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CHAPTER SIX
IRREDUCIBILITY AND FACTORIZATION

§1. BASIC DIVISIBILITY THEORY

The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many
characteristics. A polynomials is irreducible iff it cannot be factored as a product of polynomials of strictly
lower degree. Otherwise, the polynomial is reducible. Every linear polynomial is irreducible, and, when
F = C, these are the only ones. When F = R, then the only other irreducibles are quadratics with negative
discriminants. However, when F = Q, there are irreducible polynomials of arbitrary degree.

As for the integers, we have a division algorithm, which in this case takes the form that, if f(x) and
g(x) are two polynomials, then there is a quotient g(x) and a remainder r(x) whose degree is less than that
of g(x) for which

f(@) = q(z)g(z) +r(z) .

The greatest common divisor of two polynomials f(z) and g(z) is a polynomial of maximum degree
that divides both f(z) and g(z). It is determined up to multiplication by a constant, and every common
divisor divides the greatest common divisor. These correspond to similar results for the integers and can be
established in the same way. One can determine a greatest common divisor by the Euclidean algorithm, and
by going through the equations in the algorithm backward arrive at the result that there are polynomials
u(x) and v(x) for which

ged (f(2), 9(x)) = uw(z) f(2) + v(z)g(z) .

Two polynomials are coprime if their greatest common divisor is 1. If a polynomial p(z) divides a product
f(x)g(x) and is coprime with one of the factors, then it must divide the other. Thus, an irreducible polynomial
that divides a product of any number of polynomials must divide one of the factors. Each polynomial can be
written as the product of irreducibles in a unique way up to order of factors and multiplication by constants.

Thus, it is desirable to have a way of determining when a polynomial is irreducible, and, more generally,
how to factor it.

A result for integers that has an analogue for polynomials is the Chinese Remainder Theorem: Suppose
that f1, fo, -+, fr are pairwise coprime polynomials over a field F and g1, go, - - - , gi, are arbitrary polynomials.
Then there exists a polynomial h(x) for which h = g; (mod f;) which is uniquely determined up to a multiple

of fife-- f.

§2. IRREDUCIBLE POLYNOMIALS

Newton’s Polygon. Suppose that f(t) = > A;t" is a polynomial with integer coefficients, and that p
is a positive prime integer. If we write A; = a;p®¢, where a; is not divisible by p, then we can define the
Newton polygon for f with respect to p as follows: For each 4, plot the point (¢, ;) in the cartesian plane.
The Newton polygon is an open polygon which forms the lower boundary of the convex hull of these points,
so that all of these points lie either on or above the polygon. This polygon consists of a finite number of line
segments, whose slopes can be listed in increasing order. It may happen that two segments in the Newton
polygon are collinear, in which case a slope may be listed more than once. The Dumas’ theorem states that,
if f = gh is a factorization of a polynomial as a product of polynomials of lower degree over Z, then the set
of slopes for the Newton polygon of f is the union of the sets of slopes for the Newton polygons of g and
h. Moreover, if we weight each slope according to the differences of the abscissae of the endpoints of the
segment, then the sum of the weights for g and & is equal to the weight for f. Since a proof of this appears
in [3], I will illustrate the theorem with an example.
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Let
g(t) = p' + p°t + 82 4+ pt* + p°t* + pPt° .

The points plotted in the cartesian plane (with those actually on and defining the Newton polygon in
boldface) are:
(0,4),(1,2),(2,0),(3,1),(4,3),(5,3)

with the list of slopes {—2,—2,1,1}. Let
h(t) = p + p°t + p°t% + pt® + pitt .
The set of points (with those on the Newton polygon in boldface) are:
(0,1),(1,2),(2,2),(3,1),(4,4)

with the list of slopes {0, 3}.

The product f(xz) = g(x)h(z) of these polynomials is

f@) =p° +p* L+ ")t +p(L+p° + )% + 22+ 9" + ") +p° (L + 2p + p* + )t

+p(L+p° +p + "+ P+ p? (1 p* + 2"t + p (L4 2p)t7 +p (1 +p*)t% +p7t
The corresponding set of points is
(0,5),(1,3),(2,1),(3,2),(4,2),(5,1),(6,2),(7,4),(8,4),(9,7)

with slope list {—2,-2,0,1,1, 3}.

