The trace formula

THE TRACE FORMULA FOR REDUCTIVE GROUPS™

James ARTHUR

This paper is a report on the present state of the trace formula
for a general reductive group. The trace formula is not so much an end
in itself as it is a key to aeep results on automorphic representations.
However, such applications have only been carried out for groups of low
dimension ([51, [73, [8(c)], [3]). We will not try to discuss them here.
For reports on progress towards applying the trace formula for general
groups, see the papers of Langlands [8(d)] and Shelstad [11] in these
proceedings.

Our discussion will be brief and largely confined to a description
of the main results. On occasion we will try to give some idea of the
proofs, but more often we shall simply refer the reader to papers in the
bibliography..Section 1l will be especially sparse, for it contains a re-~-
view of results which were summarized in more detail in [1l({(e)].

This report contains no mention of the twisted trace formula.

Such a formula is ﬁot available at the present, although I do not

think that its proof will require any essentially new ideas. Twisted

*Lectures for Journées Automorphes, Dijon, Feb. 16-19, 1981.
I Wish to thank the University of Dijon for its hospitality.
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trace formulas for special groups were proved in {8(c)] and [3]. As

for the untwisted trace formula, we draw attention to Selberg's origi-
nal papers [lb(a)], [10(b)1, and also point out, in addition to the pa-
pers cited in the text, the articles [51, [1l(a)l, [4]1, [12], [9(a)] and

[9(b) 1.

1, THE TRACE FORMULA - FIRST VERSION,

Le G be a reductive algebraic group defined over Q. Let Ag be the

split component of the center of G, and set

%G = Hom(X(GXQ,IR) ’

where X(G)Q is the group of characters of G defined over Q. Then % is
a real vector space whose dimension equals that of Ag. Let G(A)1 be the

kernel of the map

H. : G(A) » %G ,

G

which is defined by
<Hg (%), &> .
e 2 |g(x) |, X e G@B), £ e X(G)y .

Then G(Q) embeds diagonally as a discrete subgroup of G(A)l, and the
coset space G(Q)\G(Af1 has finiﬁe invariant volume. We are interested
in the regqular représentation R of G(A)1 on LZ(G(Q)\G(A)I). If
f e C:(G(A)l), R(f) is an integral operatorvqn LZ(G(Q)\G(A)I). The sour-
ce of the trace formﬁla is the circumstance that there are two wafs to
express the integral kernel of R{f).

We shall state the trace formula in its roughest form, recalling
briefly how each side is obtained from an expression for the integral

kernel. This version of the trace formula depends on a fixed minimal
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parabolic subgroup PO’ with Levi component Mo and uhipotent radical NO'
and also on an appropriate maximal compact subgroup K = I K, of GQA)l.
v

In addition, it depends on a point T in

which 1is suitably regular with respect to P0 , in the sense

that ofT) is lérge for each root o of P on A = AM .
0 0 0

The trace formula is then an identity

(1.1) 1 gt = 1 Itm, £fec (cm?).
&el xeX X . c

We describe the left hand side first. ¢ denotes the set

of equivalence classes in G(®), in which two elements in

G(@) are deemed equivalent if their semisimple’components are

G(@) conjugate. This relation is just G(@) conjugacy if G

is anisotropic, but it is weaker than conjugacy for general G.

If P 1is a parabolic subgroup of G which is standard with

respect to P ., and ¢ e 0, set

Kp o (x,y) = J ¥ £(x yny)dn , X, v ¢ gy,
N, @) yeonM, (@)

where N, is the unipotent radical of P and My is the unique

Levi component of P which contains M Then

0"

(Xry)

] K

G0 Pr&
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is the integral kernel of the operator RP(f) obtained by
convolving f on LQ(NP(A)MP(Q)\G(A)l]. If P=G, it is
just the integral kernel of R(f). Define
dlm(AP/AG)

kglx,£) = [ (1) Ky (8%, 6x) T, (H, (6%) - 7).

PoP, : $eP(Q)\G (D) !

The function %P(HP(-)-T), whose definition we will recall in
a moment, equals 1 if P=G, and vanishes on a large compact
neighborhood of 1 in G(/A)1 if P # G. In other words,
ka(x,f) is obtained by modifying KG'a}x,y) in some neighbor-
hood of infinity in G(Q)\G(A)1 . The function kg(x,f) turns
out to be integrable, and the distributions on the left of the

trace formula are defined by

IoUE) = kD (x,£)dx .
c@ic@)’

If P is a standard parabolic subgroup, T is the

P
characteristic function of a certain chamber. Write oLy = 0Ly
' P
and AP = AM . If Q 1is a parabolic subgroup that contains
b k
P, there is a natural map from Olp onto ch . We shall
write
M
m Q- Q
“p = mbip < %

for its kernel. Let AP denote the set of simple roots of

(P ,AP). It is naturally embedded in the dual space
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* —
oy = X(MP)Q @ R

of ocP. There is associated to each o e AP a "co~root" o
~ * *

in otg . Let AP be the basis of ,olp/%mG which is dual to

o

{a¥: e A Then T, is the characteristic function of

pl - »

{HeotP:m'(H) >0,w;AP}.

Let HP be the continuous function from G{@) to T, defined

by

_ HP (nmk) = HM

P(m), ‘ neNP(A),meMP(A),keK.

In the formula for ki(x,f) above, the point T belongs

to ot but it projects naturally onto a point in OlL_. It

0’ P

is in this sense that
Ty (Hp (8%) - 1)

is defined.

