
126 0016–2663/06/4002–0126 c©2006 Springer Science+Business Media, Inc.

Functional Analysis and Its Applications, Vol. 40, No. 2, pp. 126–133, 2006

Translated from Funktsional ′nyi Analiz i Ego Prilozheniya, Vol. 40, No. 2, pp. 55–64, 2006

Original Russian Text Copyright c© by A. G. Khovanskii

An Analog of Determinant Related to Parshin–Kato Theory
and Integer Polytopes∗

A. G. Khovanskii

Received January 12, 2005

Abstract. Parshin–Kato theory involves a multilinear function of n+1 vectors in the n-dimensional
vector space over the field Z/2Z. The same function arises in the computation of the product in the
group (C∗)n of all roots of several polynomial equations with sufficiently generic Newton polytopes.
We discuss this remarkable function and related geometry of integer polytopes.
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The determinant of n vectors in the n-dimensional vector space Ln over the field Z/2Z is the
only nonzero multilinear function of n vectors that ranges in the field Z/2Z, is invariant under all
linear transformations, and is zero whenever the rank of the n vectors is less than n. There exists
a unique function of n + 1 vectors in Ln with exactly the same properties. This function arises
in the computation of the product in the group (C∗)n of all roots of a system of n polynomial
equations with sufficiently generic Newton polytopes [1] as well as in Parshin–Kato theory [2, 3].
In this article, we discuss this remarkable function.

The determinant of a matrix A over the field of real numbers is the volume of the oriented
parallelepiped spanned by the columns of A. Does the analog of determinant for n + 1 vectors in
the n-dimensional space over the field Z/2Z compute the volume of some figure? In this paper, the
positive answer to this question is given. It is closely related to geometry of integer polytopes.∗∗

I am grateful to my wife T. V. Belokrinitskaya for help with preparing the manuscript and to
the referees for useful remarks.

1. An Analog of Determinant for n + 1 Vectors in n-Dimensional Space
over the Field Z/2Z

In this section, we describe linear algebra related to an analog of determinant. We start from a
definition.

Definition. Let D be a function of n + 1 vectors in the n-dimensional vector space over
the field Z/2Z ranging in the field Z/2Z and determined by the following properties: the value
D(k1, . . . , kn+1) of the function D is equal to

(a) zero if the rank of the vectors k1, . . . , kn+1 is less than n;
(b) λ1 + · · · + λn+1 + 1 if the vectors k1, . . . , kn+1 satisfy the single relation λ1k1 + . . .

+ λn+1kn+1 = 0.
Lemma 1. The function D has the following properties:
(1) It is GLn(Z/2Z)-invariant ; i.e., D(k1, . . . , kn+1) = D(Ak1, . . . , Akn+1) for every linear

transformation A ∈ GLn(Z/2Z).
(2) It vanishes on (n + 1)-tuples of vectors k1, . . . , kn+1 whose rank is less than n.
(3) It is multilinear.
Proof. Properties (1) and (2) follow readily from the definition of D. To prove property (3), it

suffices to show that for any given vectors k1, . . . , kn the function ϕ(k) = D(k1, . . . , kn, k) is linear.

∗Supported in part by Canadian grant 156833-2.
∗∗As A. N. Parshin told me, he had not been aware of the simple definition of the function D discussed below

and geometry of integer polytopes related to this function, although the same function D appears in the symbols
invented by him.
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The rank of the system k1, . . . , kn can be n, n − 1, or less than n − 1. Consider these three
cases separately.

1. The rank is n. In this case, the vectors k1, . . . , kn form a basis in Ln , and each vector k is
uniquely represented as a linear combination k = λ1k1+· · ·+λnkn . Then ϕ(k) = D(k1, . . . , kn, k) =
λ1 + · · · + λn is a linear function of k.

2. The rank is n− 1. In this case, the function ϕ vanishes on the hyperplane Λ spanned by the
vectors k1, . . . , kn and is constant on the complement of this hyperplane. Indeed, if k ∈ Λ, then
the rank of the system k1, . . . , kn , k is less than n and D(k1, . . . , kn, k) = 0. If k /∈ Λ, then the
vectors satisfy a single relation, which is independent of k. Hence the function ϕ is constant on the
complement of Λ. Clearly, a function on Ln with this property is linear.

