for k@(x,f) above, the point T belongs 

to a ,  but it projects naturally onto a point in A .  It 

is in this sense that 

is defined. 

The set X which appears on the right hand side of (1.1) 

is best motivated by looking at 0. If 0- 0, consider those 

standard parabolic subgroups B which are minimal with respect 

to the property that a- meets MB. Then e n  MB is a finite 

union of M(Q) conjugacy classes which are elliptic, in the 

sense that they meet no proper parabolic subgroup of MB which 

is defined over Q. Let W be the restricted Weyl group of 
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( G  ,A). It is clear that 0 is in bijective correspondence 

with the set of Wo-orbits of pairs (MB , cB), where B is a 

standard parabolic subgroup of G ,  and cB is an elliptic 

conjugacy class in MB(Q). If we think of the automorphic 

representations of G(A)' as being dual in some sense to the 

conjugacy classes in G(@), we can imagine that the c u s p i d a l  

automorphic representations might correspond to elliptic 

conjugacy classes. X is defined to be the set of W-orbits 

of pairs ( M  , r), where B is a standard parabolic subgroup 

of G and r is an irreducible cuspidal automorphic represen- 

tation of MB@) . For a given x E X , let P be the set x 
of groups B obtained in this way. It is an associated class 

of standard parabolic subgroups. Similarly, we have an 

associated class Pn. for any <ye 0. 

Suppose that x 6 X and P a P are given. Let 
0 

L2 ( N  (&)M~ (Q) \G (A)' )x be the space of functions @ in 

L~ [ N  (A)% (Q) \G (A)' ) with the following property. For every 

standard parabolic subgroup B ,  with B c P , and almost all 

x e G @I) , the projection of the function 

onto the space of 

under MB(~)' as 

I 1 (nmxldn , 1 meMg(A) , 
% (fa) \%@I 

cusp forms in L2 ( M ~  (Q) \MB @I1 ) transforms 

a sum of representations rB , in which 

(MB I rB) is a pair in x. IÂ there is no such pair in x , 

B,X will be orthogonal to the space of cusp forms on 

% (Q) \Mc (A)' . It follows from a basic result in Eisenstein 
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series that L (Np @IMP (Q) \G (A)' ) will be zero unless there is a 

group in P which is contained in P. Moreover, there is an x 
orthogonal decomposition 

Let Kp (x,y) be the integral kernel of the restriction of 
1 x 

R f to L (Np (AIMp (Q) \G (A) I )  . One can write down a 

formula for x̂ (x,y) in terms of Eisenstein series. We have 

each side being equal to the integral kernel of Rp(f). Xf we 

define the modified functions 

T dim ( A h G  1 
k (x,f) = [ (-1) I K ~ l x  (fix , fix) Tp (~~(5x1 - T )  

p3p0 6eP ( Q )  \G (Q) 

we immediately obtain an identity 

T It turns out that the functions kx(x,f) are also 

In fact, the sums on each side of the identity are 

integrable. The distributions on the right of the 

are defined by 

integrable. 

absolutely 

trace formula 
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The trace formula (1.1) follows. 

Most of the work in proving (1.1) comes in establishing the 

T integrability of k (x, f) and kT (x, f) . Of these, the second x 
function is the harder one to handle. To prove its integrability 

it is necessary to introduce a truncation operator on G(Q) \G(A)' . 
Given T as above, the truncation of a continuous function h 

on G(Q) \G@I1 is the function 

T T If x X , let A A K (x,y) be the function obtained by 
1 2  x 

truncating the function 

in each variable separately. From properties of the truncation 

operator, one shows that 

is finite (see [l (d) , 511 ) . One can also show, with some effort, 
that 

([l(d), Â § 2 ] )  from which one immediately concludes that 



The trace forrnula 

is also finite ( [l (d) , Theorem 2.1 ] ) . This was the result that 

was required for formula (1.1). In the process, one shows that 

for any x e X I  $he integral of 

is zero for sufficiently regular T ([l (d) , Lemma 2.41). In 

other words, 

T This second formula for Jx(f) is an important bonus. We shall 

see that it is the starting point for obtaining a more explicit 

T formula for Jx ( f )  . 