The set. X which appears on the right hand side of (1.1)
is best motivated by looking at 0. If o e 0, <consider those
standard parabolic subgroups B which are minimal with respect
B ° Then o&n My is a finite
union of MB(Q) conjugacy classes(which are elliptic, in the

to the property that o meets M

sense that they meet no proper parabolic subgroup of MB which

is defined over @®. Let W0 be the restricted Weyl group of
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(G ,AO). It is clear that (¢ is in bijective correspondence
with the set of Wo—orbits of pairs (MB ’ cB), where B 1is a
standard parabolic subgroup of G, and €y is an elliptic
conjugacy class in MB(Q). If we think of the automorphic
representations of G(Ab)1 as being dual in some sense to the
conjugacy classes in G(@), we can imagine that the cuspidal
automorphic representations might correspond to elliptic
conjugacy classes. X 1is defined to be the set of Wo-orbits
of pairs (MB ’ rB), where B 1is a standard parabolic subgroup
of G and Ty is an ifreducible cuspidal automorphic represen-
tation of My (J*x)1 . For a given x ¢ X, let PX be the set
of groups B obtained in this way. It is an associated class
of standard parabolic subgroups. Similarly, we have an
associated class P, for any oe 0.

Suppose that Y ¢ X and P > P0 are given. Let
L? (NP @M, (R)\G o)t )X be the space of functions ¢ in

L2 (NP @M, (@)\G (a-\)l] with the following property. For every

standard parabolic subgroup B, with B < P, and almost all
X € GVA)1 , the projection of the function
_ 1
¢B'X(m) = ¢ (nmx}dn , me M @A) ,

N, (@) \N )

onto the space of cusp forms in 1.2 (MB(Q)\MB @)’} transforms
under My (A)1 as a sum of representations Iy in which
(MB ’ rB) is a pair in x. 1If there is no such pair in Y,

¢

B.x will be orthogonal to the space of cusp forms on
z7

MB(Q)\MB (A)1 . It follows from a basic result in Eisenstein
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series that L2(NPQA)MP(Q)\GaAf')X will be zero unless theére is a
group in PX which is contained in P . Moreover, there is an

orthogonal decomposition

2 1y _ 2 W1
L°(N, M, (@) \6@)" ) = Xfx L° (N, @M, (©)\G (B) )X .

Let K, X(x;y) be the integral kernel of the restriction of
’
2 1 .
Ry (£)  to L°(N,(A)M,(Q)\G(a) )X . One can write down a

formula for Ky X(x,y) in terms of Eisenstein series. We have
!

7 K

(x,y) = K (x,y),
6l 2 P,X

s xeX

each side being equal to the integral kernel of Rp(f). If we

define the modified functions

dim(A_/A) ~
kI(x,£) = § (-1) PG K, . (8%, 6x) T, (Hy (6x) - T),
X PSP sep(D)\G(R) X
we immediately obtain an identity
] ki) = § K (x,6).

60 xeX

It turns out that the functions ki(x,f) are also integrable.
In fact, the sums on each side of the identity are absolutely
integrable. The distributions on the right of the trace formula

are defined by

Ji(f) = J kri(x,f)dx.
G@\e@'?
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The trace formula (1.1) follows.

Most of the work in proving (1.1l) comes in establishing the
integrabilitybof kg(x,f) and ki(x,f). Of these, the second
function is the harder one to handle. To prove its integrability
it is necessary to introduce a truncation operator on G(Q)\GUA? .
Given T as above, the truncation of a continuous function h

on G(Q)\G@A)i is the function

dim(A_/A)
(-1) AP/ G z

0 5P (@ \G(®) N (@) \N,, @)

WMy = 7

h(néx) T, (H (6x) - T)dn .
PP P (HP

If x e« X, let ATAZ KX(x,y) be the function obtained by

truncating the function

_ 1
KG’X(le) = KX(X,Y), X, Y € G(Q)\G(A) ’

in each variable separately. From properties of the truncation

operator, one shows that

L 1AAT K (xx) [ ax
1 xeX X
G(@I\c@n)

is finite (see [1(d), §11). One can also show, with some effort,

that

J Iofalad K, (x,%) -k;r((x,f)ldx < w,
G(@)\G @) XeX

[[l(d), §2]], ffom which one immediately concludes that
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L (kT (x, £) ]ax
. 1 X
@A\G@R)™ xeX

is also finite ([1(d), Theorem 2.11). This was the result that
was reqguired for formula (l1.1). In the process, one shows that

for any x ¢ X, the integral of

T,T T

A1A2 Kx(x,x) - kX(x,f)

is zero for sufficiently regular T ([1(d), Lemma 2.4]). In
other words,

T
Ai

(1.2) J')Ig(f) = A7 K, (%, %) dx .

J;(Q) \¢@)?!

This second formula for Ji(f) is an important bonus. We shall
see that it is the starting point for obtaining a more explicit

formula for Ji(f).

_2. SOME REMARKS,

It is natural to ask how the terms in the trace formula
(1.1) depend on the point T . It is shown in Proposition 2.3
of [1(f)] that the distributions qg(f) and Ji(f) are poly-
nomial functions of T, and so can be defined for all points

T in < . There turns out to be a natural point T in ¢

0 0 0
such that the distributions
TO
J(y(f) =J0 (£), &e 0,
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and

Ty
JX(f) =J, 8, X € X,

are independent of the minimal parabolic subgroup PO. For a better

version of the trace formula, we can set T = T0 to obtain

{2.1) J(E) = ) J_(f)
xeX X

oel o
(incidentally, 'I‘0 is strongly dependent on the maximal compact subgroup
K. For example, if G = GL, and M, is the group of diagonal matrices,

T, will egual zero if K is the standard maximal compact subgroup of

0
GLy,(p) . However, if K is a conjugate of this group by M;), T, might
not be zero). The distributions {Y and JX will still depend on MO and

K. Moreover, they are noé invariant. There are in fact simple formulas

to measure how much they fail to be invariant.

Let ljuo) be the set of.subgroups of G, defined over @, which
contain M, and are Levi components of parabolic subgroups of G. Suppose
that M ¢ L(MO). Let L(M) be the set of groups in L(Mo) which contain M.
Let F(M) be the set of parabolic subgroups of G, now no longer standard,
which are defined over Q and contain M. Then if Q ¢ F(M), M, also

Q

contains M. Let 'P{M) be the set of groups Q in F(M) such that M. equals

Q
M. Suppose that L ¢ L(M). We write LL(M), FL(M) and PL(M)
for the analogues of the sets L(M), F(M) and P(M) when G is replaced

by L. Now suppose that ¢ is a class in 0. Then & n L{Q) is a disjoint
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union

.03 U v U éh

of equivalence clas$es in the set, 0 associated to L. We

L’
can certainly define the distributions Jg, on L@} . set
i
n
b=y gt
& ik 03

By definition, Jg_ is zero uynless ¢ meets L(®). If x e X,
we can define a distribution Ji on LMA)1 in a similar way.

