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PART I No explanation is necessary. (10 marks)

1. Consider the differential equation

y′ = (y2 − 3y + 2)3t2.

Write this equation in separable form:∫
dy =

∫
dt.

2. Consider the separable differential equation

1√
1− y2

dy

dt
= 1.

Then

y(t) = .

3. Consider the differential equation

y′ + tan(t)y = cos(t).

What is the integrating factor µ(t)?

µ(t) = .

4. Consider the differential equation

y′ +
2

t
y =

cos(t)

t2
.

The integrating factor is µ(t) = t2. Then the general solution is

y(t) = .

5. Consider the differential equation

t2y′′ + 7ty′ + 9y = 0.

If we look for a solution of the form y = tp, then

p =



6. Circle the correct option. The series
∞∑

k=33

(−1)k

k2

(a) converges absolutely. (b) converges conditionally. (c) diverges.

7. Consider the divergent series
∞∑
k=1

1

k

We want to add the first N terms: 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

N
to make sure that we obtain a sum

larger than 42.

Then we need:

N >

8. Consider the series
∞∑
k=1

(−1)k+1

√
k

We can approximate the series by adding the first N terms: 1− 1√
2

+
1√
3
− 1

2
+ · · ·+ (−1)N+1

√
N

.

To make sure that the error is smaller than 1
1000 , we need

N >

9. Recall that when we approximate a function f(x) by pn(x), the Taylor polynomial of degree n centered

at a = 0, then the remainder is

f(x)− pn(x) = Rn(x) =
f (n+1)(c)

(n+ 1)!
xn+1,

where c is a point between x and 0.

When we approximate f(x) = e3x at x = 1 by p4(1) = 131
8 , the error we make is

error 6

(your answer should not depend on n, x or c)

10. Consider the differential equation

y′ = y2 − (t− 4)3.

If y(4) = 0, then the solution y(t) has

(a) a relative minimum at t = 4.

(b) a relative maximum at t = 4.

(c) an inflection point at t = 4.

(d) none of the other options.



PART II Justify your answers.

11. Consider a population of jelly fish which satisfy the following growth model: (10 marks)

P ′(t) = r
(
P (t)− T

)(
P (t)−K

)2
where 0 < T < K.

Initially, the population is P0 > 0.

(a) (2 marks) What are the equilibrium solutions?

Answer :

(b) (2 marks) For which value or values of P0 will the population grow without bound?

Answer : P0 ∈

(c) (2 marks) For which value or values of P0 will the population become extinct?

Answer : P0 ∈



(d) (1 mark) For the values of P0 you found in (c), will the population become extinct in a finite

amount of time?

Answer : (Circle the correct option) Yes No

(e) (3 marks) There are several different types of behaviour for P (t) depending on the initial value

P0. Sketch what each of these types would look like.

P

t



12. Let r,K > 0. Find the solution of (5 marks)

K
dP

dt
= rP (K − P )

P (0) =
K

2

You can assume that the solution satisfies 0 6 P (t) 6 K.

Answer : P (t) =



13. Let r > 0. Examine the following series for convergence: (4 marks)

∞∑
k=1

kk

k! rk
.

Fill in the space below and justify your answer. Don’t worry about the boundary point.

Answer : Series converges for r >r >r >

Series diverges for r <r <r <



14. Consider the function f(x) = ex sin(x). (6 marks)

(a) (3 marks) Find the Taylor polynomial of degree 3 to approximate f(x) near x = 0.

Answer : p3(x) =



(b) (3 marks) Using part (a), we can approximate e
π
2 by p3

(
π
2

)
. Give an upper bound for the error

of this approximation. You can use the formula from question 9.

Answer : error 6



15. A ball is bouncing on the ground on a planet with gravitational constant g. (10 marks)

Assume that it takes the same time for the ball to go from the ground up to a height h as it takes to

drop from a height h to the ground. The time for each of these is
√

2h
g seconds.

Each time the ball bounces to 4
9 of the height of the previous bounce.

Initially it is dropped from a height of 1 metre.

(a) (4 marks) Find the total distance travelled by the ball.

Answer : Total distance =



(b) (4 marks) Let Tn be the total elapsed time it takes from the beginning when the ball is dropped

until the ball hits the floor for the nth time. Find a formula for Tn.

Answer : Tn =

(c) (2 marks) Does the ball ever stop bouncing? If so, how long does it take?

Answer :

(Bonus) What is the average speed of the ball? (2 marks)

Answer : Average Speed =



USE THIS PAGE TO CONTINUE OTHER QUESTIONS OR FOR ROUGH WORK.
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USE THIS PAGE TO CONTINUE OTHER QUESTIONS OR FOR ROUGH WORK.

The end.


