
INTEGER VALUES OF A RATIONAL FUNCTION

A mathematical vignette

Let

f(x, y, z) =
x2 + y2 + z2

xy + yz + zx
,

where x, y, z are integers, at least two of which are nonzero. We will investigate
which integer values k are assumed by this rational function. This is equivalent to
determining values of k for which the diophantine equation

x2 + y2 + z2 = k(xy + yz + zx) (1)

has a solution. Because of its homogeneity, if it does have a solution, then it must
have one for which the greatest common divisor of x, y and z is 1; call such a
solution basic.

Exercise 1. Determine solutions, if any, for f(x, y, z) = k when k is equal to
−2, −1, 0 and 1.

Exercise 2. Show that f(x, y, z) can never be a multiple of 4.

Exercise 3. Show that f(x, y, z) can never be congruent to 3 modulo 4.

Exercise 4. (a) Show that (1) is equivalent to each of

(x + y + z)2 = (k + 2)(xy + yz + zx) (2)

and

k(x + y + z)2 = (k + 2)(x2 + y2 + z2). (3)

(b) Suppose that k + 2 = m2n where n is divisible by no square except 1. Prove
that, if f(x, y, z) = k, then x2 + y2 + z2 is divisible by the least common multiple
of k and n.

Exercise 5. Suppose that f(x, y, z) = f(u, v, w) = k. Show that in the ratio
(xy + yz + zx) : (uv + vw + wv) reduced to lowest terms, the antecedent and
consequent are both squares. In particular, if there is a solution for which x2 +y2 +
z2 = ±k, then, for each solution, (u, v, w), |uv + vw + wu| is a square.

Exercise 6. Prove that f(x, y, z) can never assume a value k that is either a
positive multiple of 3 or negative integer k for which |k| ≡ 1 (mod 3).

Exercise 7. Prove that f(x, y, z) cannot assume a value k = 4rm2 − 2 where
r ≥ 2 and m is odd.

Exercise 8. Does the equation f(x, y, z) = −3 have a solution?

Exercise 9. List all the values of k for which −10 ≤ k ≤ 10 that have not been
ruled out as values of f(x, y, z) by the foregoing exercises.
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Exercise 10. (a) Write equation (1) as a quadratic in x and determine its
discriminant in terms of k, y, z. For which values of k does f(x, y, z) = k have
infinitely many basic solutions?

(b) If f(x, y, z) = k has a solution and k+2 = m2n, where n is square free, show
that −3 must be a square (mod p) for every odd prime divisor p > 3 of n. Use the
law of quadratic reciprocity to show that p ≡ 1 (mod 3).

Exercise 11. Determine infinitely basic triples (x, y, z) for which f(x, y, z) = 2.

Exercise 12. Determine integer values assumed by f(x, y, z) when x, y, z are in
arithmetic progression.

Exercise 13. One way to find integer values of f(x, y, z) is to guarantee that
xy+ yz + zx is equal to 1 or -1, or some other small value. Provide some examples.

Exercise 14. (a) Suppose that we have a solution for f(x, y, z) = k for which
the quadratic equation for x in terms of y, z, k has a double root. Then we would
have 2x = k(y + z). Investigate the possibility that x = k.

(b) In the situation of (a), with (x, y, z) = (k, y, z) and k a double root, suppose
instead that f(x, y, z) = 2k.

Exercise 15. Investigate which values of k < 100 for which the only prime
divisors of k + 2 are 2 and 3 that can be assumed by f(x, y, z).

Hints and comments for the exercises.

Exercise 1. When k = −2, the equation is equivalent to (x+y+z)2 = 0. When
k = ±1, it is equivalent to

(x∓ y)2 + (y ∓ z)2 + (z ∓ x)2 = 0.

Exercise 2. Let f(x, y, z) be a multiple of 4. Since k + 2 is even but not a
multiple of 4, x2 + y2 + z2 must be even. But then x+ y+ z is even as well. so that
x2 + y2 + z2 ≡ 0 (mod 4). However, for any basic solution, at least one of x, y, z is
odd and x2 + y2 + z2 ≡ 1, 2, 3 (mod 4).

Exercise 3. Let (x, y, z) be a basic solution of f(x, y, z) = k, where k ≡ 3 (mod
4). Then if exactly one of (x, y, z) is odd, then the left side of (1) is odd and the
right is even. If exactly two of (x, y, z) are odd, then the left side is even and the
right odd. Finally, if all three of (x, y, z) are odd, then the left side is congruent to
3 (mod 4) while the right side is congruent to 3× 3 ≡ 1 (mod 4).