3. The rank is less than n − 1. In this case, ϕ is zero identically and hence is linear.
Lemma 2. There exists a unique nonzero function D satisfying properties (1)–(3) in Lemma 1.
Proof. To define a multilinear function, it suffices to specify its values on all tuples ei1 , . . . , ein+1

of vectors in the standard basis e1, . . . , en . It follows from property (2) that the function can be
nonzero only if all but two vectors in the tuple are distinct. It follows from property (1) that D takes
the same value on all such tuples. If this value is zero, then D is zero. The only other possibility is
that the value is equal to one. This corresponds to the function D defined above, which is indeed
GLn(Z/2Z)-invariant by Lemma 1.

Lemma 3. The function D is given in coordinates by the formula

D(k1, . . . , kn+1) =
∑

j>i

detij ,

where detij is the determinant of the n×n-matrix whose first n−1 rows are formed by the sequence
of vectors k1, . . . , kn+1 with the ith and j th vectors removed and whose last row is the coordinatewise
product of ki and kj .

Proof. The function
∑

j>i detij is a multilinear function of the vectors k1, . . . , kn+1 . It obviously
coincides with D on tuples of standard basis vectors.

Let us give yet another formula for D. Let Ã be the n × (n + 1) matrix whose rows are the
vectors k1, . . . , kn+1 , and let deti be the determinant of the matrix obtained from Ã by deleting
the ith row.

Lemma 4. The vectors k1, . . . , kn+1 satisfy the relation
∑

(−1)i−1 deti ki = 0.

Lemma 4 is a simple fact of linear algebra.
Lemma 5. The function

∏
1�i�n+1(1 + deti) is zero if the vectors k1, . . . , kn+1 span Ln. Oth-

erwise, it is equal to one.
Proof. The vectors k1, . . . , kn+1 span Ln if and only if at least one of the subdeterminants deti

is nonzero (and hence is equal to one).
Theorem 1.

D(k1, . . . , kn+1) = 1 + det1 + · · · + detn+1 +
∏

1�i�n+1

(1 + deti).

Proof. If the vectors k1, . . . , kn+1 do not span Ln , then all subdeterminants deti are zero
and D = 1 + 1 = 0. If k1, . . . , kn+1 span the entire space, then they satisfy the single relation∑

deti ki = 0 (Lemma 4). In this case,
∏

(1 + deti) = 0 (Lemma 5). By the definition of D

D(k1, . . . kn+1) = 1 + det1 + · · · + detn+1 .

The proof is complete.
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2. The Volume of a Chain in an (n + 1)-Dimensional Torus whose Boundary
is a Sum of Rational n-Dimensional Tori

2.1. In Sec. 2, we discuss geometry related to the function D. Let us say a couple of words
about the results.

Let Z
n+1 ⊂ R

n+1 be the integer lattice in R
n+1 , and let Tn+1 = R

n+1/Z
n+1 be the real

(n + 1)-dimensional torus. We give a geometric definition of a real-valued function J on the space
of n-dimensional cycles homologous to zero in Tn+1 (see Sec. 2.2). This function is defined up to
adding an integer. (It can be viewed as the antiderivative of the volume form on the torus.) With
each n-tuple a = (a1, . . . , an) of integer vectors ai ∈ Z

n+1 , we associate an n-dimensional cycle
C(a) homologous to zero in Tn+1 (see Sec. 2.2).

Consider an n×(n+1)-matrix A whose columns are integer vectors a1, . . . , an . Let k1, . . . , kn+1

be the rows of the matrix Ã over Z/2Z obtained from A by reduction modulo 2. The value of the
function 2J on C(a) lies in Z/2Z (see Theorem 2) and coincides with the value of the function
D on the tuple k1, . . . , kn+1 (see Theorem 4). This statement gives a clear geometric meaning to
the function D. As a by-product, we obtain some new results in geometry of integer polytopes (see
Theorems 3 and 3′).