Each of these points, considered as a 2—vector, is the sum of 2—vectors for g and h corresponding to
the terms in g and h whose product gives the smallest power of p in the coefficient of the power of ¢ that
corresponds to the point. Thus:

(07 5) - (074) + (Oa 1); (1a 3) - (17 2) + (07 1); (2a 1) - (27 0) + (07 1);

(3,2) =(2,0) +(1,2) = (3,1) + (0,1); (4,2) = (2,0) + (2,2); (5,1) = (2,0) + (3, 1);
(6,2) = (3,1) + (3,1);(7,4) = (4,3) + (3,1);(8,4) = (5,3) + (3,1); (9, 7) = (5,3) + (4,4)
Each vertex of the Newton polygon of f is a vector sum of vertices of the Newton polygon of g and h.

To understand why the Dumas result holds, consider a particular slope, 1, that is listed twice for the
product f. This arises from the pair of edges of the Newton polygon containing the three collinear points
(5,1),(6,2),(8,4). These lie on the line y — x = —4. The number —4 is the smallest value of y — z assumed
at any of the points on or above the polygon. Let us call these values of y — x the weight of y — x at the
points in question.

The weight of (5,1), (6,2), (8,4) are each equal to the sum of the weights of the vertices of the Newton
polygon of g and h whose vector sum they are. In this case, (3,1) figures in each sum, so the weight of the
summands (2,0), (3,1) and (5,3) must be the same. There cannot be vertices of lesser weight than these
three for g, nor vertices of lesser weight than (3,1) for h, because these would combine to give a point of
lesser weight corresponding to a term in the product f.

Thus, for the points corresponding to g(t), this function y —  is minimized among the points for h
at (3,1), and, among the points for g, at (2,0),(3,1),(5,3). Therefore, the line y — z = —2 contains two
collinear edges of the Newton polygon and its slope 1 gets listed twice for g.

To illustrate how a slope for a factor can appear among the slopes for the product, consider the slope 3
in the list for h. This corresponds to the edge joining (3,1) and (4,4), at each of which the function y — 3z
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has weight —8. Among the vertices for g, the weight of y — 3z is minimized at (5, 3), and two vertices of the
Newton polygon for f involving these points are

(8,4)=(3,1)+(5,3) and (9,7) = (4,4) +(5,3) .

The weight of y — 3z at each of these points is minimized and we have one edge of the Newton polygon of
slope 3.

This analysis can be adapted to the situation for which a slope is listed more than once for each of the
factors in the product. In this case, the corresponding weight function is minimized at more than one vertex
of the Newton polygon for each of the factors, and the vertices for one of the factors can be combined with
the vertex of minimum weight for the other to give a minimizing set of vertices with the same cardinality
for the product.

As a corollary, if, for some prime, the Newton polygon consists of precisely one segment, then it must
be irreducible. In particular, we have the Fisenstein irreducibility criterion: If f(z) = apz™ + -+ a1 + ag
is a polynomial over Z and p is a prime that does not divide a,,, but divides all the other coeflicients, and
p? does not divide ag, then f(x) is irreducible over Z.

An example of an irreducibility result of a different character is Perron’s criterion: Suppose that u(z) =
" + -+ a1z + ag is a polynomial over Z for which ay # 0 and

lan—1| > 1+ [an—2| + -+ |a1] + |ao| -

Then f is irreducible.

We use Rouché’s theorem to show that u(z) has precisely one zero in the exterior of the open unit disc
D. This is true of the polynomial v(z) = 2" + a,,_12" ! since |a,_1| > 1. Observe that, when |z| = 1,

u(z) = v(2)] < lan—a| +--- +ao] <lan1] =1 <fo(z)] .

Suppose, if possible, that w can be written as the product of two monic polynomials u; and wus, both
of which must have nonzero constant coefficient. The the product of the zeros for each of u; and us must
be an integer, and so each must have a zero that lies outside of D; but then uw would have two such zeros,
contradicting what was established.

Finally, we have Hilbert’s Irreducibility Theorem: If f(t,x) is an ireducible polynomial over Q, then
there are infinitely many rational values of t for which the polynomial f;(x) = f(t,x) is irreducible over Q.

3. PRIMES AND REDUCIBLE POLYNOMIALS

Is there a connection between polynomials that are irreducible over Z and polynomials that assume
prime values for integer values of its argument? Of course, the values of a polynomial can never be prime,
even when it is irreducible, when there is a nontrivial common divisor of its coefficients. So we restrict
attention to polynomials over Z that are primitive, that is, for which the greatest common divisor of the
coefficients is 1.