The possibility that k ≡ 1 (mod 4) remains. When x, y, z are all odd, x2 + y2 +
z2 6≡ 7 (mod 8), so that, when k ≡ 1, then xy + yz + zx ≡ 3, and when k ≡ 5, then
xy + yz + zx ≡ 7, modulo 8.
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Exercise 6. If k < 0 and |k| ≡ 1 (mod 3), then k ≤ −3 and

|k + 2| = −k − 2 = |k| − 2 ≡ 1− 2 ≡ 2

modulo 3. In any case |k|+2 is congruent to 2 modulo 3, and therefore has a prime
divisor p congruent to 2 that divides it to an odd power. Since p divides (x+y+z)2,
it must do so to an even power. Hence p must be a divisor of

4(xy + yz + zx) = 4[xy + z(y + x)] ≡ 4[xy − (y + x)2] = (2y + x)2 + 3x2.

We may assume that x is not a multiple of 3. Then −3 must be a square, modulo
p. However (using the Legendre symbol and the quadratic reciprocity law),(

−3

p

)
= (−1)(p−1)/2(−1)(p−1)/2

(p
3

)
= −1,

from which −3 is not a square modulo p. This yields a contradiction. This was
the argument in the solution of Ibrahim Aghazade, a student at ADA University
in Baku, Azerbaijan. .

Exercise 7. (x, y, z) must have the form (2ru, 2rv + n, 2rw − n) for some odd
integer n. Substituting this into the equation (x + y + z)2 = 44m2(xy + yz + zx)
leads to (u + v + w)2 ≡ −m2n2 ≡ −1 (mod 4), which is impossible.

Exercise 8. One can easily guess the solution (x, y, z) = (−1, 1, 1), from which
others can be found. The equation is equivalent to

(x2 + y2 + z2) + 3(xy + yz + zx) = 0.

For a basic solution, at least one of x, y and z is odd. If any are even, then the
left side is odd. Hence we may write (x, y, z) = (2u + 1, 2v + 1, 2w + 1) for some
integers u, v, w. Then we obtain

(u2 + v2 + w2) + 4(u + v + w) + 3(uv + vw + wu) + 3 = 0.

If we set w = 0, then we get the following quadratic in u in terms of v:

u2 + (4 + 3v)u + (v2 + 4v + 3) = 0.

Its discriminant is 5v2 + 8v + 4, which assumes a square value when v = −1, 0, 5.
This leads to

f(−1, 1, 0) = f(−5, 1, 1) = f(−5, 11, 1) = f(−31, 11, 1) = −3.

We can fix two of the variables in equation (1) and regard it as a quadratic in the
third, and in this way, generate an infinite set of solutions.

Exercise 9. −6,−3,−2, 2, 5, 10.

Exercise 10. The quadratic equation Ek in x

x2 − k(y + z)x + (y2 − kyz + z2) = 0

has discriminant Dk equal to

k2(y2 + 2yz + z2)− 4(y2 − kyz + z2) = (k2 − 4)(y2 + z2) + 2k(k + 2)yz

= (k + 2)[(k − 2)(y2 + z2 + yz)] + (k + 2)2yz.



4

Suppose that p ≥ 5 is a prime divisor to an odd power of k + 2. Since Dk must
be square, it is a multiple of p2. Since p does not divide k − 2, p must divide
y2 + z2 + yz, and therefore it divides

4(y2 + z2 + yz) = (2y + z)2 + 3z2.

Since we can arrange that z 6= 0, −3 must be a square (mod p). This can happen
only if p ≡ 1 (mod 6). (When p ≡ 5 (mod 6), then y3 ≡ z3 if and only if y ≡ z.)

For example, when k = 5 and (y, z) = (3, 5), y2 + z2 + yz = 49 = 72. This puts
us on track for a solution. Indeed, D5 = 21 × 34 + 70 × 15 = 1764 = 422 and we
find that f(−1, 3, 5) = 5.

If (1) has a solution with k 6= 1, then it has a solution with y 6= z. Since gcd
(x, y, z) = 1, x, y, z are pairwise coprime. If D = 0, and k 6= −2, we can start with
a solution and arrange y and z so that it has two distinct solutions x, and we can
similar continue spawning new solutions.

Exercise 11. When k = 2, the discriminant D2 is equal to 16yz, which is square
only if yz is square. Since y and z are coprime, we may take y = u2 and z = v2,
and the equation E2 becomes

0 = x2 − 2(u2 + v2) + (u4 − 2u2v2 + v2) = [x− (u + v)2][x− (u− v)2].

