
PUTNAM PROBLEMS

FINITE MATHEMATICS, COMBINATORICS

2018-B-6. Let S be the set of sequences of length 2018 whose terms are in the set {1, 2, 3, 4, 5, 6, 10}
and sum to 3860. Prove that the cardinality of S is at most

23860 ·
(

2018

2048

)2018

.

2017-A-6. The 30 edges of a regular icosahedron are distinguished by labelling them 1, 2, . . . , 30. How
many different ways are there to paint each edge red, white, or blue such that each of the 20 triangular faces
of the icosahedron has two edges of the same colour and a third edge of a different colour?

2015-B-5. Let Pn be the number of permutations π of {1, 2, . . . , n} such that

|i− j| = 1 implies |π(i)− π(j)| ≤ 2

for all i, j in {1, 2, . . . , n}. Show that for n ≥ 2, the quantity

Pn+5 − Pn+4 − Pn+3 + Pn

does not depend on n, and find its value.

2014-B-5. In the 75th Annual Putnam Games, participants compete at mathematical games. Patniss
and Keeta play a game in which they take turns choosing an element from the group of invertible n × n
matrices with entries in the field Z/pZ of integers modulo p, where n is a fixed positive integer and p is a
fixed prime number. The rules of the game are:

1. A player cannot choose an element that has been chosen by either player on any previous term.

2. A player can only choose an element that commutes with all previously chosen elements.

3. A player who cannot choose an element on his/her turn loses the game.

Patniss takes the first turn. Which player has a winning strategy? (Your answer may depend on n and p.)

2013-A-1. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces;
the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative
integer such that the sum of all 20 integers is 39. Show that there are two faces that share a vertex and have
the same integer written on them.

2013-A-4. A finite collectionof digits 0 and 1 is written around a circle. An arc of length L ≥ 0 consists
of L consecutive digits around the circle. For each arc w, let Z(w) and N(w) denote the number of 0’s in
w and the number of 1’s in w, respectively. Assume that |Z(w)− Z(w′)| ≤ 1 for any two arcs w, w′ of the
same length. Suppose that some arcs w1, . . . , wk have the property that

Z =
1

k

k∑
j=1

Z(wj) and N =
1

k

k∑
j=1

N(wj)

are both integers. prove that there exists an arc w with Z(w) = Z and N(w) = N .

2013-A-6. Define a function w : Z× Z −→ Z as follows. For |a|, |b| ≤ 2, let w(a, b) be as in the table
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shown; otherwise, let w(a, b) = 0.

w(a, b) b
a −2 −1 0 1 2

−2 −1 −2 2 −2 −1
−1 −2 4 −4 4 −2
0 2 −4 12 −4 2
1 −2 4 −4 4 −2
2 −1 −2 2 −2 −1

For every subset of Z× Z, define

A(S) =
∑

(s,s′)∈S×S

w(s− s′).

Prove that if S is any finite nonempty subset of Z×Z, thenA(S) > 0. (For example, if S = {(0, 1), (0, 2), (2, 0), (3, 1)},
then the terms of A(S) are 12, 12, 12, 12, 4, 4, 0, 0, 0, 0, −1, −1, −2, −2 −4, −4.)

2013-B-3. Let P be a nonempty collection of subsets of {1, . . . , n} such that:
(i) if S, S′ ∈ P , then S ∪ S′ ∈ P and S ∩ S′ ∈ P , and
(ii) if S ∈ P and S 6= ∅, then there is a subset T ⊂ S such that T ∈ P and T contains exactly one fewer

element that S.

Suppose that f : P → R is a function such that f(∅) = 0 and

f(S ∪ S′) = f(S) + f(S′)− f(S ∩ S′)

for all S, S′ ∈ P . Must there exist real numbers f1, . . . , fn such that

f(S) =
∑
i∈S

fi

for every S ∈ P?

2013-B-5. Let X = {1, 2, . . . , n}, and let k ∈ X. Show that there are exactly k · nn−1 functions
f : X → X such that for every x ∈ X there is a j ≥ 0 such that f (j)(x) ≤ k. [Here f (j) denotes the jth

iterate of f , so that f (0)(x) = x and f (j+1)(x) = f(f (j)(x)).]

2013-B-6. Let n ≥ 1 be an odd integer. Alice and Bob play the following game, taking alternating
turns, with Alice playing first. The playing area consists of n spaces, arranged in a line. Initially all spaces
are empty. At each turn, a player either

• places a stone in an empty space, or
• removes a stone from a nonempty space s, places a stone in the nearest empty space to the left of s (if

such a space exists), and places a stone in the nearest empty space to the right of s (if such a space exists).

Furthermore, a move is permitted only if the resulting position has not occurred previously in the game.
A player loses if he or she is unable to move. Assuming that both players play optimally throughout the
game, what moves may Alice make on her first turn?