Note that a similar geometric construction not only explains the geometric meaning of the signs
arising in Parshin–Kato theory but also provides a geometric definition for the “cohomology classes”
(in the sense of this theory) of analytic varieties with coefficients in C

∗ and for some generalizations
of these classes (see [4]).

2.2. Notation and statements of theorems. Let Tn+1 = R
n+1/Z

n+1 be the standard (n+1)-
dimensional torus equipped with an orientation and the standard volume form ω,

∫
T n+1 ω = 1. We

define a function J on the space of piecewise smooth n-dimensional cycles in Tn+1 homologous to
zero.

Definition. The value J(C) of the function J on an n-dimensional cycle C homologous to
zero is the volume

∫
σn+1

ω of any chain σn+1 such that ∂σn+1 = C . The chain σn is defined modulo
integer multiples of the fundamental cycle of Tn+1 ; hence J(C) is a well-defined element of the
group R/Z.

An affine subspace in R
n+1 is said to be rational if it is the affine hull of some subset of the

integer lattice Z
n+1 . In each k-dimensional rational vector subspace K ⊆ R

n+1 , one defines the
integer k-dimensional volume Vk . This is a translation-invariant volume function normalized by
the condition Vk(∆) = 1, where ∆ is a k-dimensional parallelepiped whose edges form a basis of
the lattice K ∩ Z

n+1 . The canonical projection R
n+1 → R

n+1/Z
n+1 = Tn+1 takes K to a rational

k-dimensional torus. On this torus, Vk induces a translation-invariant volume function such that
the volume of the entire torus is equal to one. Parallel translations in R

n+1 allow one to extend
the definition of integer volume to rational affine subspaces.

With an n-tuple a = (a1, . . . , an) of integer vectors ai ∈ Z
n+1 , we associate the following

objects: the oriented parallelepiped Π[a] ⊂ R
n+1 spanned by vectors a1, . . . , an ; the integer n-di-

mensional volume Vn[a] of the parallelepiped Π[a]; the chain T [a] in Tn+1 that is the image of
Π[a] under the projection R

n+1 → Tn+1 ; the multivector v[a] = a1 ∧ · · · ∧ an .
The chain T [a] is a cycle. If v[a] is nonzero, then this chain coincides with Vn[a] times the

fundamental cycle of the n-dimensional torus, the image under the projection R
n+1 → Tn+1 of the

oriented n-dimensional subspace containing Π[a]. If v[a] = 0, then T [a] is a cycle homologous to
zero and hence the boundary of a chain whose dimension is less than n + 1.

Let aj , j = 1, . . . , m, be n-tuples of integer vectors. Clearly, the sum v[a1] + · · · + v[am] of
multivectors v[aj ] is zero if and only if the sum T [a1] + · · · + T [am] of the cycles T [aj ] is zero in
the group Hn(Tn+1, Z).

The central result of this section is the following.
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Theorem 2. Suppose that v[a1] + · · · + v[am] = 0. Then the value J(C) of the function J
on the cycle C = T [a1] + · · · + T [am] is a half-integer. The integer 2J(C) (which is only defined
modulo 2) satisfies the congruence 2J(C) ≡ (Vn[a1] + · · · + Vn[am]) mod 2.

We shall prove Theorem 2 simultaneously with Theorem 3 below, which belongs in geometry of
integer polytopes. We say that an n-dimensional face Γ of a convex (n + 1)-dimensional polytope
is cancelable if this polytope has another face equal to Γ up to a parallel translation.

Definition. A convex (n+1)-dimensional polytope is said to be of parallelepipedal type if each
of its noncancelable n-dimensional faces is a parallelepiped.

Theorem 3. Let a convex (n + 1)-dimensional integer polytope ∆ be of parallelepipedal type.
Then its doubled integer (n + 1)-dimensional volume is an integer of the same parity as the sum of
integer n-dimensional volumes of all faces of ∆ that are parallelepipeds.

