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0. Sometime mathematics operates very much like other sciences. People observe
things, notice patterns, try to describe them, come up with a theory to explain them,
and check the theory by further cases and predictions. In the case of mathematics,
these patterns are the basis of conjectures, general statements that we believe are
true. Corresponding to scientific theories that explain the patterns, mathematicians
construct theorems where the conjectures can be justified by logical argument.

This paper illustrates one of the ways in which we can collect information. The
intention is to encourge the reader to make some organized calculations, which can
be done on a calculator or by programming a computer. The next stage is to look
for patterns, and discover whether they can be described in a way that leads to a
theorem. A secondary goal of the paper is to show how school algebra can be used
to both describe and justify what we observe.

1. You may be familiar with the fact that the product n(n+1) of two consecutive
integers cannot be an integer square. Think how you might justify this. The easiest
argument is perhaps to note that n2 < n(n + 1) < (n + 1)2, so that n(n + 1)
lying between two consecutive squares cannot be square. But we could proceed by
contradiction argument. Suppose n(n+ 1) is square. Since n and n+ 1 are coprime
(have no common divisor except 1), each of them must be square. But then n and
n + 1 are two positive squares that differ by 1. This cannot happen.

Exercise 1. Explain why, if the product of two positive coprime integers is a
square, then each must be a square.

Exercise 2. Find a simple argument to prove that two positive squares cannot
differ by 1.

Another contradition argument goes like this. If n(n + 1) is a square, then
so is 4n(n + 1). But 4n(n + 1) = (2n + 1)2 − 1, and again we would have two
squares differing by 1. These arguments are worth keeping in mind when we look
at products of more than two consecutive integers. Is it possible for the product
(n − 1)n(n + 1) of three positive integers to be a square. We can look for the
foregoing arguments for inspiration. For example, if (n − 1)n(n + 1) = n(n2 − 1)
was square, then both n and n2 − 1 would be squares (why?); thus n = u2 and
n2 − 1 = v2 for some positive integers u and v. This would lead to

1 = u4 − v2 = (u2 − v)(u2 + v),

whereupon (u, v) = (1, 0) and the product would vanish, contrary to our supposi-
tion.
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When we come to the product of four consecutive positive integers, which we
will write as (n− 1)n(n+ 1)(n+ 2), something interesting happens. Before reading
further, check a few examples on your calculator and see what you notice. The
product is always one less than a perfect square:

(n− 1)n(n + 1)(n + 2) = [(n− 1)(n + 2)][n(n + 1)] = [n2 + n− 2][n2 + n]

= [(n2 + n− 1)− 1][(n2 + n− 1) + 1] = (n2 + n− 1)2 − 1.

Exercise 3. Is it possible to express a square as the product of five consecutive
positive integers?

Exercise 4. Express the product (n−3)(n−2)(n−1)n(n+1)(n+2)(n+3)(n+4)
as the difference of the squares of two polynomials in n, one of which is a quadratic.

2. The case of the product of four consecutive positive integers is worth further
investigation.

Exercise 5. Make up a table in which we enter beside each value of the integer n,
the value of the product f4(n) = (n− 1)n(n + 1)(n + 2) and the next four squares
that exceed f4(n); these are (n2 +n−1 +m)2 where 0 ≤ m ≤ 3. Note in particular
the situations in which (n2 + n− 1 + m)2 − f4(n) is a square.

Exercise 6. In Exercise 5, you will notice that (n2 + n + 1)2 − f4(n) is a square.
Verify that it is equal to (2n + 1)2.

3. Under some circumstances, we have seen that the product of consecutive
integers differ from nearby squares by squares. When we look at products f3(n) =
(n − 1)n(n + 1) of three consecutive integers, then the situation becomes more
textured. Let g3(n) denote the smallest integer that exceeds the square root of
f3(n); notationally this is written as

g3(n) = d
√
f3(n)e.

Exercise 7. Make a table that lists values of n, f3(n), (g3(n))2 and the next few
larger squares. How often is the difference between these squares and f3(n) itself a
square?

The difference between (g3(n))2 and f3(n) is square suprisingly often. It occurs
when n = 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 21, 25 for example. This suggests that
it might be worth looking at the diophantine equation

y2 = x3 − x + k2

where k is a positive integer parameter, and see what its solutions (x, y) in integer
pairs might be.

Exercise 8. With the help of the table you made in Exercise 7, find solutions of
y2 = x3− x+ k2 for various values of the parameter k. Some of these solutions are
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generic, in that they exist for all values of k and can be expressed in terms of k,
Find them.

Pay particular attention to the case k = 1. By looking at small values of x, you
should find that y2 = x3 − x + 1 is satisfied by (x, y) = (3, 5) and (5, 11). There is
a useful device that helps you find a third solution when two solutions are known.
Using a graphing calculator, obtain a graph of the equation y2 = x3 − x + 1. This
graph will contain these points:

(−1,±1), (0,±1), (1,±1), (3,±5), (5,±11).

Each pair of these points will determine a line of equation y = ax + b. To find all
the points where the line intersects the graph, we need to solve a cubic equation
(ax + b)2 = x3 − x + 1, or

0 = x3 − a2x2 − (2ab + 1)x− (b2 − 1).