Formula (2.1), applied to L, vyields

L L
(2.2) I OS(E) = ) Ion),
oeo ¥ yex X

where now £ is any function in C:(L@A)l).
The formulas which measure the noninvariance of our distri-

butions depend on a certain family of smooth functions

u&hw R ke KnLl@A) , vye L&) ,

indexed by the groups L ¢ L(MO) and Q € FL(MO). We will not
define these functions here. They are used to define a continuous

map

£ f , £ e c:(L(A)l) .

11
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from C:(L(A)l) to C:(MQ(AA)I) for each y ¢ 7 SR 7

m ¢ M(AA)1 ’ £ {m) is given by
QY

s (m)% 1

0 £k

J J mnk) ué(k,y)dndk ,
K /Ny (&) -

where 6Q is the modular function of Q{A). Then the formulas

alluded to are

M -1 M
L .Yy o 0 0
(2.3) JheYy = 3 w @ we] 5.2, ),
o erlany 00 'ty
and
M -i M
(2.3%) gLy = 3 w QI WE T %, ),

0
where Ce 0, x e X, f ¢ CZ(L(A)l] and Vy e L)t . (see

M
[1(f), Theorem 3.2].) Here [WOQ[ stands for the number of

elements in the Weyl group of (M., AO). As usual, £Y is the

Q
function

1

flyxy ) , % € L(a)"

If 9=1L, will equal f Dby definition. We therefore

£
Q,y
obtain a formula for the value of each distribution at f£Y - £

as a sum of terms indexed by the groups Q e FL My), with Q = L.
The distribution will be invariant if and only if for each f

and y, the sum vanishes. For example, JI& will be invariant

if and only if O n M(Q) 1is empty for each group M ¢ FL(MO)

19
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with M =2 L.

3. THE TRACE FORMULA IN INVARIANT FORM

There is a n<'atural way to modify the distri\butions JO‘ and
JX so that/ they are invariant. This was done in the paper
[1(f)], under some natural hypotheses on the harmonic analysis
of the local groups G(Qv). We shall give a brief discussion
of this construction.

If H 1is a locally compact group, let N (H) denote the
set of equivalence classes of irreducible unitary representations
of H. Suppose that M 1s any group in L(Mo). We shall agree
to embed N{M@)!) in N(M@)); for M) is the direct product
of M(A)1 and AM(]R)0 y so there is a bijection between
T(M@)!) and the representations in I{#M(@)} which are trivial
on AM(IR)O . Let Htemp(M(zA)l] be set of tempered representa-
tions in N(M@)' ). FProm Harish-Chandra's work we know that
there is a natural definition for the Schwartz space, C(M(A)l],
of functions on M(.&A)1 . There is also a linear map TM from
C(M(-’A)l) to the space of complex valued functions on

II M(/A)l],. given by

temp (

(Ty ) (M) = tr 7(f), fecm@), mem Mat).

temp (

In [1(£f), §5] we proposed a candidate, I(M(/A)l] , for the image

of T, . Roughly speaking, I(M(A)l) is defined to be the space

1 .
ntemp[M(!A) )] which are Schwartz

of complex valued functions on

13
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functions in all possible parameters. It is easy to show that

TM maps C(M(A)l) continuously into I(M%)l). It is also easy
to see that the transpose Tb:I of TM maps I{(M (A)l) ', the dual
space of I(M(A)l), into the space of tempered invariant distri-

butions on M(d&)1 .

HYPOTHESIS 3.l: For each M «¢ L(Mo), TM maps C(M(A)i) onto

I(M(A)i). Moreover, the image of the transpose,

1 T
Ty: Te)?) > cue?®)
is the space of all tempered invariant distributions on M(LA)1 .

This hypothesis will be in force for the rest of §3. If I
is any tempered invariant distribution on M(A)1 , we will let
I be the unique element in I(M(A)l)' such that TN'l(i) =1I.

Important examples of tempered invariant distributions are
the orbital integrals. Suppose that § 1is a finite set of
valuations on @, and that for each v in §, T is a

v

maximal torus of M defined over QV . Set

1 _ 1
Ty = {171 TV(QV)) n M@y |,
veS
1 : 1
and let TS,reg Ibe the set of elements vy in TS whose
centralizer in
1 - i
Mg = (TT M@)]) n M@®)

veS

114
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Given f ¢ C(M@)?) and y e 7! the orbital

equals 'I‘1 S,reg’
r

g
integral can be defined by

IY(f) = IDM(Y) ]1/2 J f(x_iyx)dx .
. 1,..,.1
Tg\Mg

1 ' N
[]DM(Y) |? is the function on 1l which is usually put in as a

S
normalizing factor.) IY is a tempered invariant distribution

on C(M(A)l). By Bypothesis 3.1 it corresponds to a distribution

i“{ on I(M(/A)l). Now suppose that £ has compact support.

Then the map

1
Y > I,Y(f)r Y € TS,reg ’
has bounded support; that is, the support in Té,reg has compact
closure in Té . Let IC(MQLA)l) be the set of functions
¢ e I(M(@)l) such that for every group Té , the function
y - I (¢) ' Y € Tt
Yy S,reg’

has bounded support. There is a natural topology on IC(M(A)l)

such that T, - maps COCO(M @)!) continuously into I, Mmal).

HYPOTHESIS 3.2: For each group M ¢ L(M(), T, maps C:(M(A)i}

onto IC(M (A)l). Moreover, the image of the transpose,

15
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is the space of all invariant distributions on'M(A)l.