2, SOME REMARKS 

~t is natural to ask how the terms in the trace formula 

(1.1) depend on the point T. It is shown in Proposition 2.3 

T T of [1(Â£ ] that the distributions J& (Â£ and J(f) are poly- 

nomial functions of T ,  and so can be defined for all points 

T in < x .  There turns out to be a natural point To in % 
such that the distributions 
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and 

are independent of the minimal parabolic subgroup Po. For a better 

version of the trace formula, we can set T = To to obtain 

(incidentally, To is strongly dependent on the maximal compact subgroup 

K. For example, if G = G L  and Ho is the group of diagonal matrices, 

T will equal zero if K is the standard maximal compact subgroup of 0 

GI,@). However, if K is a conjugate of this group by Mo(A.), To might 

not be zero). The distributions J and J will still depend on No and 
Y x 

K. Moreover, they are not invariant. There are in fact simple formulas 

to measure how much they fail to be invariant. 

Let L(M~) be the set of subgroups of G, defined over Q, which 

contain Mo and are Levi components of parabolic subgroups of G. Suppose 

that M e L(Mo). Let L(M) be the set of groups in L(M~) which contain M. 

Let F(I1) be the set of parabolic subgroups of G, now no longer standard, 

which are defined over Q and contain M. Then if Q e F(M) , M also 
0 

contains M. Let P(M) be the set of groups Q in F(M) such that M equals 
Q 

M. Suppose that L e KM) . We write L~ (M) , F~ (M) and F  ̂(PI) I 

for the analogues of the sets 1 (M) , F(M) and P(M) when G is replaced 

by L. Now suppos'e that 0' is a class in 0. Then (?- n L(Q) is a disjoint 
I 

, 
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union 

of equivalence classes in the set, OL , associated to L. We 

can certainly define the distributions JBi on L(A)' . set 

By definition, J is zero unless 0- meets L(Q). If x X , 
(9- 

we can define a distribution J on L@)' in a similar way. x 
Formula (2.1), applied to L , yields 

where now f is any function in C ~ ( L  (A)' ) . 
The formulas which measure the noninvariance of our distri- 

butions depend on a certain family of smooth functions 

indexed by the groups L e I ( M )  and Q e F ( M )  . We will not 

define these functions here. They are used to define a continuous 

map 
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f r o  c~(L(A)~) to C;(M@)') for each y E L&)' . If 

m : ~feft)' . fQY(m) is given by 

where 6Q is the modular function 

alluded to are 

Q(A). Then the formulas 

and 

where t f - c  0 .  y, c X I  f c c"L(&)') and y c L ( A ) .  (see 

M 
[l (f ) . Theorem 3.21 . ) Here 1 wOQ 1 stands for the number of 

elements in the Weyl group of ( M  , A )  . As usual, fY is the 

function 

If Q = L r  f will equal f by definition. We therefore 
QrY 

obtain a formula for the value of each distribution at fy - f 
L as a sum of terms indexed by the groups Q c F (Mo), with Q * L. 

The distribution will be invariant if and only if for each f 

L and y .  the sum vanishes. For example, Ĵ , will be invariant 

if and only if O'n M(Q) is empty for each group M e F ~ M )  



The trace f o d a  

with M * L. 

3,  T H E  TRACE FORMULA IK INVARIANT FORM 

There is a natural way to modify the distributions J-, and 

J so that they are invariant. This was done in the paper x 
[I(Â£)] under some natural hypotheses on the harmonic analysis 

of the local groups G(Q). We shall give a brief discussion 

of this construction. 

If H is a locally compact group, let H ( H )  denote the 

set of equivalence classes of irreducible unitary representations 

of H. Suppose that M is any group in L ( M ) .  We shall agree 

to embed II (M (A) I )  in II (M (A) ) ; for M (A) is the direct product 

0 of M(A)' and AM@?) , so there is a bijection between 

II (M (A) I)  and the representations in H (M (A) ) which are trivial 

0 1 on AMOR) . Let IItemp (M(/A) ) be set of tempered representa- 

tions in II ( M ( < A )  ) . From Harish-Chandra's work we know that 

there is a natural definition for the Schwartz space, C ( M l & ) ) ,  

of functions on M(A)' . There is also a linear map 7 "  from 

1 
C (M (a) ) to the space of complex valued functions on 

%emp ( M @ ) ~ ) , '  given by 

In [l ( f ) , Â 5 I we proposed a candidate, l (M ( A )  ) , for the image 

of T . Roughly speaking, l (M (A) I )  is defined to be the space 

of complex valued functions on H t e  (M (A) I ) which are ~chwartz 
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functions in all possible parameters. It is easy to show that 

T maps C (M (&) I) continuously into 1 (M (A) ) . ~t is also easy 

to see that the transpose T; of T maps 1 (M (A) ' ) ' , the dual 

space of I(M(A)), into the space of tempered invariant distri- 

butions on M @)I . 