Dirichlet showed that, in every positive arithmetic progression whose initial term and common difference
are coprime, there are infinitely many primes. In other words, every linear polynomial dz + b, with b and
d coprime, is prime for infinitely many integers x. For polynomials of higher degree, the corresponding
situation is unknown. For example, it still needs to be settled whether there are infinitely many primes of
the form x2 + 1 for integer z.

In the other direction, suppose that a polynomial f(x) can be factored as a product of two nonconstant
polynomials f(x) = g(x)h(x) over Z. Every time that |f(x)| assumes a prime value for integral z, one of
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the factors g(x) and h(z) must take one of the values 1 and —1. Since any polynomial can assume a value
finitely often, the absolute value of f(x) is prime for only finitely many integers. Thus, if the absolute value
of a polynomial assumes sufficiently many prime values (trivially, more than four times the degree of f(x)),
it must be irreducible.

In fact, under some circumstances, it is enough that a polynomial assumes a prime value once in order
to be irreducible. A theorem of A. Cohn is that, if p = ZZ:O a;10% is the base 10 representation of a prime
p (with 0 < ag, <9), then f(z) = >_;_, axz” is irreducible over Z. In fact, we have the corresponding result
when 10 is replaced by any integer base b exceeding 1. However, the positivity of the aj plays a role; as the
examples 2% — 922 — 92+ 1 = (v + 1)(22 — 100 + 1) and 2® — 922 + 2 — 9 = (v — 9)(22 + 1) demonstrate, it
is possible for the value when x = 10 to be prime even though the polynomial is reducible.

A result similar to Cohn’s theorem was established by Murty [2]. Murty made a small technical adap-
tation to his result to obtain Cohn’s theorem. However, the approach is illustrated by the following gener-
alization of Murty’s result by Girstmair [1]:

Let f(x) = ZZ:O apz® be a primitive polynomial of positive degree n. Suppose that H is the maximum
of |ay/ay| for 0 < k < n, and that d and n are positive integers for whichn > H +d+ 1 and |f(n)| = dp for
some prime number p not dividing d. Then f(x) is irreducible over Z.

The proof begins with the observation that each zero r of f(x) satisfies |r| < H 4+ 1 (see Section 1.2).
Suppose if possible that f(z) = g(x)h(z) for two polynomials g(x) and h(x) over Z of positive degree. Then
g(x) = c¢][(z — r) where ¢ is the leading coefficient of g(z) and the product is over a nonvoid subset of the
zeros of f(x).

Since |f(n)| = |g(n)h(n)| = dp and p does not divide d, one of the factors, say g(n) is coprime with p
and so must divide d. But then, for each zero r of f(x),

In—r|>n—|r|>H+d+1)—(H+1)=d,

so that |g(n)| > d. This yields a contradiction and we can deduce that the factorization of f(z) is not
possible. #.

Let us return to the question of how often the absolute value of a reducible polynomial over Z can
be prime. Consider first the case that f(x) is quadratic. If it is reducible, it is the product of two linear
polynomials. Since each linear polynomial can assume each of the values 1 and —1 at most once, we see that
a reducible quadratic can be prime at most four times. This is possible, the absolute value of the quadratic

fla)=—422 4122 —5=4— (22 —3)> = (5 —22)(2z — 1)
is prime when x =0, 1, 2, 3.

A reducible cubic must be factorable as a product of a linear and a quadratic polynomial. The quadratic
polynomial s(x) = 2%+ —1 takes the value +1 when x = —2, 1, and the value —1 when = = —1,0, so it takes
the values +1 four times, which is the maximum possible for a quadratic. These can possibly be matched
against prime values of the linear cofactor. The linear cofactor can also takes each of the values 1 and —1 at
most once, and it might be possible to match these with prime values of the quadratic. However, a quadratic
assuming the value £1 four times is essentially s(z) up to horizontal translation and multiplication by —1
and a linear polynomial assuming both values +1 must assume them for arguments that differ by at most 2.
So in fact, it can be seen that the absolute value of a reducible cubic can be prime at most five times. The
example

f(z) = =62 +52% + 172 — 11 = (2% + 2 — 1)(11 — 62)

delivers this, as it takes the values 23, —17, —11, 5 and —5 when z = —2,—-1,0,1, 2.

A reducible quartic must be factorable either as a product of a cubic and a linear polynomial or as the
product of two quadratics. The cubic can take the values 1 and —1 each at most three times, so it can be
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seen that the absolute value of the quartic can be prime at most eight times (the linear factor providing the
prime six times and the cubic factor twice). Each of the quadratic factors can take the values 1 and —1 at
most twice, so again the absolute value of the quartic can be prime at most eight times. This is achievable
with the quartic

flx) =2 +22% — 922 — 102 4+ 5 = (2 + 52 + 5)(2* — 3z + 1) = s(z + 2)s(z — 2)
whose absolute value is prime for integers z satisfying —4 <z < 3.