If I is an arbitrary invariant distribution on M(A)l, let I be

the unique element in IC(M(A)l) such that Tﬁ(l) = I,

Much of the paper [1(f)] is devoted to proving the following

theorem

THEOREME 3.3 : There is a continuous map
L ] 1 1
¢y ¢ Co L@@ ) ~ I (Ma)™) ,

for every pair of groups M < L in L(MO), such that

L MQ ©
1 () = ] by (Eq,y) + £ e CoL@) ), ¥ e L@,
QeFL(M)
and
i) oy = Ty O

We will not discuss the proof of this theorem, which is quite dif-
ficult. Given the theorem, however, it is easy to see how to put the

trace formula into invariant form.

PROPOSITION 3.4 : Suppose that

ol s, e Ly,

is a family of distributions such that
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M -1 M
) = g IwOQI IWISI g Qe
QeFh (1)

for each L, f o C:(L(A)l) and y € L(Aﬂ'. Then there is a unique family

t ~

s camt) ~ e, Le Lt

of invariant distributions such that for every L and £,

(3.1) ey = 7 b | Jwg 1Y T o (£))

L
Mel (MO)

PROOF : Assume inductively that IM has been defined and satisfies (3.1)

for all groups M ¢ L(MO) with M g L. Define

-1
e = ot - 5 IWliwEl My,
Me L (M)
M#L

for any f o CZ(L(A)I). Then I" is certainly a distribution on L(A)l.
The only thing to prove is its invariance. We must show for any
y € L(A)l, that IL(fy) equals IL(f). This follows from the fomula for

JL(fy), the formula for ¢ﬁ(fy), and our induction assumption.

According to (2.3) and (2.3*), we can apply the proposition to

the families {q?} and {Ji}. We obtain invariant

17
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distributions {Ii} and {Ii} which satisfy the analogues of
(3.1).
The trace formula in invariant form is the case that L=G

of the following theorem.
THEOREM 3.5: For any group L in L(MO),

L L ® 1
L, Tote) = 1 106, £ec(Lm?t).

e Xe

PROOF: Assume inductively that the theorem holds for all groups

M e L(MO) with M ¢ L. For any such M we also have

M, M
Lo To® —XZX L(9)
for any ¢ e IC(MQA)i). Then
L
17 (£)
&ZO ¢
_1/\
= Joake - 11wl IR(en6)
oe0 7¢0 merT )
M=zL
-1,
= Joae - 11 Iwgllwgl T(eg(e)
yex X XeX w1 Tov )
0
M=zL
L
= I _(f),
xZX X
by (2.2) and (3.1). 8]

18
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4, INNER PRODUCT OF TRUNCATED EISENSTEIN SERIES,

An obvious problem is to evaluate the distributions J,,
Ig. JX and IX explicitly. How explicitly is not clear, but
we would at least like to be able to decompose the distributions
as sums of products of distributions on the local groups G(QV).

In [1(c)] we defined the notion of an unrah{fﬁed class in
0. If o is unramified, Jg(f) can be expressed as a weighted
orbital integral of £ ([l(c), (8.7)1). It is possible to then
express I (f) as a certain invariant distribution associated
to a weighted orbital integral. (See [1(f), §14] for the case
of GLn.) If o is not unramified, we would expect to express
Jg(f) as some kind of limit of weighted orbital integrals.
Then Igjf) would be a limit of the corresponding invariant
distributions. In any case, the lack of explicit formulas for
Jo(f) and I (f), with o ramified, should not be an
insurmountable impediment to applying the trace formula.

One can also define an unramified class in X . For any
such class, it is also not hard to give an explicit formula
for J')lz(f). (see [1(d), p. 119].) Unlike with the classes & ,
however, it seems to be essential to have a formula for all Y
in order to apply the trace formula. We shall devote the rest
of this paper to a description of such a formula.

Suppose that P ¢ F(MO) is a parabolic subgroup. Let
A2(P) be the space of square-integrable automorphic forms on
NP(A)MP(Q)\GCA) whose restriction to MP(»A)1 is square integrable.

There is an Eisenstein series for each ¢ ¢ AQ(P) given by

19
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(Ap,) (H, (8x))
E(x,0,\) = § s(sx)e * P .
: §eP (D) \G (D)

It converges for Re()) 1in a certain chamber, and continues

*
analytically to a meromorphic function of A eO‘LP c” If x € X
1

and 7T e I(M,®)), let A)2( ;(P) be the space of vectors ¢

in AZ(P) which have the following two properties.

(1) The restriction of ¢ to G(A)1 belongs to
L (N, @My (@\G@) ')y
(ii) For every x 1in G{A), the function
m > ¢(mx), m e M (B),
transforms under M, (&) according to .
Let Kf(’ﬂ(P) be the completion of A)Q(,N(P) with respect to the

inner product

(¢,0") = [ j L& (k) FTTERY dmdk
K- Jng, @m0

*
For each A « *p ¢ there is an induced representation pX TT(P,)\)
N s . r
of G@) on Z)Q( . (P), defined by
14

o, o) o - ¢(Xy)e(x+pp> (HP(xy))e—mpP) (1, (x)) -

The representation is unitary if X is purely imaginary.

Now, suppose again that a minimal parabolic “subgroup

20
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P, e P(MO) has been fixed. Let T be a point in AL which

is suitably regular with respect to PO . We shall begin by
describing the right hand side of (1.2) more precisely. The
kernel Kx(x,y) can be expressed in terms of Eisenstein series

as

7olpmy |7t JOE(x, o, _(P,A,£)¢,2) E(¥, 8,40 dx,
PP © nén(mpm)l)m;/iﬂ; ¢ Xem

where ¢ is summed over a suitable ortho-normal basis of Ki ﬂ(P).
r

To obtain A?Ag KX(x,y), we just truncate each of the two
Eisenstein series in the formula. Then Ji(f) is given by setting
x=y 1in the resulting expression, and integrating over
G(Q)\GUAf‘. It turns out that the integral over G(Q)\GUAﬁ

may be taken inside all the sums and integrals in the formula

for AEA? KX(x,x). This provides a slightly more convenient
expression for Ji(f) {[1(d), Theorem 3.2}). Given

Po>P,, Te H(MPaA)], and X € im; , define an operator
Qirﬂ(P,A) on Ailn(P) by setting

.1 (e} (B9, 0) = 1TE(x,6",0) NTE(x,6,)) ax,
) s@\c@)’

for any pair of vectors ¢' and ¢ in Ai TT(P). Then (1.2)
r

becomes the formula

T =
(4.2) TLE) = )

)
Po>P_ well (MP @) 1)

: T
f Yo (A, £)dx,
o .