HYPOTHESIS 3.1: For each M e  (Mo), TM maps C (M(A)') onto 

? (M (&) ' ) . Moreover, the image of the transpose, 

is the space of aH tempered invariant distributions on M@)' . 

This hypothesis will be in force for the rest of 53. If I 

is any tempered invariant distribution on M@) , we will let 
I A I be the unique element in 7 (M (A) ) such that TM (I) = I . 

Important examples of tempered invariant distributions are 

the orbital integrals. Suppose that S is a finite set of 

valuations on Q ,  and that for each v in S ,  T is a 

maximal torils of M defined over Q .  Set 

1 
T; = ( TT T(Q)) n M W  , 

v e s  

and let T' be the set of elements -y in T; whose 
St reg 

centralizer in 
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equals T; . Given f e C (M~A)' ) and 1 y e TSrreg, the orbital 

integral can be defined by 

  ID(^) 1 %  is the function on T; which is usually put in as a 

normalizing factor.) I is a tempered invariant distribution 
Y 

on C (M (!A) ) . By Hypothesis 3.1 it corresponds to a distribution 

? on 2 (M @A)' ) . Now suppose that Â has compact support. 
Y 
Then the map 

has bounded support; that is, the support in T1 has compact 
S , reg 

closure n T . Let I (M@)' ) be the set of functions 

the function 4 2 (M (a) ) such that for every group Ts , 

has bounded support. There is a natural topology on I (~($4) ) 

such that. T - maps C: (M (&)I ) continuously into 1 (M @I1 ) . 

HYPOTHESIS 3.2 : For each group H c L (M,) , maps C: (M @A) ) 

onto 1 (M(A) I). Moreover, the image of the transpose, 
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1 
is the space of all invariant distributions on'M(A) . 

If I is an arbitrary invariant distribution on M(A) l ,  let be 

1 A 

the unique element in I (M(A) ) such that TA(1) = I. 

Much of the paper Cl(f)l is devoted to proving the following 

theorem 

THEOREME 3.3 : There is a continuous map 

for every pair of groups M c L in L(MO), such that 

and 

We will not discuss the proof of this theorem, which is quite dif- 

ficult. Given the theorem, however, it is easy to see how to put the 

trace formula into invariant form. 

PROPOSITION 3.4 : Suppose that 

1 
J~ : C:(L(A) ) + (E , L 6 L ( M ~ ) ,  

is a family of distributions such that 
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1 for a h  L f c~(L(A) ) and y e L(A)' . Then there is a unique family 

of invariant distributions such that for every L and f, 

PROOF : Assume inductively that I has been defined and satisfies (3.1) 

for all groups M e L(Mo) with M 5 L. Define 

1 1 for any f c_(L(A) ) .  Then is certainly a distribution on L(A) . 
The only thing to prove is its invariance. We must show for any 

y e L (A) that IL (fy) equals IL (f) . This follows from the fornula for 
~ ~ ( f ~ ) ,  the formula for 1(l(fy), and our induction assumption. 

n 

According to (2.3) and (2.3) , we can apply the proposition to 
L L the families {J} and {J 1. We obtain invariant x 
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d i s t r i b u t i o n s  {I:] and {I;} which s a t i s f y  t h e  analogues of  

( 3 . 1 ) .  

The t r a c e  formula i n  i n v a r i a n t  form is  t h e  ca se  t h a t  L = G  

of t h e  fol lowing theorem. 

THEOREM 3.5: For any group L i n  i ( M o ) ,  

PROOF: Assume induc t ive ly  t h a t  t h e  theorem holds  f o r  a l l  groups 

M  e I ( M )  wi th  M  ; L .  For any such M we a l s o  have 

f o r  any $ e I ( M @ ) ) .  Then 

by ( 2 . 2 )  and (3.1). 
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4, I N N E R  PRODUCT OF TRUNCATED E I S E N S T E  I N S E R I E S ,  

An obvious problem is to evaluate the distributions J_, 

I@, Jx and I explicitly. How explicitly is not clear, but x 
we would at least like to be able to decompose the distributions 

as sums of products of distributions on the local groups G(Q). 