4. FACTORIZATION OF POLYNOMIALS OVER THE INTEGERS

One simple way to get at a factor of a polynomial f(z) is to determine the greatest common divisor of it
and its derivative. If this common divisor is 1, then every irreducible factor of f(x) appears only to the first
degree. If this common divisor has positive degree, then we have a divisor of the polynomial. The quotient
with respect to this divisor will be a product of irreducibles, all raised to the exponent 1.

There is a test to show whether two polynomials have a divisor in common. Suppose that f(z) is a
polynomial of degree n and that g(z) is a polynomial of degree m. Then f and g have a nontrivial common
divisor h if and only if there are polynomials p and q of degrees not exceeding n — 1 and m — 1 respectively,
for which f = hp and g = hq. If this happens, then fq = gp.

On the other hand, suppose that fq = gp for some polynomials p and ¢ for which the degrees of p and
q do not exceed n — 1 and m — 1 respectively. Then f and g cannot be coprime. For otherwise, f, dividing
the product gp, would have to divide p, which is impossible.

Finding such a pair p, ¢ of polynomials entails setting up a set of linear equations for its coefficients in
terms of the coefficients of f and g. To see how this works, suppose, for example, that

f(z) = azx® + asx® + ayz + ag ,

g(w) = box® + byzy +bo
p(x) = uox® + urx + g ,
q(x) = vz +vg .
Comparing the coefficients on either side of the equation f(x)q(z) = g(x)p(z) leads to the linear system

azv1 = bauy

av1 + azvg = biug + bauy
a1v1 + asvg = boug + biuy + boug
a1V + agvy = b0u1 + bl’LLQ
apvg = boug ,

whose associated matrix of coefficients is

as as 7b1 7b2 0
a; az —bo —bl _b2
apg ai 0 _bO _bl

0 an 0 0 —bo



A pair (p,q) of polynomials exists if and only if the determinant of the matrix, or equivalently of the

matrix
az a2 a1 Qo 0

0 asz a2 a1 Qo
by by by 0 O
0 by b by O
0 0 b2 by by

vanishes. This determinant is called the Sylvester resultant of the polynomials f and g.
If a polynomial over Z is reducible, then if we reduce its coefficients modulo a prime p, with a finitely
many exceptions where the prime figures in the factors of the coefficients, it will still factor. Accordingly,

the task of factoring a polynomial can be carried out modulo p for primes p, and then the architecture of
the factorizations examined to suggest possible factorizations over the integers.

A standard algorithm for the modulo p factorization is due to Berlekamp. We have the following results
for a monic polynomial f(z) of degree n.

Suppose h is such that h? — h is divisible by f modulo p; then

fx) = [T{ ged (f(2).h(z) —a):a € Z,} .

To prove this, we note that, modulo p, the polynomials h(z) — a constitute a coprime set as a varies
over Z,, so that the polynomial

F(a) =[] sed (f(x), hiz) - a)

a

is a product of pairwise coprime polynomials and so a divisor of f(z). However, it is given that f(x) divides

Suppose that h(x) — a = ug(z)ve(z), where uq(z) is the greatest common divisor of f(x) and h(x) — a, and
f(x) and v, (z) are coprime. Then f(z) divides

H e () H va () .

Since the second product is coprime with f(z) and the first product is equal to F(x), it follows that f(x)
divides F'(x). Hence, f(z) = F(z). O

To effect this algorithm, we need to construct a function h for which h? — h is divisible by f. How this
is done will be illustrated by an example. Suppose we wish to factor over the integers the polynomial

flx)=a+a* +32° + 22 — 20 +8 .

Let a test prime p be 3, and suppose that h(z) = az* + bx3 + cx? + dx, where a, b, ¢, d are to be determined.
Since we wish to examine h(z) — a for values of a modulo 3, we can assume that the constant term of h(x)
is 0. When we evaluate h(z)?, for any prime p, the coefficients of all the terms except for the pth power of
ax*, bx?, cx?, dr are divisible by p. Also, by Fermat’s Little Theorem, k” = k (mod p) for each integer k.
Therefore, modulo 3,

h(z)® = az'® + bx® + ca® + da® = h(2®) .