* *
10tP/1aLG

21
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where
T -1 T -
(4.3) YoOLE) = |[Py) | tr(QX,“(P,)\)oX,ﬂ(P,)\,f)).

We hasten to point out that (4.2) does not represent an
explicit formula for Ji(f). It does not allow us to see how
to decompose Ji into distributions on the local groups G(QV).
Moreover, we know that Ji(f) is a polynomial function of T.
However, this is certainly not clear from the right hand side
of (4.2).

The most immediate weakness of (4.2) is that the definition
of the operator Qi’W(P,k) is not very explicit. However, there
is a more concrete expression for Qz'ﬂ(P,k), due to Langlands.
(see [8(a), §91.) It is valid in the special case that P
belongs to the associated class PX ; that is, when the
Eisenstein series on the right hand side of (4.1) axe cuspidal.
To describe it, we first recall that if P and P1 are groups

in F(M,) and s belongs to W(et, , e the set of

)y
Py

isomorphisms from oy onto oty obtained by restricting
1

elements in WO to 0, then there is an important function

M

2
P P(s,)\). For any ¢ ¢ A (P),

.|

My jp(s,2)¢) (x)

Pll

is defined to be
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-1 (s (HP (x))
_ Octon) (Hyw_omx)) — P,
¢(wg1nx)e P (HP S e dn.

-1
prim Wy BT\, @)

The integral converges only for the real part of X 1in a certain

chamber, but MP b(s,k) can be analytically cortinued to a

1 l

meromorphic function of X ¢ OLP ,C with values in the space of

linear maps from A2(P) to A (Pi)' Suppose that 7w is a

representation in H(MPUA)). Then M (s,2) maps the subspace

P, P
A2 (P} to A2 (P). If A e iw., let w. _(P,)) be the
AT O A, ST 1 . € lO‘LP, e er“ ’ e
value at A' = A of
- L -
(4.4) 3 v (€0 @, ane TN Mg gyt
. Y p Ip P

P,oP, tt EW(ozP,ocpl) 1 1 1

where

6, (£'A" = th) = vol(etg /7(/:P FETT e -2 @%).
1 oteA
' 1

Here, ZAY ) is the lattice in otg generated by
Pl

{aV: acay}.
Pl

Then wT (P,A) 1s an operator on A2 (P).
><ITf XI
Langlands' formula amounts to the assertion that if P
T T
belongs to PX , the operators QXﬂ#P'%) and wX’ﬂ(P,X) are
equal. This makes the right hand side of (4.3) considerably more

explicit. However, Ji(f) is given in (4.2) by a sum over all
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standard parabolic subgroups P . Unfortunately, if P does not
belong to P_, the operators QT (P,2) and mT (P,\) may

: X . Xr T X T
not be equal. The best we can salvage is a formula which is

asymptotic with respect to T.

Set

d, (T) = min{a(T) : o ¢ A, }.
PO PO

We shall say that T approaches infinity strongly with respect
to P, if Tl approaches infinity, but T remains within a

region

{7 co,: dPO(T) > sz},

for some & > 0.

THEOREM 4.1: If ¢ and ¢' are vectors in Ai Tr(P), the
—_— . ,

difference
T 1 T 1
(QX’“(PIA)q) P 9) - (UUX'“(PI)\)¢ [ ¢]

approaches zero as T approaches infinity strongly with respect

to P The convergence is uniform for X in compact subsets

0"
*

of iotP.

This theorem is the main result of [1(h)]. The proof uses

the formula of Langlands as a starting point. 8]
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5. CONSEQUENCES OF A PALEY-WIENER THEOREM.,
The asymptotic formula of Theorem 4.1 is only uniform for
A in compact sets. However, the formula (4.2) entails
integrating A over the space iol;/iot*, which is noncompact
if P = G. Therefore Theorem 4.1 apparently cannot be exploited.
Our rescue is provided by a multiplier theorem, which was
proved in [1l(g)] as a consequence of the Paley-Wiener theorem
for real groups. The multiplier theorem concerns C:(GGR), %R)'
the algebra of smooth, compactly supported functions on G(R)
which are left and right finite under the maximal compact sub-

group of G(R). Set

JJ= iﬂgxe’j&o'

where )XO is the Lie algebra of some maximal real split torus in
MO(R) and %KK is the Lie algebra of a maximal torus in %RnMOmU.
Then %TC is a Cartan subalgebra of g}c , the Lie algebra

of G(€), and Jk is invariant under the Weyl group, W, of
(d%c ,{hr). Let E({y)w be the algebra of compactly supported
distributions on %} which are invariant under W . The
multiplier theorem states that for any v ¢ E(II)W and

fp C:(GGR), Kp) » there is a unique function fR,y 1P

C:[GGR), KR) with the following property. If I is any

R
representation in N{GM@)}, then

T (g ) = ‘?<%11R’T&R‘%R)
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*
where } is the W-orbit in ’}J’C associated to the

{vH]R
infinitesimal character of I&R R and \A( is the Fourier-Laplace
transform of vy. The theorem also provides a bound for the
support of f]R,Y in terms of the support of y and of flR .