The integer volume of an integer parallelepiped is an integer. If a pair of cancelable faces of a
polytope is a pair of parallelepipeds, then the sum of their volumes is even. Hence the volumes of
cancelable pairs of parallelepipeds in Theorem 3 can be disregarded. Theorem 3 has a generalization
that applies to a wider class of polytopes (see Theorem 3′ in Sec. 2.6).

Let e1, . . . , en+1 be the standard basis in R
n+1 , and let v[ei] be the wedge product of all vectors

e1, . . . , en+1 except for ei . Let a be an ordered n-tuple (a1, . . . , an) of integer vectors ai ∈ Z
n+1 , and

let v[a] =
∑

Miv[ei] be the expansion of the multivector v[a] in the standard basis of multivectors.
Denote by C(a) the cycle C(a) = T [a] − ∑

MiT [ei], which is homologous to zero.
Theorem 4. The value of the function 2J on the cycle C(a) is a well-defined element of the

field Z/2Z and coincides with the function D applied to the vectors k1, . . . , kn+1 that are the rows
of the n× (n+1)-matrix Ã obtained by reduction modulo 2 of the matrix A whose columns are the
vectors a1, . . . , an.

2.3. One-dimensional case. Recall classical Pick’s formula.
Pick’s formula. The area V2(∆) of an integer polygon ∆, the number B(∆) of its interior

integer points, and the integer length of its boundary
∑

j V1(∆j) (here the sum is over all edges ∆j

of the polygon ∆) are related by

V2(∆) = B(∆) +
1
2

∑

j

V1(∆j) − 1.

Lemma 6. Theorem 2 holds for n = 1.
Proof. For n = 1, the multivectors aj are vectors in the plane. Since the sum of aj is zero,

we can assume that the vectors aj are the edges ∆j of some convex polygon ∆ that are oriented
counterclockwise. One can see from Pick’s formula that the doubled area of ∆ is an integer that
differs from the integer length

∑
j V1(∆j) of its boundary by the even number 2(B(∆) − 1). The

image of the oriented polygon ∆ under the projection R
2 → T 2 is a two-dimensional chain whose

boundary C is equal to T [a1] + · · · + T [am]. Hence 2J(C) ≡ 2V (∆) mod 2. Clearly, V1[aj ] =
V1(∆j). The proof of the lemma is complete.

Thus Theorem 2 follows for n = 1 from Pick’s formula. The volumes of higher-dimensional
integer polytopes are not half-integers in general. But an analog of Pick’s formula over the field
Z/2Z still holds for very special higher-dimensional polytopes (see Theorems 3 and 3′ below).

Any convex polygon is of parallelepipedal type. Theorem 3 for polygons also follows from Pick’s
formula.

2.4. Induction step. In this section, we state and prove the main lemma needed in the proof
of Theorems 2 and 3. Let ∆1 + ∆2 denote the Minkowski sum of convex polytopes ∆1 and ∆2 .

Lemma 7. Let a segment I in an affine space be transversal to a convex (n + 1)-dimensional
polytope ∆. Then each noncancelable facet of ∆+I has the form Γi+I , where Γi is a noncancelable
facet of ∆. In particular, if ∆ is of parallelepipedal type, then so is ∆ + I .
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Proof. The polytope ∆ + I contains the following (n + 1)-dimensional faces: (a) the pair
∆+ a, ∆+ b of cancelable faces, where a and b are the endpoints of I ; (b) the pairs Γ1 + I , Γ2 + I
of cancelable faces for each pair Γ1 , Γ2 of cancelable n-dimensional faces of ∆. All remaining
(n + 1)-dimensional faces of ∆ + I are noncancelable and have the form Γi + I , where the Γi are
noncancelable n-dimensional faces of ∆.

Main Lemma. If Theorem 3 holds for every integer polytope affinely equivalent to a given
(n + 1)-dimensional polytope ∆, then it holds for every integer polytope affinely equivalent to the
(n + 2)-dimensional polytope ∆ + I , where I is a segment transversal to ∆.

Proof. Let L and l be the (n + 1)- and one-dimensional affine rational spaces containing ∆
and I , respectively. Without loss of generality, we can assume that L and l are vector spaces.
Their sum L = L + l is an (n + 2)-dimensional rational space containing ∆ + I .