In [l (c) ] wedef ined the notion of an u n r k i f i e d  class in 

T 0 . If 6 -  is unramif ied, J(f) can be expressed as a weighted 

orbital integral of f ([1 (c) , (8.7) 1 ) . It is possible to then 

express I(f) as a certain invariant distribution associated 

to a weighted orbital integral. (see [l(f) , 5141 for the case 
of GL.) If o- is not unramified, we would expect to express 

J(f) as some kind of limit of weighted orbital integrals. 

Then I*(Â£ would be a limit of the corresponding invariant 

distributions. In any case, the lack of explicit formulas for 

Je(f) and I&(f), with o- ramified, should not be an 

insurmountable impediment to applying the trace formula. 

One can also define an unramified class in X .  For any 

such class, it is also not hard to give an explicit formula 

for ~ ( 5 ) .  (see [l(d), p. 1191 .) Unlike with the classes @ , x 
however, it seems to be essential to have a formula for all x 

in order to apply the trace formula. We shall devote the rest 

of this paper to a description of such a formula. 

Suppose that P e F ( M )  is a parabolic subgroup. Let 

A (P) be the space of square-integrable automorphic forms on 

N (AIMp ( Q )  \G iA) whose restriction to Mp (A)' is square integrable. 

There is an Eisenstein series for each 6 e A (P) given by 
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~t converges for Re(X) in a certain chamber, and continues 
* 

analytically to a meromorphic function of X eÂ¥^p,a- If x e X 
and IT 6 n ( l > ~ ( A ) ) ,  let A2 (P) be the space of vectors + 

XI 
2 in A (P) which have the following two properties. 

(i) 

(ii) 

Let 

The restriction of 6 to G(A) belongs to 

L~(N~Ãˆ)M~(Q)\G(A)~ . 
For every x in G (A) , the function 

m ->- o> (mx) I m 6 fL> (A) , 

transforms under Mp(<A.) according to 

i2 (P) be the completion of A2 (PI 
xrn XI'" 

IT. 

with respect to the 

inner product 

* 
For each 

&P,C 
there is an induced representation 

Ox, 
of G(A) on x2 (PI, defined by 

XI IT 

The representation is unitary if X is purely imaginary. 

Now, suppose again that a minimal parabolic'subgroup 
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Po e P ( M )  has been f ixed .  Let  T be a po in t  i n  f f L  which 

is s u i t a b l y  r egu la r  wi th  r e spec t  t o  
P o .  We s h a l l  begin by 

desc r ib ing  t h e  r i g h t  hand s i d e  of (1.2) more p rec i se ly .  The 

ke rne l  Kx(xly)  can be expressed i n  terms of E i sens t e in  s e r i e s  

where @ i s  summed over  a s u i t a b l e  ortho-normal b a s i s  of A? (P). 
X ^  

To o b t a i n  A A  K ( x , y ) ,  w e  j u s t  t r u n c a t e  each of  t h e  two x 
Eisens t e in  s e r i e s  i n  t h e  formula. Then J T ( f )  i s  given by s e t t i n g  x 
x = y  i n  t h e  r e s u l t i n g  express ion ,  and i n t e g r a t i n g  over  

G ( Q )  \G @)I . I t  t u r n s  o u t  t h a t  t h e  i n t e g r a l  over  G ( Q )  \G(A)' 

may be taken i n s i d e  a l l  t h e  sums and i n t e g r a l s  i n  t h e  formula 

T  T f o r  A,A K (x ,x ) .  This  provides a  s l i g h t l y  more convenient x 
T express ion  f o r  J (Â£ ( [ l  (d)  , Theorem 3.21) . Given 

P Po , T II ( ~ p  $A) ) , and A c ioi-i , de f ine  an ope ra to r  

nT (PI^) on A? (P) by s e t t i n g  
 XI^ X I ^  

f o r  any p a i r  of vec to r s  and @ i n  A (PI .  Then (1.2) 
X , v  

becomes t h e  formula 
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where 

We hasten to point out that (4.2) does not represent an 

T explicit formula for Jx(Â£) It does not allow us to see how 

to decompose J into distributions on the local groups G(Q). x 
T Moreover, we know that J(Â£ is a polynomial function of T. 