We apply the theorem to C:(G (A)1 R K), the algebra of K
finite functions in C:(G (17-\)1]. For each group P > PO ’ there

P
kernel of hG . Suppose that vy e E(,%)W is actually supported

is a natural surjective map hP: J) gL _ . Let ,)9,1 be the

on _12»1 . Any function f e CZ(G @)y, K) is the restriction to

G(IA)1 of a finite sum

L, £,) = Z(gR ® (&, n fv>} ,

where each £ is a K finite function in C:(G(QV)). The

restriction to GVA)1 of the function

z(f]R,\{ @ (®szR fv))

depends only on £ . We denote it by fY . Suppose that P > PO
and w e (M, @®)). Then the operator oy @A, £ will be
14

a scalar multiple of pX Tr(P , A, £f). For if
T=®_ 7, m, e T ()],

there is a Weyl orbit {\)ﬂ} in ﬁaé associated to the

infinitesimal character of L Then

2/
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o nB A E) = YO N0, (B A, ).
We shall now try to sketch how the multiplier theorem can

be applied to the study of Ji . The key is the formula (4.2),

and in particular, the fact that the left hand side of (4.2) is

a polynomial funcéion of T . Now this formula is only valid

for points /T which are suitably regular in a sense that depends

on f£f. If N>0, Ilet C;(G(IA)1 , K} be the space of functions

in C:[GUA)l, K) which are supported on
{x ¢ c@)? : loglx|] < N}.
[Here

Il =TT I=I . x = TTx, ¢ G@®),
v v
is the usual kind of function used to describe estimates on
G({). See [1l{c), §17. Then it turns out that there is a
constant CO such that for any N, and any f ¢ C;(GCA)l ,K),

formula (4.2) holds whenever

dPO(T) > Co(l-+N).

(see [1(i), Proposition 2.2].)
1€ £ belongs to Cp(G@)' ,K) and v e E(,la,)w is

supported on
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(5 c pts Hl <,

then £. will belong to Co,. (6@’ ,K). We substitute £
Y N+NY Y
into the right hand side of (4.2). We obtain

. Yo+ MY E)
PoP el (M, @) ) * o * :

iJLP/iJLG
. (v, +1) (H)
= Ip ZWJ .. f YA, f)e Y (H)GH dA .
woprio i
This equals
v_(H)
(5.1) f ( ) Lovtme T yman,
/L&l P:»P0 TTeH[MP(/A) )
where
vl () =f L ToLeet ™ a,
ioLP/iZKG

for H & %;' and T € H(MP(A)l). The function mi(H) depends
only on the projection of H on oLy . It vanishes for all but
finitely many w . It can also be shown to be a smooth bounded

function of H.

The expression (5.1) is a polynomial in T whenever

dPO(T) > CO(1+N+NY) .

Fix H ¢ %; . Let y, be the Dirac measure on 161 at the
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point H, and set

y= W™t ]y

seW s "H
Then N, = lHl . The expression (5.1) equals
<1
o - v_(s "H)
(5.2)  |w|]™t ] vIs ' me " :

seW PoP el (i, @) *)

This function is a polynomial in T whenever

dPO(T) > c0[1+N+an).

Its value at H=0 is just the right hand side of (4.2), which

equals Jr';(f) as long as d_ (T) is greater than CO(l +N).

P
Suppose we could integrat?_e (5.2) against an arbitrary
Schwartz function of H ¢ )f . By the Plancherel theorem on
,,[31 , the resulting inner product could be replaced by an inner
product on i.la*/imé. If the original Schwartz function were
taken from the usual Paley-Wiener space on }&1 , we would be
able to replace (4.2) by a formula in which all the integrals
were over combact sets. Unfortunately this step cannot be taken
immediately, because (5.2) may not be a tempered function of H.
For each 7 ¢ II[MP (:A)l), let

*
V‘IT=X’(T+1YTT' . X']T'Y'}TE‘@’
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be the decomposition of Vo into real and imaginary parts. Then
any nonzero pqint XTr will cause (5.2) to be nontempered.
Nevertheless, it is still possible to treat (5.2) as if all the
points XTr were zero. This can be justified by an elementary
but rather complicated lemma on polynomials. We shall forgo
the details, and be content to state only the final result.

Let S(i.};/imé)w be the space of Schwartz functions on
ib*/iaé which are invariant under W. 1If Be S(ib*/ia;)

and 7 ¢ H(MP(A)i), set

*

*
B (A) = BUY +1), Ae dot/ie, .

* *
It is a Schwartz function on imP/iﬂG .

* *
THEOREM 5.1: (i) For every function B S(ib /iazG)W there

is a unique polynomial PT(B) in T such that

) ) vT (LB (VAL - et (B)
Pob mell (M, @) ") ia;/iaz

approaches zero as T approaches infinity strongly with respect

to PO .
(ii) Suppose that B(0) = 1. Then
lim pT (%) = JL(f),
e->0 X
where
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13 *- *
v) = B{ev), \)el)a/la.G, e > 0.
See [1(i), Theorem 6.3]. 0
If the function B happens to be compactly supported, the
same will be true'of all the functions BTT . The first state-

ment of Theorem 5.1 can be combined with Theorem 4.1 to give

3 * *
THEOREM 5.2: Suppose that B ¢ C,(ih /ia )™ . Then Pt (B)

is the unique polynomial which differs from

) Lo lPay 7! J tr (w p (B Aoy (P4, £)B (1)AN
. X T X m
poP mell (M, (A) ) i.or.;/iot;

by an expression which approaches zero as T approaches infinity
strongly with respect to Po'

See [1(i), Theorem 7.1}. 0

5. AN EXPLICIT FORMULA,

Theorems 5.1 and 5.2 provide a two step procedure for
calculating Jz(f), if f is any function in C:(GQA)i) which
is K finite. One first calculates

o * *
Pl (B), _B ¢ Cc(i}a /io‘LG)w,

as the polynomial which is asymptotic to
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(6.1) Tl ) lPuwP)l'lj tr(wl _(®,Np. _(P,\,£))B_(MaX.
X 2l ki
PoP el (M, @) ) iat 1012 X

One then chooses any B such that B(0) = 1, and calculates

T
J_(f) b

X( Y

JT(£) = lim PT(8%).
X >0
The second step will follow immediately from the first. The

first step, however, is more difficult. It gives rise to some
combinatorial problems which are best handled with the notion of

a (G,M) family, introduced in [1(f)]. Suppose that M ¢ L(MO).

