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INTRODUCTION 

The basic result of this article is 

THEOREM i. Stokes and monodromy operators belong to the Galois group of a linear dif- 
ferential equation with a non-Fuchsian nonresonant singular point. 

This formulation requires explanation. The definition of a Galois group is presented 
in Sec. i, and of Stokes operators in Sec. 2. Theorem 1 was formulated by Ramis, who also 
offered an outline of a proof [i, 2], which will be published in a book under preparation.* 
An independent proof is presented here, based on what is called a "calculus of functional 
chains," developed first by the authors. Functional cochains arise in a natural manner in 
the local theory of resonant analytic vector fields and mappings. Normalizing series in the 
resonant cases, as a rule, diverge. However, they are asymptotic for "normalizing cochains"- 
piecewise-continuous functions or vector-functions of a single complex variable, holomorphic 
outside the discontinuity lines, a jump of which on the discontinuity line quickly decreases 
in the approach of the argument to the singular point; for a more detailed definition, see 
Sec. 3. The cochains are given by their asymptotic series uniquely, and can be considered 
as sums of these (divergent) series. The functional cochains play a basic role in proving 
the finiteness theorem for limit cycles, the first part of which was published in [3]. This 
paper is the simplest application of functional cochains. A parallel technique, developed 
in the West, is the resummation of Ramis. This same technique is mentioned in the outline 
of the proof of the finiteness theorem for limit cycles announced by J. Ecalle, J. Martinet, 
R. Moussu, and J. P. Ranis [4]. 

i. Galois Group of a Linear Differential Equation 

Let us consider in a neighborhood of zero, a linear nonautonomous differential equation 
with a holomorphic right part: 

t~+~2 = A  (t) z, z ~ C  ~, s ~ N ,  A (0 ) : / : 0 .  ( 1 . 1 )  

By a change of scale, one can make the operator-valued function A holomorphic in the disk 
ItI 5 i. if the matrix A has distinct eigenvalues lj, then the equation is called nonreso- 

nant. In this case, the singular point 0 of Eq. (i.I) is always irregular; this means, 
by definition, that there exists a solution of the equation, which in some sector with vertex 
0 approaches infinity more quickly than any power as t + 0. The arguments of Sec. i do not 
depend on whether Eq. (1.1) is resonant or not. 

Let S be an arbitrary sector of the unit disk. Let us denote by M the field of func- 
tions meromorphic in the unit disk with a unique pole at the origin. Let J~s be the exten- 
sion of M obtained by adjoining to M all the components of the solutions of (i.i), the con- 
straints on S. 

Definition i. The Galois group of Eq. (I.i) over M is the group of all automorphisms 
of the differential field yfs, keeping stationary all the functions from M meromorphic in the 
unit disk. The notation: 

G = G [,Yt°s: M]. 

Everywhere, except the conclusion, the refinement "over M" will be omitted for brevity. 

*A preprint of J. P. Ranis,, concerned with it, was unavailable to the authors in writing the 
article. 

M. V. Lomonosov Moscow State University. Translated from Funktsional'nyi Analiz i 
Ego Prilozheniya, Vol. 24, No. 4, pp. 31-42, October-December, 1990. Original article sub- 
mitted April ii, 1990. 
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Remark i. The choice of another sector S' instead of S replaces the Galois group by 
the conjugate: the conjugation is implemented by an automorphism of the analytic continua- 

tion J{s-+ 0Fs,, nonuniquely determined. 

Remark 2. By definition, every automorphism of a group G is a linear operator in an 
infinite-dimensional space Ks; however, the Galois group admits an exact n-dimensional 
representation, to the description of which we, in fact, pass. 

Proposition i. The automorphisms of the Ga!ois group induce a transformation of Car- 

tesian degree ,Yi'~-+J~, taking the solutions of Eq. (i.!) to solution S. 

Let L be the automorphism described in the proposition, and z e Jf~ be a solution of 
Eq. (i.i). Then (Lz)" = L$ and L(Az) = ALz by the definition of a Galois group. Consequent- 
ly, Lz is a solution of (i.i) along with z. 

COROLLARY. The Galois group of Eq. (i.i) admits an exact linear representation in the 
space f{s of constraints of all solutions of Eq. (i.i) on S. 