Step 1. Assume additionally that the lattice in L is the sum of lattices in the spaces L and l.
In this case, the lemma is obvious. Indeed, by the assumptions of the lemma, the integer (n + 1)-
dimensional volume of ∆ is a half-integer, and the following congruence holds:

2Vn+1(∆) ≡
∑

i

Vn(Γi) mod 2, (∗)

where the sum is over all n-dimensional faces Γi of ∆ that are parallelepipeds. Under the conditions
of step 1, for each rational subspace K ⊂ L the lattice in K + l coincides with the sum of lattices
in K and l. The integer volume in K + l is the product of integer volumes in K and l. A similar
relation between volumes holds for rational affine spaces parallel to K , l, and K + l. Multiplying
Eq. (∗) by the integer length of I , we obtain the assertion of step 1.

Step 2. To reduce the general case to that of step 1, we need the transformation of fiberwise
translation. We say that a continuous map F : L → L is a fiberwise translation in the direction of
a line l if it takes each line parallel to l to itself and if the restriction of F to any such line is a
translation (by a vector depending on the choice of the line). Clearly, every fiberwise translation
preserves the translation-invariant volume form on L. Suppose that an affine rational subspace
K ⊂ L contains a line parallel to the rational line l. Then K is invariant under the fiberwise
translation F , and the restriction of F to K preserves the integer volume in K .

Step 3. In the space L = L + l, take the line l. Choose an integer vector subspace L1 ⊂ L
such that L = L1 + l and Λn+2 = Λn+1 + Λ1 , where Λn+2 , Λn+1 , and Λ1 are the integer lattices
in L, L1 , and l, respectively. There exists a space L1 with these properties. To construct L1 ,
consider a primitive vector e1 of the lattice Λ1 and include it in a basis e1, . . . , en+2 of the lattice
Λn+2 . For L1 it suffices to take the vector space spanned by the vectors e2, . . . , en+2 . Consider the
projection π : L → L1 of L onto L1 along l. The integer (n + 1)-dimensional polytope π(∆) is
affinely equivalent to ∆; hence the integer (n + 1)-dimensional volume of π(∆) is a half-integer,
and the following congruence holds:

2Vn+1(π(∆)) ≡
∑

i

Vn(π(Γi)) mod 2,

where the sum is over all n-dimensional faces π(Γi) of π(∆) that are n-dimensional parallelepipeds.
According to step 1,

2Vn+2(π(∆) + I) ≡
∑

i

Vn+1(π(Γi) + I) mod 2.

We can now define an affine fiberwise translation F : L → L along l taking ∆ + I to π(∆) + I . To
this end, on each line λ parallel to l we mark the points x(λ) = λ ∩L and y(λ) = λ ∩L1 . Define
F as the map whose restriction to the line λ is the translation by the vector y(λ)−x(λ). It is clear
that F (∆) = π(∆), F (∆ + I) = π(∆) + I , F (Γi) = π(Γi), and F (Γi + I) = π(Γi) + I . According
to step 2, the general case follows from the case considered at step 1.

2.5. Proofs of Theorems 2 and 3. To conclude the proof of Theorem 2, we use the main
lemma in the form of the following corollary.
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Corollary. Theorem 3 holds for the polytopes ∆n+1 = ∆2 +Π, where ∆2 is an integer polygon
and Π is an (n − 1)-dimensional integer parallelepiped transversal to ∆2. All n-dimensional faces
of the polytope ∆n+1, except for some pairs of cancelable faces, have the form ai + Π, where ai is
a side of ∆2 .

Proof of Theorem 2. 1) Let us define an elementary relation between multivectors as a
relation of the form a∧ a2 ∧ · · · ∧ an + b∧ a2 ∧ · · · ∧ an + c∧ a2 ∧ · · · ∧ an = 0, where a, b, c, a2, . . . an

are any integer vectors such that a+b+c = 0. It suffices to verify Theorem 2 for elementary relations.
Indeed, if a relation between multivectors involves an integer vector a ∈ Z

n+1 such that the sum
of absolute values of its coordinates is greater than one, then this vector can be represented in the
form a = −b− c, where b, c ∈ Z

n+1 are vectors such that the sum of absolute values of coordinates
for each of these vectors is less than that of the vector a. Continuing this process, we reduce the
original relation to relations containing only the vectors ±ei . For such relations, Theorem 2 is
obvious.