However, this is certainly not clear from the right hand side 

of (4.2). 

The most immediate weakness of (4.2) is that the definition 

of the operator Q (P,A) is not very explicit. However, there 
XlT 

is a more concrete expression for QT (PI A) , due to Langlands. 
X̂  

(see [8(a), 591 .) It is valid in the special case that P 

belongs to the associated class 
Px ; 

that is, when the 

Eisenstein series on the right hand side of (4.1) are cuspidal. 

To describe it, we first recall that if P and P are groups 

in F ( M )  and s belongs to W (CT. , az ) , the set of 
1 

isomorphisms from Ofp onto 
"PI 

obtained by restricting 

elements in W to .<7~, , then there is an important function 

M (s,A). Forany $ e d 2 ( p ) ,  
pllp 

is defined to be 
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The integral converges only for the real part of X in a certain 

chamber, but Mpl,;(s,A) can be analytically continued to a 
- * 

meromorphic function of A e  uc with values in the space of 
PIC 
2 

a maps from A (P) to A (PI). Suppose that T is a 

representation in II ( M  (A) ) . Then M (s, A) maps the subspace 
lp 

2 A* (P) to AxrsTT(Pl). If A e i<̂  , let uT (P,A) be the 
XI* XI * 
value at A' = A of 

where 

G Here, Z(A ) is the lattice in .<rt-p generated by 
pl 1 

{ a " :  a e  A } .  
1 

T Then OJ ( P I  A) is an operator on A (P) . 
X Ã ˆ  XI* 
Lanqlands' formula amounts to the assertion that if P 

belongs to P T 
x r  the operators Q~ (PI A )  and u (PI A) are 

XI* x IT 
equal. This makes the right hand side of (4.3) considerably more 

T 
explicit. However, J (f) is given in (4.2) by a sum over all 
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s tandard  pa rabo l i c  subgroups P . Unfortunately,  i f  P does not  

belong t o  P T 
x '  t h e  ope ra to r s  CIT ( P , l )  and w (PIX) may 

X I ^  x,Tf 

no t  be equal .  The b e s t  w e  can sa lvage  is a formula which i s  

asymptotic wi th  r e spec t  t o  T . 
Se t  

We s h a l l  say t h a t  T approaches i n f i n i t y  s t r o n g l y  u i t h  re spec t  

t o  P o  i f  1 1 ~ ~ ~  approaches i n f i n i t y ,  b u t  T remains w i th in  a 

region 

f o r  some 6 > 0 .  

THEOREM 4 . 1 :  I f  d> and 4 '  a r e  vec to r s  i n  A^ (P) , t h e  
x,v 

d i f f e r e n c e  

approaches zero  a s  T approaches i n f i n i t y  s t rong ly  wi th  r e spec t  

t o  P o .  The convergence is  uniform f o r  X i n  compact subse t s  

This  theorem i s  t h e  main r e s u l t  of [ l ( h ) l .  The proof uses  

t h e  formula of Langlands a s  a s t a r t i n g  po in t .  11 



The trace formula 

5, CONSEQUENCES OF A PALEY-WIENER THEOREM, 

The asymptotic formula of Theorem 4.1 is only uniform for 

A in compact sets. However, the formula (4.2) entails 
* * 

integrating \ over the space i/f-/ict. , which is noncompact 

if P .' G. Therefore Theorem 4.1 apparently cannot be exploited. 

Our rescue is provided by a multiplier theorem, which was 

proved in [l(g)] as a consequence of the Paley-Wiener theorem 

for real groups. The multiplier theorem concerns C(G OR)  , ~,r,)  , 
the algebra of smooth, compactly supported functions on GQR) 

which are left and right finite under the maximal compact sub- 

group of G(R). Set 

where / k -  is the Lie algebra of some maximal real split torus in 

M (R) and JhrK is the Lie algebra of a maximal torus in n M (El. 