The representation of the Galois group is given by Proposition i. In order to prove 
its accuracy, it is sufficient to establish that the automorphism preserving all the compo- 
nents of all the solutions, is identical on ~s This immediately follows from the identity 
of the automorphism on M and the definition of the field Jfs- 

Let us denote by Z some fundamental matrix of solutions of (i.i) and fix it. Let A be 
an arbitrary, and B be an integral matrix: A = (aij), B = (bij). Let 

b . 

A ~ = II  ~j'  

(the analog of the usual multiindices). In this notation, an arbitrary element of ${s has 
the form 

aKZK/~-I bKZ~' ( 1.2 ) / 

the integral matrix K with nonnegative elements runs over a finite set depending on f. Dif- 
ferentiation is replaced by arithmetic actions due to (i.i): 

Z = A ( t )  Z/t  s. 

The columns of Z form a basis in the space fgs of all solutions of (i.I) bounded on S. To 
the automorphism H: 0rs-~ Jfs corresponds by Proposition i, the operator Ts: ~s-~ ~s. In 
the basis Z it is described by a matrix which is also denoted Tr~: Z-+ ZTs. Moreover 

H/= ~ ~ (ZT ~)~/ Y~ b~ ( zr~)~ .  ( 1 . 3 )  

At first glance, this formula along with (i.i) allows one for each linear operator TH: 
Zs-+Zs to construct an automorphism H: J~s-+JYs. However, the representation (1.2) can be 
nonunique, and the function Hf given by (1.3) will depend on the representation. For the 
definition (1.3) to be correct, it is necessary that T H preserve the relations in ~'s, that 
is, the equations 

~a~Z K ~ O. (1.4) 

The operator T H is only continued to an automorphism of ~s, when it follows from (1.3) that 

~ a ~  (ZT~)U - -  O. 

In particular, the automorphism S s - - ~ s  is generated by an automorphism of the n2-dimension - 
al space spanned over C by the components of the solutions, only if it preserves all the 
linear relations in the components. Theorem 1 follows now from the next theorem. 

THEOREM 2. The Stokes and monodromy operators of Eq. (i.I) preserve the relations in 
the field ,~s. 
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For the monodromy operators, Theorem 2 is trivial: analytic continuation along the 
loop preserves the relations. Theorem i, hence, follows for a monodromy operator. Below, 
Theorem 2 is proved for the Stokes operators, to the definition of which we, in fact, pass. 

2. Stokes Operators 

Starting from here, let us consider the equation to be nonresonant: h i # hj. In this 

case, there exists a formal change of variable z = Hw, taking Eq. (i.I) to the integrable 
equation 

ts+~w = B (t) w, B (t) = d i a g b ( t ) ,  b = (bl . . . . .  bn), 
(2.1) 

bj  a r e  p o l y n o m i a l s  o f  d e g r e e  no h i g h e r  t h a n  s .  The s i m p l e  p r o o f  o f  t h i s  t h e o r e m  c a n  be 

f o u n d  i n  [ 5 ] .  I f  h 1 . . . . .  h n a r e  t h e  e i g e n v a l u e s  o f  t h e  m a t r i x  A ( 0 ) ,  t h e n  b j ( 0 )  = h j .  E q u a -  

t i o n  ( 2 . 1 )  i s  c a l l e d  t h e  f o r m a l  n o r m a l  f o r m  o f  Eq. ( 1 . 1 )  o r  t h e  n o r m a l i z e d  e q u a t i o n ,  and  t h e  
f o r m a l  s e r i e s  H j o i n i n g  t h e s e  e q u a t i o n s  - t h e  n o r m a l i z i n g  s e r i e s .  The  n o r m a l i z i n g  s e r i e s ,  
n o r m a l i z e d  by  t h e  c o n d i t i o n  H ( 0 )  = E, i s  u n i q u e l y  d e t e r m i n e d .  The f u n d a m e n t a l  m a t r i x  o f  t h e  
s o l u t i o n s  o f  t h e  n o r m a l i z e d  e q u a t i o n  h a s  t h e  f o r m  

W ( t )  = d i a g w ( t ) ,  w = (wl . . . . .  wn), wj = expq j ,  

qi = bj~./t s+l, q j - -  - -  (~j /s t  ~) @ . . . -t- ~tj ln  t. ( 2 . 2 )  

Analytic continuation around the origin in the positive direction multiplies the funda- 
mental matrix W by the monodromy operator matrix 

W - +  W M w ,  Mw = exp 2~i diag ~t, ~t = (~q . . . . .  ~t~). 