The two points that determine the line provide two roots of the equation, namely
the abscissa of the points on both the line and the curve. The sum of the roots is a2

(the square of the slope of the line). In general, this will be a rational number, so
the third root is also rational and we can identify a point of the curve with rational
coordinates. However, if we can arrange for slope to be an integer, then we will
have found a further solution in integers to the equation y2 = x3 − x + 1.

Exercise 9. Start with the solutions (x, y) = (3, 5), (5, 11) to determine a new
solutions of the diophantine equation. Does this give us anything new? Now start
with (3,−5) and (5, 11) and see what you get.

Exercise 10. For other values of k ≥ 2, see how many solutions apart from the
generic ones you can find for y2 = x3 − x + k2.

Exercise 11. Determine the lines through pairs of solutions (x, y) to y2 = x3 −
x + 25.

Exercise 12. Determine the lines through pairs of points corresponding to generic
solutions of y2 = x3 − x + k2.

4. We turn our attention to y2 = f5(x) + k2 where f5(x) = (x− 2)(x− 1)x(x +

1)(x+ 2). For each integer x, let g5(x) = d
√

f5(x)e. Thus f5(3) = 120, g5(3) = 11,
f5(4) = 720, g5(4) = 27.

Exercise 13. Make a table for 3 ≤ n ≤ 25 showing f5(n), g5(n) and (g5(n) =
m)2 − f5(n) for 0 ≤ m ≤ 3. is it always true that g5(n)2 − f5(n) is a square?

5. The equation y2 = f6(x) + k2 is more interesting, where

f6(x) = (x− 2)(x− 1)x(x + 1)(x + 2)(x + 3) = x6 + 3x5 − 5x4 − 15x3 + 4x2 + 12x.

Let g6(x) = d
√
f6(x)e. It turns out that (g6(n) + m)2 − f(n) is square for a string

of values of n and for 0 ≤ m ≤ 2.
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Exercise 14. By looking at the data, try to discern some patterns that might give
you some formulas analogous to those in Exercise 6. Since f6(x) is a polynomial
of degree 6, it is reasonable to try to use your data to express it as a difference of
squares to two polynomials whose degree do not exceed 3.

Exercise 15. How many solutions (x, y) in positive integers of

y2 = (x− 3)(x− 2)(x− 1)x(x + 1)(x + 2)(x + 3) + 1

can you find?

Consider the equation y2 = f8(x) + k2 where

f8(x) = (x− 3)(x− 2)(x− 1)x(x + 1)(x + 2)(x + 3)(x + 4).

Let g8(x) = d
√

f8(x)e.

Exercise 16. By examining a table showing values of f8(n) and (g8(n) + m)2 −
f8(n) and fitting polynomials, it is possible to find distinct polynomials u(x) and
v(x) for which u(x)2−f8(x) and v(x)2−f8(x) are squares of polynomials. Do this.

6. In Exercises 4, 6 and 14, we have seen that f4(x) and f6(x) can be written as
the difference of squares of two polynomials, each of which takes an integer value
when x is an integer. Each polynomial f(x) can, in fact, be written as the difference
of squares of two polynomials. One way of doing this is to write

f(x) =

[
1

2
(f(x) + 1)

]2
−
[

1

2
(f(x)− 1)

]2
.

However, if f(x) assume integer values when x in an integer, it may happen that
neither of the two polynomials being squared has the same property.

Exercise 17. Suppose that a polynomial f(x) can be written as the product
p(x)q(x). Use the factors to construct two polynomials u(x) and v(x) for which
f(x) = u(x)2 − v(x)2.

Exercise 18. Show that f2(x) = x(x + 1) cannot be written as the squares of
two polynomials, each of which assume only integer values when the variable is an
integer.

One way to check whether a polynomial f(x) is the difference of two integer-
valued polynomials is to see if it assumes any numerical values that cannot be
expresed as the difference of two squares.

Exercise 19. Show that an integer can be expressed as the difference of squares
of two integers if and only if it is not equal to twice an odd number. (Thus 2, 6,
10, 14, etc. are not expressible as the difference of integer squares.)

We will finish with a conjecture for you to investigate: the polynomial fr(x) is
equal to u(x)2 − v(x)2 for some polynomials for which u(x) and v(x) take integer
values when x is an integer if and only if r is even.



5

8. We can extend the investigation to products of consecutive integers of the
same parity (all even or all odd).

Exercise 20. Verify that the product of two consecutive integers of the same
parity is always 1 less than a perfect square.

Exercise 21. For what integers n does the product (n − 2)n(n + 2) differ from
the next higher square by a square? Does it always happen when n ≥ 3?

Exercise 22. Check out the situation for the product of four consecutive integers
of the same parity.

8. This section contains comments on the exercises.

Exercise 1. Any common divisor of n and n+ 1 must divide 1. Hence the primes
that divide n are distinct from the primes that divide n+1. If the product is square,
any prime dividing it must divide it to an even power, and this prime power divides
exactly one of n and n + 1.