Then /k-n is a Cartan subalgebra of qÃ£ the Lie algebra 
of G(C), and ,k- is invariant under the Weyl group, W , of 

(qÃ , $C) . Let E ( $ ) be the algebra of compactly supported 

distributions on 4 which are invariant under W . The 

multiplier theorem states that for any y t El$)' and 

f_ c (G OR) , %) , there is a unique function 
%,y in 

C: (G fJR) , \,) with the following property. If IIÃ is any 

representation in Il (G OR) ) , then 
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where {v%} is the W-orbit in associated to the 
A 

infinitesimal character of and y is the Fourier-Laplace 

transform of y . The theorem also provides a bound for the 

support of 
%,Y 

in terms of the support of y and of f&. 

We apply the theorem to C ~ G  (A)' , K) , the algebra of K 

finite functions in C ~ G  (A)' ) . For each group P 3 Po , there 

is a natural surjective map h : 4 - + Ã ˆ  . Let .bl be the 
kernel of h .  Suppose that y e E ( V ~  is actually supported 

1 
on fyl . Any function f e c ~ G @ )  , K )  is the restriction to 

G @) of a finite sum 

m 
where each f is a K finite function in C (G ( Q )  ) . The 

restriction to G@)' of the function 

depends only on f . We denote it by f . Suppose that P 3 Po 

and TT e II (M- (A)). Then the operator p x l  TT (P , A f ) will be 
Y 

a scalar multiple of p X r T  (P A f) . For if 

there is a Weyl orbit { vn }  in associated to the 

infinitesimal character of ii_. Then 
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We shall now try to sketch how the multiplier theorem can 

be applied to the study of J~ . The key is the formula (4.2) , x 
and in particular, the fact that the left hand side of (4.2) is 

a polynomial function of T. Now this formula is only valid 

for points T which are suitably regular in a sense that depends 

1 on f . If N > 0 , let C:(G (A) , K) be the space of functions 

in C: (G (A) , K) which are supported on 

is the usual kind of function used to describe estimates on 

Gift) . See [l (c) , Â 11 .I Then it turns out that there is a 

1 
constant C such that for any N , and any f e c~(G@) , K), 

formula (4.2) holds whenever 

(see [l(i) , Proposition 2.21 .) 

~f f belongsto C;(G(A)~,K) and lc&($)' is 

supported on 
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(G (A)' , K) . We substitute f then f will belong to CN+Ny 
Y Y 

into the right hand side of (4.2). We obtain 

This equals 

where 

1 T 
for H and IT e II ( M ~  (A) 1 .  The function ifî  (H) depends 
only on the projection of H on A .  It vanishes for all but 

finitely many IT. It can also be shown to be a smooth bounded 

function of H . 
The expression (5.1) is a polynomial in T whenever 

F H c f ^  . ~ e t  -y be the Dirac measure on .$ at the 
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point H ,  and set 

Then N = [ I H [ ~  . The expression (5.1) equals 
Y 

This function is a polynomial in T whenever 

Its value at H  = 0 is just the right hand side of (4.21, which 

T equals J (f) as long as dp (TI is greater than C (1 + N) . 
0 

Suppose we could integrate (5.2) against an arbitrary 

Schwartz function of H e 4' . By the Plancherel theorem on 

$ the resulting inner product could be replaced by an inner 
* * 

product on i i  /ikG . If the original Schwartz function were 

taken from the usual Paley-Wiener space on .bl , we would be 

able to replace (4.2) by a formula in which all the integrals 

were over compact sets. Unfortunately this step cannot be taken 

immediately, because (5.2) may not be a tempered function of H . 
For each 1 e I1 ( M  (A) ) , let 
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be the decomposition of vT  into real and imaginary parts. Then 

any nonzero point X will cause (5.2) to be nontempered. 

Nevertheless, it is still possible to treat (5.2) as if all the 

points X were zero. This can be justified by an elementary 

but rather complicated lemma on polynomials. We shall forgo 

the details, and be content to state only the final result. 

Let S (ib*/ici.)w be the space of Schwartz functions on 
* * * * 

i /iaG which are invariant under W . If B r S (i,b /iaG) 

and ir <: II ( M  (A) l), set 

* * 
B (A) = B (iY + A) , A r ifip/î t G '  

* * 
It is a Schwartz function on i<x/i^ G "  

THEOREM 5.1: (i) For every function B r s (i.b*/i<)' there 

is a unique polynomial pT(B) in T such that 

approaches zero as T approaches infinity strongly with respect 

to P o .  