Let us now dwell on the connection of the normalized and initial equations. Generally 
speaking, a divergent normalizing series is asymptotic for a holomorphic substitution join- 
ing in some sector with vertex 0, the normalized and initial equations. In order to formu- 
late an existence and uniqueness theorem of such substitutions, we require certain defini- 
tions. 

Definition i. The ray of a division corresponding to a pair of complex numbers h, 
and a natural number s is any of the rays given by the equation 

R e  ( ~ - -  N / t  s = O. 

A r a y  o f  t h e  d i v i s i o n  o f  e q u a t i o n  ( 1 . 1 )  i s  a n y  o f  t h e  r a y s  o f  t h e  d i v i s i o n  c o r r e s p o n d -  
i n g  t o  t h e  t r i a d s  s ,  h i , h j ,  w h e r e  h~ . . . .  , h n a r e  t h e  e i g e n v a l u e s  o f  A(O) .  

Definition 2. A sector with a vertex at the origin is called good for Eq. (i.i) if it 
has an opening greater than ~/s and for any pair hi, hj its closure does not contain two 

rays of the division corresponding to this pair and the number s. 

THEOREM 3 (on sectorial normalization [5, 6]). Let S be a good sector for Eq. (i.i). 
Then, if the radius of the sector is sufficiently small, there exists a unique holomorphic 
mapping H S possessing the following properties: 

i) the substitution z = HSW unites Eqs. (i.i) and (2.1) in sector S; 

2) the mapping H S is expanded into an asymptotic Taylor series H as t + 0, not depend- 
ing on S and joining formally Eqs. (i.i) and (2.1). 

The substitution H S described in the theorem is called normalizing for Eq. (i.i) in S. 

The Stokes phenomenon consists in the fact that normalizing substitutions in intersect- 
ing good sectors, generally speaking, do not coincide. Let HSI and HS2 be the corresponding 

normalizing substitutions. Then ZSj = HsjW( j = I, 2) are the fundamental matrices of the 

solutions in the corresponding sectors Sj. In the intersection of the sectors, one of these 

matrices is translated to another by multiplication on the right by the constant matrix: 

Zs ,C  = Zs, i f  H s ,  W C  = H s , W .  ( 2 . 2 )  
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The corresponding linear operator from the space of solutions ~s, of Eq. (i.i) in the 
sector Sl to itself is called the Stokes operator. 

Now all the concepts involved in formulating Theorem 1 are defined. For what follows, 
an invariant definition of Stokes operators is needed; it is broader than the preceding one 
and allows one to determine theStokes operator for any pair of good sectors, not necessarily 
intersecting. Let S I and S 2 be two good sectors, y be a curve with origin in S I and end in 
$2, lying in the punctured disk (here and below the punctured disk has the form 0 < It[ < i). 
Let ~ and ~[~ be the spaces of solutions of the initial and normalized equations in sector 
Sj, respectively. The theorem on sectorial normalization uniquely gives the defined operator 

hj: ~i ~ ~. Let us denote by A¥ the analytic continuation operator over y; it acts in 

the solution spaces of both the normalized and initial equations 

The Stokes phenomenon consists in the fact that the diagram 

I11 
dr1 ~ %1 

A~ ,'~ ':A v 

is noncommutative. The next diagram is commutative, which in fact determines the Stokes 
operator C = CsI,si,y:£s,-->~s~ (Ss~=$i) 

It, C 

(2.3) 

In the solution space of the normalized equation, there is distinguished a special basis de- 
termined with a precision up to an order - the set of columns of the matrix W. In the solu- 
tion space of the initial equation Ss, is distinguished a basis to which the previous one 

passes for a uniquely determined HSI. This is the set of columns of the matrix Z = HsIW. 

In this basis, the Stokes operator C is given by a matrix denoted by the same letter. Defi- 
nition (2.3) in matrix form: 

AvHslWC =Hs,AvW" (2.4) 

When the sectors S z and S 2 intersect, and the curve y consists of one point, this definition 
changes into the preceding one. 