2) It remains to verify Theorem 2 for an elementary relation defined by three n-tuples a =
(a, a2, . . . , an), b = (b, a2, . . . , an), and c = (c, a2, . . . , an) of vectors such that a+b+c = 0. First, we
perform this under the condition that the vectors a, b, c, a2, . . . an lie in some n-dimensional subspace
K . In this case, the cycle C = T [a]+T [b]+T [c] homologous to zero lies in the n-dimensional torus
T (K), the image of K under the canonical projection R

n+1 → Tn+1 . We can take a chain σn+1

spanning C in the torus T (K); hence J(C) = 0. On the other hand, Vn[a] + Vn[b] + Vn[c] = 0.
Indeed, the computation of the volume of an n-dimensional parallelepiped in K is reduced to the
computation of the determinant, and the determinant is multilinear.

3) Let us proceed to the case in which the vectors a, b, c, a2, . . . , an do not belong to any
n-dimensional subspace. In this case, the triangle ∆2 with sides a, b, c is transversal to the (n−1)-
dimensional parallelepiped Π with sides a2, . . . , an . The corollary applies to the polytope ∆n+1 =
∆2 + Π. It follows that first, the boundary ∂σn+1 of the chain σn+1 that is the image under the
projection R

n+1 → Tn+1 of the oriented polytope ∆n+1 is equal to the cycle C = T [a]+T [b]+T [c].
Indeed, all pairs of cancelable faces of ∆n+1 are killed by the projection and hence occur with zero
coefficient in the boundary of the chain σn+1 . Second, by the corollary, Theorem 3 holds for the
polytope ∆n+1 . Therefore, we have the relation 2J(C) ≡ (Vn[a]+Vn[b]+Vn[c]) mod 2, as desired.

One can readily derive Theorem 3 from Theorem 2.
Proof of Theorem 3. Let σn+1 be a chain in Tn+1 obtained as the image under the projection

R
n+1 → Tn+1 of an integer polytope ∆ of parallelepipedal type. The boundary of σn+1 is equal to

the sum of images under the canonical projection of all oriented faces of ∆ that are parallelepipeds.
Indeed, pairs of cancelable faces of ∆ are killed by the projection and hence occur with zero
coefficient in the boundary of σn+1 . Now Theorem 3 follows from Theorem 2.

2.6. A stronger version of Theorem 3. Theorem 3 has a stronger version. With every
hyperplane K ⊂ R

n+1 and an (n + 1)-dimensional convex polytope ∆ ⊂ R
n+1 , we associate two

faces Γ1(K) and Γ2(K) of ∆, for which the hyperplane parallel to K and containing any of these
faces is a support hyperplane of the polytope. Let π : R

n+1 → Tn+1 be the canonical projection. We
say that a polytope ∆ is balanced with respect to a rational hyperplane K of weight m(K) � 0 if
the relation π(Γ1(K))+π(Γ2(K)) = ±m(K)T (K) holds in the group of n-dimensional chains of the
n-dimensional torus π(K) = T (K). In this relation, Γ1(K) and Γ2(K) are viewed as n-dimensional
chains equipped with the orientation of the boundary of ∆ and T (K) is treated as the fundamental
cycle of the torus with an arbitrary orientation. The volumes of the faces Γ1(K) and Γ2(K) of a
polytope balanced with respect to a rational hyperplane K with weight m(K) � 0 satisfy the
relation |Vn(Γ1(K)) − Vn(Γ2(K))| = m(K). We say that an integer polytope ∆ is of generalized
parallelepipedal type if it is balanced with respect to each rational hyperplane K . (This condition is
only meaningful for finitely many hyperplanes K parallel to n-dimensional faces of the polytope ∆.)