2012-B-3. A round-robin tournament among 2n teams lasted for 2n− 1 days, as follows. On each day,
every team played one game against another team, with one team winning and one team losing in each of
the n games. Over the course of the tournament, each team played every other team exactly once. Can one
necessarily choose one winning team from each day without choosing any team more than once?

2011-B-4. In a tournament, 2011 players meet 2011 times to play a multiplayer game. Each game is
played by all 2011 players together and each ends with each of the players either winning or losing. The
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standings are kept in two 2011 × 2011 matrices, T = (Thk) and W = (Whk). Initially, T = W = 0. After
every game, for every (h, k) (including h = k), if players h and k tied (that is, both won or both lost), then
the entry Thk is increased by 1, while if player h won and player k lost, the entry Whk is increased by 1 and
Wkh is decreased by 1.

Prove that, at the end of the tournament, det(T + iW) is a non-negative integer divisible by 22010.

2010-B-3. There are 2010 boxes labeled B1, B2, . . . , B2010 and 2010n balls have been distributed among
them for some positive integer n. Youmay redistribute the balls by a sequence of moves, each of which consists
of choosing an i and moving exactly i balls from box Bi into any other box. For which values of n is it possible
to reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?

2008-B-6. Let n and k be positive integers. Say that a permutation σ of {1, 2, . . . , n} is k−limited if
|σ(i)− i| ≤ k for all i. Prove that the number of k−limited permutations of {1, 2, . . . , n} is odd if and only
if n ≡ 0 or 1 (mod 2k + 1).

2007-B-6. For each positive integer n, let f(n) be the number of ways to make n! cents using an
unordered collection of coins, each worth k! cents for some k, 1 ≤ k ≤ n. Prove that for some constant C,
independent of n,

nn
2/2−Cne−n

2/4 ≤ f(n) ≤ nn
2/2+Cne−n

2/4 .

2006-A-2. Alice and Bob play a game in which they take turns removing stones from a heap that
initially has n stones. The number of stones removed at each turn must be one less than a prime number.
The winner is the player who takes the last stone. Alice plays first. Prove that there are infinitely many
n such that Bob has a winning strategy. (For example, if n = 17, then Alice might take 6 leaving 11; Bob
might take 1 leaving 10; then Alice can take the remaining stones to win.)

2006-A-4. Let S = {1, 2, · · · , n} for some integer n > 1. Say a permutation π of S has a local maximum
at k ∈ S if

(i) π(k) > π(k + 1) for k = 1;
(ii) π(k − 1) < π(k) and π(k) > π(k + 1) for 1 < k < n;
(iii) π(k − 1) < π(k) for k = n.

(For example, if n = 5 and π takes values at 1, 2, 3, 4, 5 of 2, 1, 4, 5, 3, then π has a local maximum of 2 at
k = 1 and a local maximum of 5 at k = 4.)

What is the average number of local maxima of a permutation of S, averaging over all permutations of
S?

2005-A-2. Let S = {(a, b) : a = 1, 2, · · · , n, b = 1, 2, 3}. A rook tour of S is a polygonal path made up
of line segments connecting points p1, p2, · · ·, p3n in sequence such that (i) pi ∈ S, (ii) pi and pi+1 are a unit
distance apart, for 1 ≤ i < 3n, (iii) for each p ∈ S, there is a unique i such that pi = p. How many rook
tours are there that begin at (1, 1) and end at (n, 1).

(Here is an example of a rook tour for n = 5:

(1, 1), (2, 1), (2, 2), (2, 1), (3, 1), (3, 2), (3, 3), (3, 2)

(3, 1), (4, 1), (4, 2), (4, 3), (5, 3), (5, 2), (5, 1) .)

2005-B-4. For positive integers m and n, let f(m,n) denote the number of n−tuples (x1, x2, · · · , xn)
of integers such that |x1|+ |x2|+ · · ·+ |xn| ≤ m. Show that f(m,n) = f(n,m).

2005-B-6. Let Sn denote the set of all permutations of the numbers 1, 2, · · · , n. For π ∈ Sn, let σ(π) = 1
if π is an even permutation and σ(π) = −1 if π is an odd permutation. Also, let ν(π) denote the number of
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fixed points of π. Show that ∑
π∈Sn

σ(π)

ν(π) + 1
= (−1)n+1 n

n+ 1
.

2003-A-5. A Dyck n−path is a lattice path of n upsteps (1, 1) and n downsteps (1,−1) that starts
at the origin O and never dips below the x−axis. A return is a maximal sequence of contiguous downsteps
that terminates on the x−axis. For example, the Dyck 5-path (up, up, down, up, up, down, down, down,
up, down) has two returns of lengths 3 and 1 respectively. Show that there is a one-to-one correspondence
between the Dyck n−paths with no return of even length and the Dyck (n− 1)−paths.