The next remark is not used in proving Theorem i, but it is, in our view, a useful com- 
mentary on it. The Stokes operators possess the group property. Namely, let $I, $2, S 3 be 
three good sectors, Yl and Y2 be two curves, the second of which continues the first; Yl is 
started in S I and ends in $2, Y2 is started in S 2 and ends in S 3. Let 73 = YIYi. Then 

Cs, ,  s , ,  v~ = A7~o Cs~, s~, v, ° Av,  o Cs , ,  s,,  w 

This immediately follows from the previous definition and is clarified by the commuta- 

tive diagrams in which, for brevity, we denote C I = CSI,Si,YI , C 2 = $2,$3,12 , C3 ' = CSI,S3,ys, 

-i o 0 2 C2 = AT1 o A¥1 

Av, ~ i,, $Av,  
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Let us conclude this section by a remark on the connection of the Stokes and monodromy 
operators for the initial and normalized equations. 

Definition 3. A covering of the punctured disk by sectors good for Eq. (i.i) is called 
good for this equation if the union of any two sectors of the covering is not a good sector 
[a good covering does not contain superfluous sectors). 

Let us enumerate the sectors of a good covering in the natural counter-clockwise order. 
Let Cj be the Stokes operator corresponding to the intersecting sectors Sj and Sj+ l of this 

covering, Y0 be a positively oriented loop with start and end in Sl, circuiting the origin 
one time. Let us identify the solution spaces in intersecting sectors with sequential num- 
bers, considering that the solutions serving as an analytic continuation of each other, 
coincide. One can consider after this that all the operators Cj act in the space ~s,. Then 

MzGsIsI,~ ° = MzCN...CI = MW, where M W and M Z are the monodromy operators of the normalized 

and initial equations, respectively. This follows from the group property of the Stokes 
operators and diagram (2.3), in which 7 = ~0, J~ = ~2, $i = ~2; the analytic continuations 
along ~0 give the monodromy operators. 

3. Normalizing and Functional Cochains 

Let us consider a covering of the punctured disk by the sectors Sl, ..., S N good for 
Eq. (i.i). Let H I .... , H N be the normalizing mappings given by the sectorial normalization 
theorem. The set H = (H I ..... H N) is called a normalizing cochain. In the intersection 
of the sectors Sj n Sj+I let 

The sets 

~j : H 7  ~oHj+l ,  (6H)j = H i +  1 - H ~ .  

¢ = ( ~  . . . . .  CN), 6H = ((6H)~ . . . . .  (SH)N) 

are called the superposed and difference coboundaries of the cochainH, respectively. 

LEMMA i. The difference coboundary of the normalizing cochain satisfies the upper 

bound 

) 6 H  l <  exp ( -C~ I t I =) 

for some C > 0 depending on the cochain. The bound of the set signifies a simultaneous 

bound of all functions of the set. 

Let us prove at first that the correction of the superposed coboundary of the normal- 
izing cochain satisfies the bound of Lemma i. Let us note that it follows from the sectorial 
normalization theorem that I~ - id I decreases faster than any power. By definition (2.2) 

of the Stokes operator 

• j = W C j W  -~. 

Let ak£ and Ck£ be the elements situated in the kth row and £th column of the matrices ~j 
and Cj, respectively. Then 

a~z (t) = c~z e x p  (q~ (t) - -  qz (t)), 

see formula (2.2). The decrease of I~ - id I as t + 0 imposes the following constraints on 
the elements CkZ:Ckk = i; Ck£ # 0 exp(qk - q£) + 0 as t + 0 in Sj n Sj+I. By hypothesis, 

Eq. (1.1) is nonresonant, that is Ik # I£ for k # £. Therefore, the last requirement is 

equivalent to the fact that in Sj N Sj+I 

R e ( ~ - - ~ z ) / t  s . . . .  ~ .  

It is exactly essential here that Eq. (i.i) be nonresonant. Then in Sj n Sj+I 

Re(q~- -  q z ) < - - c  [t  1-~ 

for some c > 0. Hence, 

2 9 0  



I 61) - -  id I <  exp ( - -  c ! t i~). 

The required bound on the superposed coboundary is obtained. 

Let us now note that the correction of the superposed coboundary is of the same order 
of smallness as the difference one. This follows from the fact that for all linear opera- 
tors C ~ -~C n from a sufficiently small neighborhood of the origin, we have 

IIZ - -  B 11 • 2 II (E + A)o(E + B) -1 - -  E I1. 