(ii) Suppose that B(0) = 1 . Then 

where 
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See [l(i) , Theorem 6.31. 0 

If the function B happens to be compactly supported, the 

same will be true'of all the functions B .  
The first state- 

ment of Theorem 5.1 can be combined with Theorem 4.1 to give 

THEOREM 5.2: Suppose that B c cW(i.b*/i~Q) . Then P (B) 
c 

is the unique polynomial which differs from 

by an expression which approaches zero as T approaches infinity 

strongly with respect to P o .  

See [1 (i) Theorem 7.11 . 

5,  AN EXPLICIT FORMULA, 

Theorems- 5.1 and 5.2 provide a two step procedure for 

T calculating Jx f )  if f is any function in C ~ G  (A) I) which 

is K finite. One first calculates 

as the polynomial which is asymptotic to 
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I I I P M ~ )  rlJ ~r(~x,n(P,A)~x,~(~,A,f))~T(~)d~ . T 

PaPo~eII ( ~ p  (A) ) î p/imG * * 

One then chooses any B such that B(0) = 1 ,  and calculates 

T 
J (f) by 

The second step will follow immediately from the first. The 

first step, however, is more difficult. It gives rise to some 

combinatorial problems which are best handled with the notion of 

a (G , M) family, introduced in [I(Â£ I. Suppose that M e L (No) . 
A f G  , M) family is a set of smooth functions 

indexed by the groups Q in P(M), which satisfy a certain 

compatibility condition. Namely, if Q and Q' are adjacent 

groups in P(M) and A lies in the hyperplane spanned by the 
* 

common wall of the chambers of Q and Q' in iffl- M' then 

c (A) = c (A). A basic result (Lemma 6.2 of [l (f 1 ) asserts that 
Q Q' 
if {c (A) } is a (G , M) family, then 

Q 

* 
extends to a smooth function on iNM. A second result, which 

is what is used to deal with the combinatorial problems we 
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mentioned, concerns products of (GI M) families. Suppose that 

{d (A) } is another (G , M) family. Then the function (6.1) 
Q 

associated to the (G , M) family 

is given by 

s ([l(f), Lemma 6 . 3 1 ) .  For any S e F(M), cM(A) is the function 

(6.2) associated to the (Ms , M) family 

l 
and c(A) is a certain smooth function on iffl- which depends M * 
only on the projection of A onto iaM . 

s ,  
For any (G , M) family { c  (A) } and any L e L (M) , there 

is associated a natural (GI L) family. Let A be constrained 
* 

to lie in i<xL and choose Ql e P(L). The compatibility 

condition implies that the function 

is independent of Q. We denote it by c (A). Then 
1 
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is a (G , L)-family. We write 

for the corresponding function (6 

value at A = 0 simply by c L - 
2). We sometimes denote its 

A typical example of a (G ,M) family is given by 

Q c P(M), A t ia, 

where { yQ : Q  c P (M) } is a family of points in 4% The M - 
compatibility condition requires that for adjacent Q and Q' , 

where a is the root in A which is orthogonal to the common 
Q 

wall of the chambers of Q and Q' . If each c is actually 

positive, the function ct4(A) admits a geometric interpretation. 

It is the Fourier transform of the characteristic function in 

OLM of the convex hull of { y Q  : Q  e P (M) 1 .  The number 

c = cM(0) is just the volume of this convex hull. (G , M) 
families of this sort are needed to describe the distributions 

Jn, and IT in the cases where explicit formulas exist. (see 

11(c), 571, [l(f), 5141 and also [Kb) I .) 

For another example, fix P e F ( M )  and let M = M . Fix 
* 

also a point X in i m .  For any Q e P(M), put 
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Then 

M P A  = M (A)-'MQiP(A+R) , 
* 

Q Q I p 
A 6 ioi- 

M I  

* 
i s  a f u n c t i o n  on i m M  w i t h  v a l u e s  i n  t h e  space  o f  o p e r a t o r s  

on A* ( P ) .  I t  can b e  shown t h a t  

is  a (G , M )  f ami ly  o f  ( v e c t o r  va lued)  f u n c t i o n s .  