We get infinitely many solutions

(x, y, z) = ((u± v)2, u2, v2),

where u and v are arbitrary integers.

We can form any sequence of integers satisfying the recursion mn+1 = mn+mn−1

and find that (x, y, z) = (m2
n−1,m

2
n,m

2
n+1) satisfies f(x, y, z) = 2. In particular

(x, y, z) = (f2
n−1, f

2
n, f

2
n+1) satisfies the equation where {fn} is the bilateral Fi-

bonacci sequence. In this case, determine the values of x2+y2+z2 and xy+yz+zx.

Another sequence for example is

{. . . , 72, 52, 22, 32, 12, 42, 52, 92, 142, 232, . . . .}

It is interesting that the basic solutions in this case consist of squares.

Exercise 12. Suppose that (x, y, z) = (v − u, v, v + u) for some integers u and
v. Then

(k + 2)u2 = 3(k − 1)v2.

Since each side is divisible by 3, we assume that k = 3l − 2, whereupon lu2 =
3(l − 1)v2. Taking l = m2, we get m2u2 = (3m2 − 3)v2. Thus, 3m2 − 3 must be a
square, (3n)2 and so

m2 − 3n2 = 1.

This Pell’s equation has infinitely many solutions (mi, ni) where (m0, n0) = (1, 0),
(m1, n1) = (2, 1) and, for each integer i,

mi+1 = 4mi −mi−1 and ni+1 = 4ni − ni−1.

(Solutions are (1, 0), (2, 1), (7, 4), (26, 15), (97, 56), . . . .)
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When k = 3m2 − 2 and m2 − 3n2 = 1, we get the solution

(x, y, z) = (m− 3n,m,m + 3n).

Thus

x2 + y2 + z2 = 3m2 + 18n2 = 3(m2 + 6n2) = 3(m2 + 2m2 − 2) = 3(3m2 − 2) = 3k,

and

xy + yz + zx = 3m2 − 9n2 = 3(m2 − 3n2) = 3.

When m = 2, k = 10, and we get the solutions:

(x, y, z) = (−1, 2, 5), (2, 5, 71), (−1, 5, 38), . . .

from which we can generate an infinite supply.

When m = 7, k = 145, and we get the solution (x, y, z) = (−5, 7, 19).

Exercise 13. There are several ways one can look at this. One approach is to
look at situations for which xy + yz + zx = ±1. When xy + yz + zx = 1, then
x2 + y2 + z2 = k and

x = −
(
yz − 1

y + z

)
.

When xy + yz + zx = −1, then x2 + y2 + z2 = −k and

x = −
(
yz + 1

y + z

)
.

To make x an integer in both cases, we can make z = 1− y or z = −(y + 1).

In particular, we can take (y, z) = (2r − 1, 2r + 1) so that yz + 1 = 4r2 and
x = −2.

Alternatively, we can note that

(y + x)(z + x) = x2 ± 1,

and choosing values of y and z that will make this product valid.

Interestingly, the Fibonacci numbers make another appearance. Let {fn} be the
Fibonacci sequence with f0 = 0, f1 = 1. When (x, y, z) = (−fn−1, fn, fn+1), then

x2 + y2 + z2 = 4f2
n + 2(−1)n

and

xy + yz + zx = f2
n − fn−1fn+1 = (−1)n+1.

This solution corresponds to k = (−1)n+1[4f2
n + 2(−1)n].

Exercise 14. (a) We must have y + z = 2, so we may assume that y = −(r− 1)
and z = r + 1. If (x, y, z) = (k,−(r − 1), r + 1) is a solution, then

0 = k2 − (r2 − 1)k + 2(r2 + 1) = (k − (r2 + 1))(k − 2).

(b) In this situation, we take y + z = 1, so we can assume that y = −(r− 1) and
z = r, and then solve for k.
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Exercise 15. We have to investigate k = 22, 25, 34, 46, 70 and 94. (k = 14, 62
have already been dealt with.) Since 2 divides 24, 72, 96 to an odd power, then
x + y + z is divisible by 4 and xy + yz + zx is even. Therefore, up to order,
(x, y, z) ≡ (0, 1, 3) (mod 4), which would make xy + yz + zx odd. Hence k = 22, 70
and 94 are not possible.

If k = 25, then

(x + y + z)2 = 27(xy + yz + zx).