T h i s  p r o v e s  t h e  lemma. ~> 

Remark. The operator-valued functions of the set, forming a normalizing cochain, serve 
in the nature of an analytic continuation of each other. This continuation is good in that 
all the functions of the set have identical asymptotics. An analogous continuation is pos- 
sible for any functions from ~s. In order to construct it, let us give the following def- 
inition, central in this article. Let us fix a covering U of the punctured disk, good for 
Eq. ( 1 . 1 ) .  

Definition i. By the regular functional cochain, corresponding to a covering U, is 
meant the set of holomorphic functions F = {F l ..... FN}, bijective!y corresponding to the 
sectors of the covering, where: 

!) each function of the set is determined in the corresponding sector and admits an 
analytic continuation in some wider sector containing a closure of the original one without 
the origin; 

2) the cochain coboundary is the set of differences (6F)j = Fj+ l - Fj, ~F = ((6F) l, 

.... (6F)N), considered in the sectors Sj N Sj+ l and satisfying there the bound 

I 6F l <  exp ( - -C I t I-s), 

C d e p e n d s  on F; 

3) all the functions of the set F are expanded into the same asymptotic Laurent series 
at the origin with a pole of finite order. 

The preceding lemma shows that the matrix elements of the normalizing cochains are 
regular functional cochains; it is necessary only to observe that the sectors of a good cov- 
ering admit the extension described in Sec. 1 of Definition i, where the covering remains 
good. 

The set of all regular functional cochains corresponding to a covering U is denoted 
~u (~ from functional cochains). The arithmetic actions over the cochains from ~u, as 
differentiation also, are conducted "componentwise," as the actions over the functions of 
the sets defined in the same sector. 

LEMMA 2. The regular functional cochains corresponding to a single covering, form an 
algebra. [b 

The proof immediately follows from Definition i.~ > 

Remark. One can prove more: one can replace the "algebra" in Lemma 2 by a "differen- 
tial field." However, this assertion is not needed in what follows. 

Let us note in conclusion that the functions meromorphic in the unit disk with a unique 
pole at the origin are those regular functional cochains with a trivial (null) coboundary. 

4. Relations in a Field Generated by the Components of the Solutions 

In this section, the functions of the field ~s are expressed in terms of regular func- 
tional cochains and components of the solutions of the normalized system. This allows one 
to describe the relations in J~ and complete the proof of Theorem 2 with the use of the 
Phragmen-Lindelof Theorem for cochains proved in Sec. 5. 

The relations in Jcs do not depend on the sector S; for different sectors, they are ob- 
tained from each other by analytic continuation. Therefore, for subsequent arguments, one 
can choose and fix S° Let U be a good covering of the punctured disk described in Sec. 2, 
and S be an arbitrary sector of this covering. As already noted, the sectorial normaliza- 
tion theorem allows one to distinguish a special fundamental matrix of solutions of (i.i) of 
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the form 

Zs = HsW, 

where W is given by (2.2), and H S is a normalizing substitution. 

Formula (1.4) assumes the form 

~ a K  (HsW) K Is ~ 0. ( 4 . 1 )  

The o p e r a t o r - v a l u e d  f u n c t i o n  H S i s  c o n t i n u e d  in  t h e  p u n c t u r e d  d i s k  t o  t h e  n o r m a l i z i n g  
c h a i n  H. By Lemma 2, t h e  l e f t  p a r t  o f  r e l a t i o n  ( 4 . 1 )  i s  c o n t i n u e d  in  t h e  p u n c t u r e d  d i s k  t o  
an e x p r e s s i o n  o f  t h e  fo rm 

~aK (HW) K = ~F~w ~, F~ ~ Y~u. (4.2) 

Here F k are regular functional cochains, w = (w I ..... w n) is given by (2.2), k is a multi- 

index: k = (k I ..... kn) e Z+ n, w k = wlkl...wnkn = exp(q, k), where q = ql ..... qn), qj 

is given by (2.2). Thus, relation (4.1) assumes the form 

~F~w ~ I s - -0 ,  F ~ Y ~ v .  

Let us move immediately now to the proof of Theorem 2. Let Sj be the j-th sector of 

the covering U, S = $I, yj, CSI,Sj,Tj be the same as at the end of Sec. 2. To prove that 

the Stokes operator C = CSI,Sj,yj preserves (4.1), is to prove the implication 

(4.1) ==> ~ a  K (Hs~WC) K Is, O. ( 4 . 3 )  

By the definition of the Stokes operator (2.4) 

A~jHs, WC = H s j A ~ W .  