Exercise 2. If u2 − v2 = 1, then (u− v)(u+ v) expresses 1 as the product of two
integers, which both can only be 1 or −1.

Exercise 3. Express the product as (n−2)(n−1)n(n+1)(n+2) = (n2−4)(n2−1)n.

Exercise 4. Write the product as

[(n− 3)n(n + 1)(n + 4)][(n− 2)(n− 1)(n + 2)(n + 3)]

= [n4 + 2n3 − 11n2 − 12n][n4 + 2n3 − 7n2 − 8n + 12]

= [(n4 + 2n3 − 9n2 − 10n + 6)− (2n2 + 2n + 6)]

[(n4 + 2n3 − 9n2 − 10n + 6) + (2n2 + 2n + 6)].

Exercise 8. Some solutions are given by

(x, |y|) = (−1, k), (0, k), (1, k), (k2, k3), (4k2 − 1, k(8k2 − 3)), (4k2 + 1, k(8k2 + 3)).

Exercise 9. The points (3, 5), (5, 11) lies on the line y = 3x− 4. The cubic to be
solved is

0 = x3 − 9x2 + 23x− 15 = (x− 1)(x− 3)(x− 5)

yielding the solutions (1,−1), (3, 5),(5, 11).

If we start with (3,−5) and (5, 11), we are led to the line y = 8x− 29, the cubic
equation

0 = x3 − 64x2 + 463x− 840 = (x− 3)(x− 5)(x− 56)

and the additional solution (x, y) = (56, 419).
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Exercise 10. Additional solutions are given by

(k;x, y) =(5; 3, 7), (5; 7, 19), (5; 8, 23), (5; 13, 47), (5; 32, 181),

(7; 5, 13), (7; 11, 37), (7; 19, 83), (7; 40, 253), (8; 7, 20), (8; 9, 28),

(12; 55, 408), (13; 21, 97), (13; 31, 73), (14; 33, 190), (15; 27, 141),

(16; 39, 244), (17; 29, 157), (25; 51, 365), (25; 57, 431), (31; 71, 599).

Exercise 11. [y = 2x + 5; (−3,−1), (0, 5), (7, 19)]

[y = 4x− 9; (1,−5), (7, 19), (8, 23)]

[y = 2x + 7; (−3, 1), (−1, 5), (8, 23)]

[y = x + 4; (−3, 1), (1, 5), (3, 7)]

[y = 4x− 5; (0,−5), (3, 7), (13, 47)]

Exercise 13. g5(n)2 − f(n) is square for 3 ≤ n ≤ 19 but not for n = 20 and
n = 21.

Exercise 14. For 3 ≤ n ≤ 14, g6(n) = 1
2 (2n3 + 3n2 − 7n− 6).

g6(n)2 − f6(n) =

[
1

2
(n2 − 3n− 6)

]2
.

(g6(n) + 1)2 − f6(n) =

[
1

2
(n2 + n + 4)

]2
.

(g6(n) + 2)2 − f6(n) =

[
1

2
(n2 + 5n− 2)

]2
.

The pattern breaks at n = 15. The reason for this is that, if the polynomial u(n)
is to yield the smallest square greater than f6(x) and d(n) = u(n)2 − f6(n), then

(u(n)− 1)2 < f6(n) = u(n)2 − d(n)

so that d(n) < 2u(n)−1. This would require the polynomial d(n) to have degree no
greater than than of u(n), and this fails to be the case when d(n) = (n2− 3n− 6)2.
The pattern breaks at n = 15, where g6(n) = 3656 but 1

2 (2n3+3n2−7n−6) = 1357.

Note however that 36562 − f6(15) = 162.

Exercise 15. A numerical search turns up the solutions (x, y) = (4, 71), (11, 4159).

Exercise 16. The situation is not as straightforward as it was for the product of
six consecutive integers. By making a judgment in the patterns, we are led to

u(4) = g8(4) + 3;u(5) = g8(5) + 1;u(6) = g8(6) + 1;u(n) = g8(n)

and

v(4) = g8(4) + 4; v(5) = g8(5) + 3; v(6) = g8(6) + 3; v(n) = g8(n) + 2,
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for n ≥ 7. Thus
g8(n) = n4 + 2n3 − 9n2 − 10n + 4;

u(n) = 8n + 4; v(n) = 2n2 + 2n + 6.

Exercise 17. Solve the equations u + v = p;u− v = q for u and v.

Exercise 18. There are two ways of factoring x(x+1) as a product of polynomials,
giving rise to the representations

x(x + 1) =

[
1

2
(2x + 1)

]2
− 12 =

[
1

2
(x2 + x + 1)

]2
−
[

1

2
(x2 + x− 1)

]2
.

Exercise 19. If n is odd or divisible by 4, then n is the product uv of two integers
of the same parity (both even, or both odd). Then

n =

[
1

2
(u + v)

]2
−
[

1

2
(u− v)

]2
is the desired representation. On the other hand, if n is twice an odd number, it
leaves a remainder 2 upon division by 4. Since squares leave remainder 0 or 1 upon
division by 4, it is impossible for the difference of two squares to leave remainder 2.