Therefore x + y + z is divisible by 9 and xy + yz + zx is divisible by 3. Therefore,
modulo 9, up to order,

(x, y, z) = (9u± 1, 9v ± 1, 9w ± 7), (9u± 1, 9v ± 4, 9w ± 4), (9u± 2, 9v ± 2, 9w ± 5)

for some integers u, v, w. Substituting any of these into the equation and dividing
by 81 yields

(u + v + w ± 1)2 ≡ 2

(mod 3). Since this is not possible, there is no solution.

If k = 34, then (x + y + z)2 = 36(xy + yz + zx), so that x + y + z = 0
(mod 6). Therefore (x, y, z) ≡ (0, 1, 5), (1, 2, 3) (mod 6). In the first instance, if
(x, y, z) = (6u, 6v+1, 6w−1), then (u+v+w)2 = 36(uv+vw+wu)+6(w−v)−1.
But this is not possible, since −1 is not a quadratic residue, modulo 6.

If (x, y, z) = (6u + 1, 6v + 2, 6w + 3), then (u + v + w)2 ≡ 11 (mod 6), which
again is not possible. Therefore k = 34 is not a possible value.

In the case of k = 46,

(x + y + z)2 = 16× 3(xy + yz + zx),

so that x + y + z is divisible by 4. Therefore (x, y, z) ≡ (0, 1, 3) (mod 4). If
(x, y, z) = (4u, 4v + 1, 4w − 1), then

(u + v + w)2 = 3[(uv + vw + wu− v + w)− 1].

Since u+ v +w is divisible by 3, (u, v, w) ≡ (1, 1, 1), (0, 1,−1) (mod 3) up to order.
Therefore, in both cases,

uv + vw + wu− v + w − 1 ≡ −1

(mod 3). But then 32 divides the left side, but not the right side. Therefore there
is no solution when k = 46.

Tables of possibly acceptable values

We have the following families:

k Solution of f(x, y, z) = k

r(r + 1)(r2 + r + 4) + 2 = (r2 + r + 2)2 − 2 (−r, r + 1, r2 + r + 1)
−[r2(r + 1)2 + 2] (−r, r + 1, r2 + r − 1)
−(r2 + 2) (−1, 1, r)
−(9r2 + 2) (−r, 2r − 1, 2r + 1)
r2 + 1 (−(r − 1), r + 1, r2 + 1)
4r(r − 1) + 2 (−(r − 1), r, 2r(r − 1) + 1)
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Tabulation of some numerical solutions.

Positive values of k are not possible values of f(x, y, z) when k is a multiple of
3, k ≡ 0, 3 (mod 4), k = 4km2− 2, or k + 2 is divisible to an odd power by a prime
congruent to 2 (mod 3). Negative values of k are not possible when |k|−2 ≡ 2 (mod
3), k ≡ 0, 3 (mod 4) or |k|−2 is divisible to an odd power by a prime congruent to 2
(mod 3). The values of k that are candidates are listed below, along with solutions
when available.

k Some solution of f(x, y, z) = k

−102 (−1, 1, 10)
−83 (−1, 1, 9), (−3, 5, 7), (−993, 5, 7)
−66 (−1, 1, 8)
−51 (−1, 1, 7)
−38 (−1, 1, 6), (−2, 3, 5), (−3, 2, 43), (−302, 3, 5)
−27 (−1, 1, 5)
−18 (−1, 1, 4)
−11 (−1, 1, 3), (−3, 1, 23), (−43, 1, 3)
−6 (−1, 1, 2), (−2, 1, 7), (−17, 1, 2)
−3 (−1, 1, 1), (−5, 1, 1), (−5, 1, 11), (−11, 5, 19), (−31, 1, 11)
−2 (−1, 0, 1)
2 (0, 1, 1), (1, 1, 4), (1, 4, 9), (1, 9, 16)
5 (−1, 3, 5), (−1, 5, 17), (−1, 17, 75), (3, 5, 41)
10 (−1, 2, 5), (−1, 5, 38), (2, 5, 71), (5, 71, 758)
14 (−1, 2, 3), (−1, 2, 11), (−1, 3, 26), (2, 3, 71)
17 (−3, 5, 17)
26 (−2, 3, 13)
29
37 (−5, 7, 37)
41
46
50 (−3, 4, 25)
61
62 (−2, 3, 7), (−2, 3, 55), (−2, 7, 307), (3, 7, 622)
65 (−7, 9, 65)
70
73
74
77
82 (−4, 5, 41)
85
89
94
98 (−3, 5, 8), (−3, 5, 188), (5, 8, 1277)
101 (−9, 11, 101)