Therefore, (4.3) follows from the implication 

(4.1) ~ ~a K (HW) K ~ 0 (4.4) 

on the universal covering over the punctured disk, where H = (HsI ..... HSN) is a normaliz- 

ing cochain. 

Let us prove (4.4). Without restricting generality, one can consider that in (4.2) the 
monomials w k for different k do not differ by a factor t TM for integral m; in the opposite 
case, it is necessary to multiply the coefficient for one of the monomials by t m and reduce 
similar terms. 

LEMMA i. Let J e Z$ be an arbitrary finite subset and no two monomials from the set 

{wkIk e J} differ by a factor t m for integral m. Then these monomials are independent over 
the ring ~g Is, where S is a sector of the covering U. 

Let us assume the contrary. Let 

F~w ~ [s~-O, F~ ~ Z ~ c ' F ~  ~-0" ( 4 . 5 )  
k ~ J  

In formula (2.2) let 

qj( t )  = p 1 ( l / t )  ~- ~ j l n t ,  ~ = (~1 . . . . .  ~n), 

pj are polynomials without a free term. Let P(t) = (pl(i/t), 

w ~ = t(w.~)exp (P, k). 

Case i. All the exponents (P, k), k e J are identical. 
(4.5) by exp(P, k). We obtain 

.... pn(i/t)). Then 

Let us divide both parts of 
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~, Fkt(~' k) ls--~ O. ( 4 . 6 )  
k E J  

This equation is possible only for F k ~ 0 for each k • J, as will be proved in considering 
Case 2. 

Case 2. Among the exponents (P, k), k • J, let there be different ones. Let us take 
a radius £ of the sector S, so that on it the difference of the real parts of any two of 
these different exponents in modulo approach infinity; it is then bounded in modulo below 
by e/It I for some e > 0. Let (P, k0) be the exponent with the fastest growing real part in 
£ as t + 0. Let us divide both parts of (4.5) by (P, k a) and transfer to the right part all 
the terms with exponents (P, k), with (P, k0) different from zero. We obtain 

F~t(", ~)I~ = o (exp (-- e/I t I))" ( 4 .7 )  j-, 

Here J' = {k e Jl(p, k) = (P, k0) }. Equation (4.6) is a particular case of (4.7); let us 
prove it follows from (4.7) that F k m 0 for k e J'. This will contradict the assumption 
(4.5). 

The asymptotic series of the left part of (4.7) in ~ equals a linear combination of 
asymptotic Taylor series Fk for the cochains F k with coefficients t(~, k). It follows from 
(4.7) that this combination is the null series. By the hypothesis of the lemma, the expo- 
nents (D, k) do not have integral differences. Consequently, for all k e J', Fk m 0. Hence, 
it follows from the Phragmen-Lindelof Theorem proved in Sec. 5 that F k m 0 - a contradic- 
tion.~> 

It follows from (4.1) that in Eq. (4.2) EFkwkIs m O. It follows from Lemma 1 that 

EFkwk m 0 on the entire universal covering over the punctured disk. It hence follows that 

Y, a~ (HW) K ~ O, 

that proves the implication (4.4). This concludes the proof of Theorem 2, and with it Theo- 
rem 1 also, modulo of the Phragmen--Lindelof Theorem. 

5. The Phra~men-LindelSf Theorem for Regular Functional Cochains 

THEOREM 4. A regular functional cochain decreasing along some radius faster than any 
power as t ÷ 0, identically equals zero. 

Remark. This theorem is a particular case of the Phragmen-Lindelof Theorem for what 
are called simple functional cochains, as proved by one of the authors in the article in 
press, "Finiteness theorems for limit cycles i." The theorem formulated above is the sim- 
plest in the series, and its complete proof is given here, according to the model of which, 
the remaining Phragmen-Lindelof Theorems for cochains are proved. 