I n  o r d e r  t o  d e a l  w i t h  (6.1) we must look back a t  t h e  

T 
d e f i n i t i o n  o f  ii) ( P , i )  i n  54. The e x p r e s s i o n  (4'.4) can be 

 XI^ 
w r i t t e n  a s  t h e  sum over  s e W (mP , KP)  of  

Given P a n d t W P , f t .  ) ,  set Q = w q l p w  t I t '  fox 

any r e p r e s e n t a t i v e  w of  t i n  G(Q). Then 
t 

is  a b i j e c t i o n  between p a i r s  which occur  i n  t h e  sum above and 

groups Q e P(M). Not ice  t h a t  
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I t  can a l s o  be shown t h a t  

equals  

- I (SP-\} ( Y ( T ) )  
M Q J p ( A )  M Q l P ( s  , W e  

where YQ(T) is  t h e  p ro j ec t ion  onto % of t h e  po in t  

l ( T - T o )  + T o .  

Theref o r e ,  

t h e  func t ion  which must be s u b s t i t u t e d  i n t o  ( 6 . 1 ) ,  can be obtained 

by s e t t i n g  A '  = A i n  t h e  sum over  s W(-ffl. I & P )  of 

Formula (6.3) sugges ts  a  way t o  handle (6.4) . We s e t  

and de f ine  

A ( Y ( T ) )  
c  ( A )  = e  

Q 
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and 

d (A) = t r ( ~  
Q Q~P(X)l~Qjp(s r *')P x r 71 IP,X,~)) 

for any Q P(M),. It is not hard to show that {cQ(A) } and 

{ d  (A) ) are (G , M )  families. The function (6.4) equals 

an expression to which we can apply (6.3). The result is a sum 

of terms indexed by groups S e F(M). The contribution to 

(6.1) of each such term can be shown to be asymptotic to a 

polynomial in T . The sum of all these polynomials will be the 

required polynomial pT (B )  . Once again , we will skip the 

details and state only the final result. 

In the notation above, set 

This is a product of two ( G , M )  families, so it is itself a 

( G  , M )  family. If L is any group in L (Mp), 

T M L (PIX) = lim 1 M~ (PfX,A)8 (A)"' 
A+O QcF(L) Q~ I 

is defined. It is a polynomial in T with values in the space 

of operators on (P )  . 
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If L M are any two groups in L (M) , let W1' reg 

be the set of elements in W (mM , aM) for which UC is the 

space of fixed vectors. 

THEOREM 6.1: The polynomial pT (B) equals the sum over 

P 2 P, , n ( M ~  Ãˆ ' ) ,  L e L ( M ~ )  and s e $(@Ã£p)re of 

the product of 

with 

See [ l ( j ) ,  Theorem 4.11. n 

The theorem provides an explicit formula for pT (B) . From 

T this we can obtain a formula for J (f) and, in particular, for x 

It i s  easy to show that 

Then Jx(Â£ can be obtained from the formula of the theorem by 

simply suppressing T. 



The trace formula 

The formula for J (Â£ will still depend on the x 
function B. It would be better if we could remove 

the function f is still required to be K finite. 

test 

it. Moreover, 

Our formula 

ought to apply to an arbitrary function in C;(G@) I). The 

dominated convergence theorem will permit these improvements 

provided that a certain multiple integral can be shown to converge 

absolutely. The proof of such absolute convergence turns out 

to rest on the ability to normalize the intertwining operators 

between induced representations on the local groups G(Q). At 

first this may seem like a tall order, but it is not necessary 

to have the precise normalizations proposed in [8(b), Appendix 111. 

We require only a general kind of normalization of the sort 

established in [ 6 ]  for real groups. The analogue for p-adic 

groups should not be too difficult to prove. In any case, we 

assume the existence of such normalizations for the following 

theorem. 

THEOREM 6.2. Suppose that f e C ~ ( G  (A) l) . Then J (f) equals 

the sum over M e L ( M I ,  L L (M) , e n (M(A) l) and 

of the product of 

with 
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This is Theorem 8.2 of C l ( j )  I. Implicit in the statement if the 

absolute convergence of the expression for J (f). x 

Let D (f) be the sum of the terms in the expression for J (i) for x x 
which 

and s 

In particular, the distribution D is invariant. As the "discrete part" x 
of J it will play a special role in the applications of the trace 

XI 

formula. 
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