A (G, M) family is a set of smooth functions

. *
cQ(A), A e ldﬁﬂ'

indexed by the groups Q in P(M), which satisfy a certain
compatibility condition. Namely, if Q and Q' are adjacent
groups in P(M) and A lies in the hyperplane spanned by the

*
common wall of the chambers of Q and Q' in iet then

M 14
cQ(A) = cQ,(A). A basic result (Lemma 6.2 of [1(f)]) asserts that
if {cQ(A)} is a (G ,M) family, then

(6.2) e = f 1

e (A)8 (A)™
gepny 2 0@

' *
extends to a smooth function on ioﬁn. A second result, which

is what is used to deal with the combinatorial problems we
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mentioned, concerns products of (G, M) families. Supposé that
{dQ(A)} is another (G, M) family. Then the function (6.1)

associated to the (G, M) family

{(cd)Q(A) = co(hdy(h) = Qe P}

is given by

S L
(6.3) {cd) () = c (A)Yd . (A),
M ng(M) Mo
{[1(f), Lemma 6.3]). For any S ¢ F(M), cﬁ(A) is the function

(6.2) associated to the (Ms , M) family
M
s - . s
{eg(n) = s (R) (M) : Re P>},

*
and cé(A) is a certain smooth function on ioﬁﬂ which depends
. .

only on the projection of A onto ioty, .

For any (G, M) family {cQ(A)} and aﬁy L ¢ L(M), there
is associated a natural (G, L) family. Let A be consﬁrained
to lie in ia{ and choose Q, ¢ P(L). The compatibility
condition implies that the function

CQ(A)I QeP(M)choll

is independent of Q. We denote it by cQ (A). Then
1

e P(L), A e ie),

c. (M), Q, 1

9
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is a (G, L)-family. We write

- . .
o (h) = ) c (A)eQ (A) A e iet_ ,

QP (L) 9 1 L

for the corresponding function (6.2). We sometimes denote its

value at A =0 simply by cr, -

A typical example of a (G, M) family is given by

1) .
e y QeP(M),AelOI.M,

where {Y Q0 e PM} is a family of points in oty - The

Q :
compatibility condition requires that for adjacent Q and @',

Y -Y =c.o , c eR,
a

where o 1is the root in AQ which is orthogonal to the common

wall of the chambers of Q and Q'. If each Sy is actually
positive, the function cy(d) admits a geometric interpretation.
It is the Fourier transform of the characteristic function in

&, of the convex hull of {YQ : Q¢ P(M)}. The number

Cy = cM(O) is just the volume of this convex hull. (G, M)

families of this sort are needed to describe the distributions

Je and I, in the cases where explicit formulas exist. (See

[1(c), §71, [1(f), §14] and also [1(b)].)
For another example, fix P ¢ F(MO) and let M = M, . Fix

*
also a point A in iot

M For any Q ¢ P(M), put
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M

Q[P(A) = MQ‘P(l,X).

Then

_ -1 .k
Mo (P2, h) = MQ|P(>\) MQIP(A+A), A e dot,

M

*
is a function on 16 with values in the space of operators
on AQ(P). It can be shown that

!

{MQ(P,A,A) : Qe PM)}

is a (G ,M) family of (vector valued) functions.
In order to deal with (6.1) we must loock back at the
definition of wi TT(P,)\) in §84. The expression (4.4) can be
7

written as the sum over s ¢ W(GH?’OLP) of

p

- N lE(8A=0)) (1) -l
o [p(E) lMplfP(ts,k)e B (e -1) 7",

. 1
PIDPO teW(OCP,O‘l P

1

;1 , for

Given P, » P and . t e W{(et_ , ot .

14 )I
1 0 P'P,

any representative wt of t in G{(@). Then

set Q =w le

(P1 s ) <= Q

is a bijection between pairs which occur in the sum above and

groups Q ¢ P{M). Notice that

E)Pl(t(s)\' -N) = UNCIRE SR
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It can also be shown that

' -1 o (esA =) ) ()
Mplip(t,k) MPllP(tS , A)e

equals

(sA'—A)(YQ(T))

_1 '
MQIP(R) MQIP(S P At)e

where YQ(T) is the projection onto OLM of the point

-1
t (T TO) + TO'
Therefore,

T
er{o, (B e (@,0,0)],

the function which must be substituted into (6.1), can be obtained

by setting A' = X in the sum over s e w(oﬂ?,nmp) of
(sx'-2) (¥ (™)

(6.4) N tr{ Q

Moo (s, A0, (@2, e
QeP0e,) olp olp XoT

v _1y1
GQ(SA Ay T

Formula (6.3) suggests a way to handle (6.4). We set

A= s)A'-2X,
and define

A(YQ(T))
cQ(A) = e
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and

-1
d = A '
oM = tr(My (0T My (s A0, (2, 0],
for any Q e P(M,). It is not hard to show that {CQ(A)} and
{dQ(A)} are (G, M,) families. The function (6.4) equals

-1
cQ(A)dQ(A)GQ(A) ’

QéP(MP)
an expression to which we can apply (6.3). The result is a sum
of terms indexed by groups S ¢ F(MP). The contribution to
(6.1) of each such term can be shown to be asymptotic to a
polynomial in T. The sum of all these polynomials will be the
required polynomial PT(B). Once again, we will skip the
details and state only the final result.

In the notation above, set

CA(Y(T))

®,\0 =e 2 Ho (B2 1), Qe P(Mp).

T

"o

This is a product of two (G ’MP) families, so it is itself a

(G ,MP) family. If L 1is any group in L(MP),

T oy T -1
ML (P,2) = lim ) M (P,A,A)GQ (A)

150 Q, <F (L) Q4 1

is defined. It is a polynomial in T with values in the space

of operators on AQ(P).
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If L o M are any two groups in L(MO), let WL(mM)reg

be the set of elements in W(aﬁw'otM) for which OIL is the

space of fixed vectors.