Since we want to select the coefficients so that h? — h is divisible by f, we determine h(z®) modulo f(z).
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We can determine the polynomial of degree less than 5 congruent to 2%, 2%, #'2 modulo f, for example,

by taking the remainder when the monomial is divided by f. Thus,
=2t 423+ 20 +2;
x9£2m4+m2+2x+2;
=23 42t .
Therefore
ax'? 4+ ba® 4 ca® + dad = (2b + ¢)2t + (2a 4 2¢ + d)2® + (a + b)2? + (a + 2b 4+ 2¢)x + 2(b +¢) .
Equating h(z) and h(x?®) (mod f(z)), leads to the equivalences, modulo 3,
2b+c=a, 2a+2c+d=b, a+b=c, a+2b+2c=d, b+c=0.

These are satisfied by (a,b,c,d) = (1,1,2,1) (mod 3). Thus, h(z) = 2% + 23 + 222 + x.

We find that ged (h(x), f(z)) = 1, ged (h(x)+1, f(2)) = 22 +2+1, and ged (h(x)+2, f(z)) = 23 +22+2.
Indeed, modulo 3,
hz)+l=a*+¥ +20% +o+1=@2+o+ 1)@ +1);

hz)+2=a* + 23+ 222 + 24+ 2= (23 + 22+ 2)(z + 1) ;

and
f@) =242+ +24+2=@2+x+ D@3 +20+2) .

This indicates that we should find a factorization of f(x) as a product of a quadratic and a cubic, where the
coefficients, modulo 3, are given as above. Since the constant coefficient of f(z) is equal to 8, this suggest
that we try 4 as the constant of the quadratic factor and 2 as the constant of the cubic. A little trial and
error leads to

flx)=(@*+ax+4) (2> —2+2).

In practice, we can try the factorization with different primes, and then “lift” these to surmise the
desired coefficients of the factors.

§5. PROBLEMS AND INVESTIGATIONS

1. Let a1, az,- -, a, be distinct integers. Prove that the polynomial (z —a1)?(x —a2)? -+ (x —a,)? +1
cannot be factored as the product of two nonconstant polynomials with integer coefficients.

2. Let P,(z) = (x +1)™ — 2™ — 1. Prove that P,(x) can be factored as a product
(x4 1%z + 2 +1)°Qn(z)

where a = b = 0 when n is even, a = 1 when n is odd, and b = 0, 1,2 according as n = 3,5,1 (mod 6).
Investigate the factorization of @, (z). D. Miramanoff conjectured that @, (x) is irreducible whenever n is
prime.

3. Suppose that p is a prime. Prove that z* + 1 can be written as the product of two quadratic factors
modulo p. Are these factors irreducible?

4. Find all monic polynomials p such that p(n) divides p(n?) for every positive integer n.

5. Let n be a positive integer, and ®,, be the polynomial of minimum degree over Q whose root is a
priomitive nth root of unity (the nth cyclotomic polynomial, whose degree is ¢(n), where ¢ is Euler’s totient

53



function). For pairs (m,n) of unequal positive integers, determine the smallest natural number k for which
there are integers a and b for which a®,, + 6®,, = k.

6. Give examples of polynomials p(z) of small degree over Z whose absolute values are prime as often
as possible for integer values of x.

7. (a) Is there a quadratic polynomial f with rational coefficients for which the quartic f2+1 is reducible
over the rationals?

(b) Is there a quadratic polynomial g with rational coefficients for which the octic g* + 1 is reducible
over the rational?
Hints and comments.

2. See the paper D. Miramanoff, Sur 1’équation (z + 1)! — 2! —1 = 0. Nowv. Ann. Math. 3 (1903),
385-397.

3. When p is a prime congruent to 1 modulo 4, then —1 is a square modulo p; when p is a prime
congruent to 3 modulo 4, then either 2 or —2 is a square modulo p.

4. [AMM #10802: 107 (2000), 462; 109:6 (June-July, 2002), 570]
5. [AMM #10914: 109:1 (January, 2002), 77; 110:8 (October, 2003(, 745]

6. For example, the functions | — 42% + 22 — 5| = (5 — 2z)(2z — 1)|, | — 623 + 52? + 17z — 11| =
|(z% + 2 — 1)(11 — 62)], |2* + 22% — 922 — 102 + 5| = |(2? + 5z + 5)(2? — 3x + 1)| are prime, respectively,
when the integer x satisfies 0 <z <3, —2<z <2, —7T<z <5.

7. (a) (22 =32 +1=a' - 30+ 2 = (22— 2z + 3)(a® + 22 + D).
(b) [AMM # : 114:3 (March, 2007), 260]
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