Theorem 3′. Let ∆ be a convex integer (n + 1)-dimensional polytope of generalized paral-
lelepipedal type. Then the doubled integer (n + 1)-dimensional volume of ∆ is an integer of the
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same parity as the sum of weights m(K) over all rational hyperplanes K . (It suffices to sum over
finitely many hyperplanes K parallel to n-dimensional faces of the polytope ∆.)

Theorem 3′ can be derived from Theorem 2 in the same way as Theorem 3.
Note that in three-dimensional space there are many polytopes of generalized parallelepipedal

type. One can readily verify the following assertion.
Lemma 8. The Minkowski sum of any number of integer segments and polygons is of generalized

parallelepipedal type regardless of their location in R
3.

2.7. A geometric meaning of the function D. In this section, we prove Theorem 4 stated
in Sec. 2.2.

Recall the definition of the cross product of n vectors in the (n + 1)-dimensional space R
n+1

equipped with the standard volume form ω. The cross product of ordered n-tuple of vectors
a1, . . . , an is the covector a⊥ ∈ (Rn+1)∗ such that 〈a⊥, a〉 = ω(a ∧ a1 ∧ · · · ∧ an) for all a ∈ R

n+1 .
Let A be the n× (n+1)-matrix whose columns are vectors a1, . . . , an written in the standard basis
of the space R

n+1 , and let deti(a) be the determinant of the matrix obtained from A by deleting
the ith row.

Lemma 9. 1) In the standard basis of (Rn+1)∗ , the cross product a⊥ of the vectors a1, . . . , an

is given by the formula a⊥ = (det1(a), . . . , (−1)n detn+1(a)).
2) The covector a⊥ is orthogonal to each of the vectors a1, . . . , an ; i.e., 〈a⊥, ai〉 = 0, i =

1, . . . , n.
3) If the vectors a1, . . . , an are integer, then the covector a⊥ is also integer (i.e., belongs to the

lattice (Zn+1)∗ dual to the lattice Z
n+1). Furthermore, the integer length V1(a⊥) of a⊥ is equal to

the integer volume Vn[a] of the parallelepiped Π[a].
Lemma 9 is a simple fact from linear algebra. We omit the proof.
Proof of Theorem 4. The multivector v[a] = a1∧· · ·∧an has the expansion v[a] = det1(a)e2∧

· · · ∧ en+1 + · · · + detn+1(a)e1 ∧ · · · ∧ en in the basis of coordinate multivectors. By Theorem 2,
2J(C(A)) is well defined as a residue modulo 2, and

2J(C[a]) ≡ [Vn[a] + det1(a) + · · · + detn+1(a)] mod 2.

By definition, Vn[a] is equal to the integer volume of the parallelepiped Π[a] spanned by a1, . . . , an .
By Lemma 9, this volume is equal to the integer length V1(a⊥) of the covector a⊥ = (det1(a), . . . ,
(−1)n detn+1(a)). The following congruence holds:

V1(a⊥) ≡
[
1 +

∏

1�i�n+1

(1 + deti(a))
]

mod 2.

Indeed, both left- and right-hand sides of this congruence are even if and only if all numbers
det1(a), . . . ,detn+1(a) are simultaneously even. Thus

2J(C[a]) ≡
[
1 + det1(a) + · · · + detn+1(a) +

∏

1�i�n+1

(1 + deti(a))
]

mod 2.

To conclude the proof of Theorem 4, it remains to use the formula for D in Theorem 1.
End note. Quite recently, the function D discussed in this paper received another application.

Jointly with A. I. Esterov, we computed the ratio of the coefficients of any two extreme monomials
of a multidimensional resultant. Multidimensional resultants are special Laurent polynomials of
several variables defined up to sign. They were intensively studied by Gelfand, Kapranov, Zelevin-
sky, Sturmfels, and others. Their Newton polytopes are known. It is also known that the coefficients
of the extreme monomials (i.e., monomials corresponding to the vertices of the Newton polytope)
in any such resultant are equal to ±1. Our formula for the ratio of such coefficients uses the
combinatorics of integer polytopes and the function D.
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