THEOREM 6.1: The polynomial PT(B) equals the sum over

1
PoPy, melM 7)), LelM) and S WL(“ﬁMP’reg of

the product of

[P ,) | "1 det (s-1) -1
P Xp/ty,
with
T
., MMy (s 000, (B E)]B (M)AN
hﬂL/iaC
See [1(j), Theorem 4.1]. 0

The theorem provides an explicit formula for PT(B). From

this we can obtain a formula for Ji(f) and, in particular, for

TO
3 (6 =3 ).

It is easy to show that
TO
ML (P,A) = ML(P,A).

Then JX(f) can be obtained from the formula of the theorem by

simply suppressing T .
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The formula for JX(f) will still depend on the test
function B. It would be better if we could remove it. Moreover,
the function £ 1is still required to be K finite. Our formula
ought to apply to an arbitrary function in C:(G(ﬂjl}. The
dominated convergence theorem will permit these improvements
provided that a cértain multiple integral can bé shown to converge
absolutely; The proof of such absolute convergence turns out
to rest on the ability to normalize the intertwining operators
between induced representations on the local groups G(QV). At
first this may seem like a tall order, but it is not necessary
to have the precise normalizations proposed in [8(b), Appendix II].
We require only a general kind of normalization of the sort
established in [6] for real groups. The analogue for p-adic
groups should not be too difficult to prove. In any case, we

assume the existence of such normalizations for the following -

theorem.

THEOREM 6.2. Suppose that f e C:(G(A)l). Then J (f) equals
the sum over M e L(M)), L @ L), 7 ¢ TMm@)?!) and

s ¢ WL(GCM)reg of the product of

fw%[]woi-lldet(s—l)all[—l
M
with
-1
J . *|P(M)| PZP(M)tr(ML(p,A)MP'P(s,O)pX'H(P,x,f))dx.
ie_ /it N
L G
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This is Theorem 8.2 of [1(3j)]. Implicit in the statement if the

absolute convergence of the expression for Jx(f). 0

Let DX(f) be the sum of the terms in the expression for JX(f) for
which L = G. It equals the sum over M ¢ L(MO), T € H(M(A)l), P ¢ P(M)

and s « WG(%M)reg of

|w’g[|wo|‘1|P<M)|‘1]aet(s-1)mG[‘1 tx My p(s,0) 0, (P,0,6)) .
M

In particular, the distribution DX is invariant. As the "discrete part”
of Jx, it will play a special role in the applications of the trace

formula.

BIBLIOGRAPHY

1. ARTHUR, J.,

(a) The Selberg trace formula for groups of F-rank one,
Ann. of Math. 100 (1974}, 236-385.

(b) The characters of discrete series as orbital integrals,
Inv. Math. 32 (1976), 205-261.

(c) A trace formula for reductive groups I : terms associated
to classes in G(Q), Duke Math. J. 45 (1978}, 911-957.

(d) A trace formula for reductive groups Il : applications of
a truncation operator, Comp. Math. 40 (1980), 87-121.

(e) Eisenstein series and the trace formula, Proc. Sympos.
Pure Math., vol. 33, Part I, Amer. Math. Soc., Providence
R.I. (1979), 253-274.

(f) The trace formula in invariant form, Ann. of Math. 113
(1981), 1-7%.

(g) A Paley-Wiener theorem for real reductive groups, preprint.

(h) On_the inner product of truncated Eisenstein series, to
appear in Duke Math. J.

(1) On a family of distributions obtained from Eisenstein se-
ries I : Application of the Paley-Wiener theorem, preprint.

40



The trace formula

(J) On a family of distributions obtained from Eisenstein series
II : Explicit formulas, preprint.

2. FLATH, D., Decomposition of representations into tensor products,
Proc. Sympos. Pure Math., vol. 33, Part I, Amer. Math. Soc.,
Providence, R.I. (1979), 179-184.

3. FLICKER, Y., The adjoint lifting from SL(2) to PGL(3), preprint.

4. GELBART, S., and JACQUET, H., Forms of GL(2) from the analvytic
peoint of view, Proc. Sympos. Pure Math., vol. 33, Part I, Amer.
Math. Soc., Providence, R.I. (1979), 213-252.

5. JACQUET, H., and LANGLANDS, R.P., Automorphic Forms on GL(2), Lec-
ture Notes in Math., 114 (1970).

6. KNAPP, A.W., and STEIN, E.M., Intertwining operators for semisimple
groups II, Inv. Math. 60 (1980), 9-84.

7. LABESSE, J.P., and LANGLANDS, R.P., L-indistinguishability for SL(2),
Can. J. Math. 31 (1979), 726-785.

8. LANGLANDS, R.P.,
(a) Eisenstein series, Proc. Sympos. Pure Math., vol. 9, Amer.
Math., Soc., Providence, R.I. (1966), 235-252.

(b) On the Functional Equations Satisfied by Eisenstein Series,
Lecture Notes in Math., 544 (1976).

{(c) Base Change for GL(2), Annals of Math. Studies, 1980.

(d) Les débuts d'une formule des traces stables, Publication de
1'Université Paris VII, volume 13, (1982).

9. OSBORNE, M.S., and WARNER, G.,
(a) The selberg trace formula I : T-rank one lattices, Crelle's
J., vol. 324 (1981), 1-113.

(b) The Selberg trace formula II : Partition, reduction, trunca-
tion, preprint.

10. SELBERG, A.,
(a) Harmonic analysis and discontinuous groups in weakly symmetric
Reimannian spaces with applications to Dirichlet series,
J. Indian Math. Soc. 20 (1956), 47-87.

(b) Discontinuous groups and harmonic analysis, Proc. Int. Cong.
Math. 1962, 177-189.

11. SHELSTAD, D., to appear in these proceedings.

12. WARNER, G., Selberg's trace formula for non-uniform lattices : the
IR-rank one case, Advances in Math. Studies 6, 1-142.

41