Let F be a cochain satisfying the condition of the theorem. Let us write this cochain 
in the chart ~ = i/t. A good covering of the punctured disk passes to a covering of a neigh- 
borhood of infinity by sectors of an opening larger than n/s; this is the only information 
about the covering used in what follows. The cochain 9 = F(I/~) is a set of functions holo- 
morphic in 1-neighborhoods of the sectors of the covering if the cochain is considered on 
the exterior of a sufficiently large disk. All the functions of the set are expanded into 
a general asymptotic Laurent series with a pole of finite order at ~. The coboundary of a 
cochain is bounded above by the function m c = exp(-cI~Is) for some c > 0. Let us move from 
the covering to the decomposition. Namely, for any j • {i ..... N} let us take a ray £j c 

Sj N Sj+l' , directed to infinity and such that the rays ~j meet in a circuit of infinity in 

the order of their numbers. We consider the neighborhood of infinity to be so small that 2- 
neighborhoods of the rays do not pairwise intersect. Let us denote by L the union L = U £j. 

The rays £j break a neighborhood of infinity into sectors; sector ~j between the rays ~j and 

~j+1 belongs to the good sector Sj. 

LEMMA i (on Trivialization of a Cocycle). Let F be a regular functional cochain in a 
neighborhood of infinity, the coboundary of which is bounded above by a function m, and in 
~a-1: I~I ~ a - i let 
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maxm~mo, I m d s ~ I .  
~a-1 Ln~a-i 

Then there exists a functional cochain # with the same coboundary on L, defined in ~a and 
satisfying 

1 0  I < m o  + I .  

The trivialization lemma is proved with the help of an explicit formula. 
£j let us take as the function of the set 6F the difference Fj+ i - Fj. Let 

i f 6F(-O d p ( ; ) = ~  ~ d x .  

On each ray 

By a theorem of Plemelj [7] 6¢ = ~F on L 0 Oa-i. Let us bound I+(~)I in Ea- Each of the 
functions of the set 6F is continued analytically to a 1-neighborhood of the corresponding 
ray, and is there bounded above by m. Let us consider two cases. 

i. dist(~, L) ~ I. Then I~(~)I ~ i/2~. 

2. dist(~, L) ~ I. Let ~ belong to a 1-neighborhood of £j. The disk D with center 

and radius 1 belongs to Sj N Sj+i. In the formula for ~ let us replace the integral over 

the chord £j N D by an integral over an arc of dD with the same ends, which is separated in 

D by the chord from ~. The integrals over such arcs are bounded above by a constant m0, the 
integral over the remaining part of the contour is a constant I/2~. This proves the lem- 
ma. ~> 

LEMMA 2 (the Maximum Principle for Functional Cochains). In the conditions of Lemma i, 
let the regular functional cochain F' be bounded by some ray £: arg ~ = const. Then it is 
bounded in the neighborhood of infinity and 

supl F] ~< sup lF I + 2(me H- I), 
~a OQa 

where m0 and I are the same as in Lemma i. 

Let ~ be the trivialization of 6F given by Lemma i. Then the difference F - ~ is a 
holomorphic function in ~a. Since it grows no faster than some power, it is meromorphically 
continued to infinity. Since it is bounded on the ray £, this continuation is indeed holo- 
morphic. By the maximum principle for holomorphic functions 

s u p l F - - ¢ i = s u P l F - - ¢  1. 
~a O~a 

Lemma 2, hence, follows from the bound on I+l given by Lemma i. ~> 

Let us directly move to proving the Phragmen-Lindelof Theorem for cochains. One can 
consider the cochain F as bounded: in the opposite case, one can multiply it by a suitable 
power ~ and make it bounded, not violating the conditions of the theorem. In ~a: ]~I ~ a 
let us consider the cochain 

F~,, ~ = ~ '(~la)~, ~ > o. 

Let us verify the conditions of Lemma 2 for the cochain FX, a in order to apply to it 
the maximum principle. The cochain FX is regular and bounded on £ by the condition of the 
Phragmen-Lindelof Theorem. Its coboundary satisfies the bound 

def I 5F~, a [ ~ m~ . . . . . .  m~ (r/a) ~ = (r/a) ~ exp (-- crY), r = ]~ ]. 

Let us bound the constants m0 = max mx, a and I: 
Ea- z 

L~a_ 1 a--1 
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It is easy to bound this integral if one ensures the inequality 

m~,a/mi,,a ~ --I for r ~ a -- I .  

