MAT187 - Calculus II - Winter 2015			
	Term Test 2 -	March 10, 2015	
Time allotted: 100 mir	nutes.		Aids permitted: None.
Total marks: 50			
Full Name:	Last	First	
Student Number:			
Email:			@mail.utoronto.ca

Instructions

- DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.
- Please have your **student card** ready for inspection, turn off all cellular phones, and read all the instructions carefully.
- DO NOT start the test until instructed to do so.
- This test contains 14 pages (including this title page). Make sure you have all of them.
- You can use pages 12–14 for rough work or to complete a question (Mark clearly).
 DO NOT DETACH PAGES 12–14.

GOOD LUCK!

PART I No explanation is necessary.

1. Consider the differential equation

$$y' = (y^2 - 3y + 2)3t^2.$$

Write this equation in separable form:

$$\int \underline{\qquad} dy = \int \underline{\qquad} dt$$

2. Consider the separable differential equation

$$\frac{1}{\sqrt{1-y^2}}\frac{dy}{dt} = 1.$$

Then

$$y(t) =$$

3. Consider the differential equation

$$y' + \tan(t)y = \cos(t).$$

What is the integrating factor $\mu(t)$?

$$\mu(t) = _____.$$

4. Consider the differential equation

$$y' + \frac{2}{t}y = \frac{\cos(t)}{t^2}.$$

The integrating factor is $\mu(t) = t^2$. Then the general solution is

$$y(t) = _____.$$

5. Consider the differential equation

$$t^2y'' + 7ty' + 9y = 0.$$

If we look for a solution of the form $y = t^p$, then

p =

(10 marks)

- 6. Circle the correct option. The series $\sum_{k=33}^{\infty} \frac{(-1)^k}{k^2}$
 - (a) converges absolutely. (b) converges conditionally. (c) diverges.
- 7. Consider the divergent series

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

We want to add the first N terms: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{N}$ to make sure that we obtain a sum larger than 42.

Then we need:

$$N \geqslant$$

8. Consider the series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$$

We can approximate the series by adding the first N terms: $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{2} + \dots + \frac{(-1)^{N+1}}{\sqrt{N}}$. To make sure that the error is smaller than $\frac{1}{1000}$, we need

 $N \geqslant$

9. Recall that when we approximate a function f(x) by $p_n(x)$, the Taylor polynomial of degree *n* centered at a = 0, then the remainder is

$$f(x) - p_n(x) = R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1},$$

where c is a point between x and 0.

When we approximate $f(x) = e^{3x}$ at x = 1 by $p_4(1) = \frac{131}{8}$, the error we make is

 $\operatorname{error} \leqslant$

(your answer should not depend on n, x or c)

10. Consider the differential equation

$$y' = y^2 - (t-4)^3.$$

If y(4) = 0, then the solution y(t) has

- (a) a relative minimum at t = 4. (c) an inflection point at t = 4.
- (b) a relative maximum at t = 4. (d) none of the other options.

PART II Justify your answers.

11. Consider a population of jelly fish which satisfy the following growth model: (10 marks)

$$P'(t) = r(P(t) - T)(P(t) - K)^2$$
 where $0 < T < K$.

Initially, the population is $P_0 \ge 0$.

(a) (2 marks) What are the equilibrium solutions?

Answer :

(b) (2 marks) For which value or values of P_0 will the population grow without bound?

Answer : $P_0 \in$

(c) (2 marks) For which value or values of P_0 will the population become extinct?

Answer : $P_0 \in$

(d) (1 mark) For the values of P_0 you found in (c), will the population become extinct in a finite amount of time?

Answer : (Circle the correct option)YesNo

(e) (3 marks) There are several different types of behaviour for P(t) depending on the initial value P_0 . Sketch what each of these types would look like.

12. Let r, K > 0. Find the solution of

(5 marks)

$$K\frac{dP}{dt} = rP(K - P)$$
$$P(0) = \frac{K}{2}$$

You can assume that the solution satisfies $0 \leq P(t) \leq K$.

Answer : P(t) =

13. Let r > 0. Examine the following series for convergence:

$$\sum_{k=1}^{\infty} \frac{k^k}{k! r^k}.$$

Fill in the space below and justify your answer. Don't worry about the boundary point.

Answer : Series converges for r > _____

Series diverges for r <_____

(4 marks)

14. Consider the function $f(x) = e^x \sin(x)$.

(6 marks)

(a) (3 marks) Find the Taylor polynomial of degree 3 to approximate f(x) near x = 0.

Answer : $p_3(x) =$

(b) (3 marks) Using part (a), we can approximate $e^{\frac{\pi}{2}}$ by $p_3\left(\frac{\pi}{2}\right)$. Give an upper bound for the error of this approximation. You can use the formula from question 9.

 $\mathbf{Answer}:\,\mathrm{error}\leqslant$

- 15. A ball is bouncing on the ground on a planet with gravitational constant g. (10 marks) Assume that it takes the same time for the ball to go from the ground up to a height h as it takes to drop from a height h to the ground. The time for each of these is √^{2h}/_g seconds. Each time the ball bounces to ⁴/₉ of the height of the previous bounce. Initially it is dropped from a height of 1 metre.
 - (a) (4 marks) Find the total distance travelled by the ball.

(b) (4 marks) Let T_n be the total elapsed time it takes from the beginning when the ball is dropped until the ball hits the floor for the n^{th} time. Find a formula for T_n .

Answer : $T_n =$

(c) (2 marks) Does the ball ever stop bouncing? If so, how long does it take?

 $\mathbf{Answer}:$

(Bonus) What is the average speed of the ball?

(2 marks)

 $\mathbf{Answer}: \operatorname{Average} \operatorname{Speed} =$

USE THIS PAGE TO CONTINUE OTHER QUESTIONS OR FOR ROUGH WORK.

USE THIS PAGE TO CONTINUE OTHER QUESTIONS OR FOR ROUGH WORK.

USE THIS PAGE TO CONTINUE OTHER QUESTIONS OR FOR ROUGH WORK.