2002-A-4. In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty 3×3 matrix. Player 0 counters
with a 0 in a vacant position, and play continues in turn until the 3×3 matrix is completed with five 1’s and
four 0’s. Player 0 wins if the determinant is 0 and Player 1 wins otherwise. Assuming both players pursue
optimal strategies, who will win and how?

2002-B-2. Consider a polyhedron with at least five faces such that exactly three edges emerge from
each of its vertices. Two players play the following game:

Each player, in turn, signs his name on a previously unsigned face. The winner is the player who first
succeeds in signing three faces that share a common vertex.

Show that the player who signs first will always win by playing as well as possible.

2002-B-4. An integer n, unknown to you, has been randomly chosen in the intercal [1, 2002] with
uniform probability. Your objective is to select n in an odd number of guesses. After each incorrect guess,
you are informed whether n is higher or lower, and you must guess an integer on your next turn among
the numbers that are still feasibly correct. Show that you have a strategy so that the chance of winning is
greater than 2/3.

2000-B-5. Let S0 be a finite set of positive integers. We define finite sets S1, S2, · · · , of positive integers
as follows:

Integer a is in Sn+1 if and only if exactly one of a− 1 or a is in Sn.

Show that there exists infinitely many integers N for which SN = S0 ∪ {N + a : a ∈ S0}.

1997-A-2. Players 1, 2, 3, · · · , n are seated around a table and each has a single penny. Player 1 passes
a penny to Player 2, who then passes two pennies to Player 3. Player 3 then passes one penny to Player 4,
who then passes two players to Player 5, and so on, players alternately passing one penny or two to the next
player who still has some pennies. A player who runs out of pennies drops out of the game and leaves the
table. Find an infinite set of numbers n for which some player ends up with all n pennies.

1996-A-3. Suppose that each of twenty students has made a choice of anywhere from zero to six courses
from a total of six courses offered. Prove or disprove: There are five students and two courses such that all
five have chosen both courses or all five have chosen neither.

1996-B-1. Define a selfish set to be a set which has its own cardinality (number of elements) as an
element. Find, with a proof, the number of subsets of {1, 2, · · · , n} which are minimal selfish sets, that is,
selfish sets none of whose proper subsets if selfish.

1996-B-5. Given a finite string S of symbol X and O, we write ∆(S) for the number of X’s in S minus
the number of O’s. For example, ∆(XOOXOOX) = −1. We call a string S balanced if every substring
T of (consecutive symbols of) S has −2 ≤ ∆(T ) ≤ 2. Thus, XOOXOOX is not balanced, since it contains
the substring OOXOO. Find, with proof, the number of balanced strings of length n.

1995-A-4. Suppose we have a necklace of n beads. Each bead is labelled with an integer and the sum
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of all these labels is n − 1. Prove that we can cut the necklace to form a string whose consecutive labels
x1, x2, · · · , xn satisfy

k∑
i=1

xi ≤ k − 1 for k = 1, 2, · · · , n .

1995-B-1. For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of elements in the part
containing x. Prove that for any two partitions π and π′, there are two distinct numbers x and y in
{1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y) and π′(x) = π′(y). [A partition of a set S is a collection of
disjoint subsets (parts) whose union is S.]

1995-B-5. A game starts with four heaps of beans, containing 3, 4, 5 and 6 beans. The two players
move alternately. A move consists of taking either

a. one bean from a heap, provided at least two beans are left behing in that heap, or

b. a complete heap of two or three beans.
The player who takes the last heap wins. To win the game, do you want to move first or second? Give

a winning strategy.

1994-A-3. Show that if the points of an isosceles right triangle of side length 1 are earch colored with
one of four colors, then there must be two points of the same color which are at least a distance 2 −

√
2

apart.

1994-A-6. Let f1, f2, · · ·, f10 be bijections of the set of integers such that for each integer n, there is
some composition f11 ◦ f12 ◦ · · · ◦ fim of these functions (allowing repetitions) which maps 0 to n. Consider
the set of 1024 functions

F = {fe11 ◦ f
e2
2 ◦ · · · ◦ f

e10
10 : ei = 0 or 1 for 1 ≤ i ≤ 10}

(f0i is the identity function and f1i = fi). Show that if A is any nonempty finite set of integers, then at most
512 of the functions in F map A to itself.

1993-A-3. Let Pn be the set of subsets of {1, 2, · · · , n}. Let c(n,m) be the number of functions
f : Pn → {1, 2, · · · .m} such that f(A ∩B) = min{f(A), f(B)}. Prove that

c(n,m) =

m∑
j=1

jn .

1992-B-1. Let S be a set of n distinct real numbers. Let AS be the set of numbers that occur as
averages of two distinct elements of S. For a given n ≥ 2, what is the smallest possible number of distinct
elements in AS?
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