It follows from (5.1) that 

(5. l)  

rn~., a ( r )~<  (m~, a (a - -  1)) exp  ( - - r  -[- (a - -  1)), 

me ,~< t ,  f ~< N m~, a (a - -  l )  

for a > i, since (a - i/a) % < 1 and exp(-c (a - i) s) < i. Let us note that 

m~, ~/m~, ~ -~_ (~, In 1" - -  crY) ' ~" 
r 

Inequality (5.1) is satisfied if 

~ < c s ( a  -- t)~/2, 

Then by Lemma 2, considering IFI ~ i, we obtain 

Consequently, [F(~)] < c1(r/a) -~ for ~ 5 cs(a - l)S/2. Let us now take an arbitrary ~: 
]~[ > e and let a = I~[/e, % = cs(a - l)S/2. Then 

I F  ( ~ ) ] < C l e x p  ( - -C2 rs) 

for some C 2 > 0. But the functions of the set F are determined in sectors of an opening 
wider than v/s. Consequently, due to the classical Phragmen-Lindelof Theorem [8] F ~ 0. 

CONCLUSION 

Let us consider a linear nonautonomous system on the Riemann sphere with a finite num- 
ber of singular points 

= A (t) z, ( * )  

A is a rational operator-valued function. The points at which the poles of A are simple, 
are called Fuchsian, and the remaining poles of A - non-Fuchsian singular points; the point 

is Fuchsian if lim tA(t) = A~ # 0. The system (*) with single Fuchsian singular points is 
t~ 

called Fuchsian. For a general system (*) for each of the non-Fuchsian singular points, let 
us fix a sector with a vertex at this point and in the solution space on it define the Stokes 
operators. Then let us fix an arbitrary nonsingular point to and unite its curves with the 
points of the fixed sectors. This allows one to determine the Stokes operators in the solu- 
tion space of (*) considered near to. The Galois group of (*) is defined the same as in Sec. 
I, only M is the field of rational functions with poles just at the poles of A. 

THEOREM 6. The Stokes operators of equation (*), the non-Fuchsian singular points of 
which are nonresonance, belong to the Galois group of this equation. 

This theorem is proved exactly the same as the preceding one; the change of the field 
M does not play a role. Apparently, the following strengthening of Theorem 1 holds: 

THEOREM 1 bis. Let ~ be the field obtained from the field of functions meromorphic in 
the unit disk, by the union of the components of all solutions of the normalized system 
(2.1). Then the Galois group of Eq. (i.I) (formally equivalent to Eq. (2.1) over the field 
M is the algebraic closure of the subgroup of GL(n, C), generated by the Stokes and monodromy 
operators of Eq. (i.i). 

In conclusion, let us formulate two problems. 

Problem i. How is the solvability in quadratures of equation (*) connected with its 
Stokes and monodromy operators? 

For the Fuchsian system (*), the solvability of the monodromy group is equivalent to 
the solvability of the equation in quadratures [9]. 

Problem 2. Generalize Theorem l to the resonance case. 
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QUANTIZATION OF FINITE-GAP POTENTIALS AND NONLINEAR QUASICLASSICAL 

APPROXIMATION IN NONPERTURBATIVE STRING THEORY 

S. P. Novikov UDC 519.46 

In recent articles [1-3], and ending with [4], there has been discovered a remarkable 
circumstance resulting from the combinatorial Kazakov-Migdal-Kostov approach in the continu- 
ous limit. In cases of nonperturbative conformal string theories interacting with a "two- 
dimensional gravitation" according to Polyakov's scheme, as well as some other ones, when 
the central charge is c < i, there appears a simple system of equations for the renormgroup, 
i.e., a set of Laks type equations with certain ordinary differential operators in x: 

aL 
"'Or. ~-- [LIAr] .  ( 1 )  

Equations (i) are studied for the following boundary conditions: 

[L, A] = 8 . i ,  ( 2 )  

where ¢ is a quantum constant significant for our method. 

Equations of type (i), (2) for ¢ = 0 have well-known finite-gap and multisoliton solu- 
tions; they are completely integrable Hamiltonian systems and can be exactly solved with e- 
functions on Riemann surfaces (see [5-7]). 

Definition. Equation (2) is called a quantization of finite-gap potentials. 

The simplest case is where we have a second-order scalar operator L = -8x 2 + u, and A 
is an operator of odd degree. All such operators A are well-known in the theory of the 
Korteweg-de Vries (KdV) equation. In absolutely the simplest case 

L = --0~: + u, A = - -  4~ .  + 6u0~ + 3u' (3) 

the study of Eq. (2) is a rather complicated task, and from the naive point of view it is 
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