UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING Solutions to Final Examination, April 2017 DURATION: 2 AND 1/2 HRS FIRST YEAR - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT188H1S - Linear Algebra

EXAMINER: D. BURBULLA

Exam Type: A.

Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

Breakdown of Results: 66 students wrote this exam. The marks ranged from 17.7% to 96.7%, and the average was 64.6%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	6.1%
А	24.3%	80-89%	18.2%
В	16.7%	70-79%	16.7%
C	18.2%	60-69%	18.2%
D	24.2%	50-59%	24.2%
F	16.7%	40-49%	7.6~%
		30 - 39%	6.1%
		20-29%	0.0%
		10-19%	3.0%
		0-9%	0.0%

1. [avg: 8/10] Given that the reduced row echelon form of

	2	10	1	$\overline{7}$	5		1	5	0	2	4]
A =	-1	-5	1	1	-7	is $R =$	0	0	1	3	-3	,
	2	10	1	7	5		0	0	0	0	0	

find the following. (No justification is required.)

(a) $[1 \text{ mark}]$ the rank of A	Answer:	2
(b) $[1 \text{ mark}] \dim(\text{Row}(A))$	Answer:	2
(c) $[1 \text{ mark}] \dim(\operatorname{Col}(A))$	Answer:	2
(d) $[1 \text{ mark}] \dim(\text{Null}(A))$	Answer:	3
(e) $[1 \text{ mark}] \dim(\text{Null}(A^T))$	Answer:	1

(f) [1 mark] A basis for the row space of A.

Solution:	any tw	o indep	endent	rows	of A	4 or	R	will	do:	Answer
-----------	--------	---------	--------	------	------	------	---	------	-----	--------

(g) [2 marks] A basis for the column space of A.

Solution: any two independent columns of A will do:

(h) [2 marks] A basis for the null space of A.

	x_1		$\begin{bmatrix} -5s - 2t - 4u \end{bmatrix}$		-5]	[-2]		$\begin{bmatrix} -4 \end{bmatrix}$	
	x_2		s		1		0		0	
Solution:	x_3	=	-3t + 3u	Answer:	0	,	-3	,	3	
	x_4		t		0	0	1		0	
	x_5		u						1	

 $\mathbf{2}$

2. [avg:
$$8.7/10$$
]

Let

$$\vec{x} = \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}, \vec{u}_1 = \begin{bmatrix} 1\\ -1\\ 3\\ 0 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} -2\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}, \vec{u}_3 = \begin{bmatrix} 1\\ 1\\ 0\\ 1 \end{bmatrix}, \vec{u}_4 = \begin{bmatrix} 1\\ 10\\ 3\\ -11 \end{bmatrix}.$$
Show $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ is
an orthogonal set, and
write \vec{x} as a linear com-
bination of $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$.

Solution: need to show $\vec{u}_i \cdot \vec{u}_j = 0$, for $i \neq j$. Since $\vec{u}_i \cdot \vec{u}_j = \vec{u}_j \cdot \vec{u}_i$, there are only six dot products you must check:

$$\vec{u}_1 \cdot \vec{u}_2 = -2 - 1 + 3 + 0 = 0, \quad \vec{u}_1 \cdot \vec{u}_3 = 1 - 1 + 0 + 0 = 0, \quad \vec{u}_1 \cdot \vec{u}_4 = 1 - 10 + 9 + 0 = 0,$$

$$\vec{u}_2 \cdot \vec{u}_3 = -2 + 1 + 0 + 1 = 0, \quad \vec{u}_2 \cdot \vec{u}_4 = -2 + 10 + 3 - 11 = 0, \quad \vec{u}_3 \cdot \vec{u}_4 = 1 + 10 + 0 - 11 = 0.$$

Thus $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ is an independent set of four vectors in \mathbb{R}^4 , so it is a basis for \mathbb{R}^4 , and

$$\begin{split} \vec{x} &= \frac{\vec{x} \cdot \vec{u}_1}{\|\vec{u}_1\|^2} \vec{u}_1 + \frac{\vec{x} \cdot \vec{u}_2}{\|\vec{u}_2\|^2} \vec{u}_2 + \frac{\vec{x} \cdot \vec{u}_3}{\|\vec{u}_3\|^2} \vec{u}_3 + \frac{\vec{x} \cdot \vec{u}_4}{\|\vec{u}_4\|^2} \vec{u}_4 \\ &= \frac{1+1+3}{1+1+9} \vec{u}_1 + \frac{-2-1+1-1}{4+1+1+1} \vec{u}_2 + \frac{1-1-1}{1+1+1} \vec{u}_3 + \frac{1-10+3+11}{1+100+9+121} \vec{u}_4 \\ &= \frac{5}{11} \vec{u}_1 - \frac{3}{7} \vec{u}_2 - \frac{1}{3} \vec{u}_3 + \frac{5}{231} \vec{u}_4 \end{split}$$

Alternate Solution: solve the vector equation $\vec{x} = x_1 \vec{u}_1 + x_2 \vec{u}_2 + x_3 \vec{u}_3 + x_4 \vec{u}_4$ for x_1, x_2, x_3, x_4 by solving a linear system of equations. Use augmented matrices and good old row reduction:

$$\begin{bmatrix} 1 & -2 & 1 & 1 & 1 \\ -1 & 1 & 1 & 0 & -1 \\ 3 & 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & -11 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 1 & 1 \\ 0 & -1 & 2 & 11 & 0 \\ 0 & 4 & 3 & 33 & -2 \\ 0 & 1 & 1 & -11 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 1 & 1 \\ 0 & 1 & -2 & -11 & 0 \\ 0 & 0 & 11 & 77 & -2 \\ 0 & 0 & 3 & 0 & -1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -2 & 1 & 1 & 1 \\ 0 & 1 & -2 & -11 & 0 \\ 0 & 0 & 1 & 0 & -1/3 \\ 0 & 0 & 0 & 7 & 5/33 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 5/11 \\ 0 & 1 & 0 & 0 & -3/7 \\ 0 & 0 & 1 & 0 & -1/3 \\ 0 & 0 & 0 & 1 & 5/231 \end{bmatrix},$$

from which

$$x_1 = \frac{5}{11}, \ x_2 = -\frac{3}{7}, \ x_3 = -\frac{1}{3}, \ x_4 = \frac{5}{231},$$

as before.

3. [avg: 6.2/10]

Let
$$A = \frac{1}{13} \begin{bmatrix} 5 & 12 \\ 12 & -5 \end{bmatrix}$$
. Find the eigenvalues of A and a basis for each eigenspace of A . Plot the eigenspaces of A in \mathbb{R}^2 , and clearly indicate which eigenspace corresponds to which eigenvalue. Interpret your result geometrically.

Solution: be careful with the fractions!

$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 5/13 & -12/13 \\ -12/13 & \lambda + 5/13 \end{bmatrix} = \lambda^2 - \frac{25}{169} - \frac{144}{169} = \lambda^2 - 1,$$

so the eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = -1$. Next, find a basis for each eigenspace:

$$\operatorname{null} \begin{bmatrix} \lambda_1 - 5/13 & -12/13 \\ -12/13 & \lambda_1 + 5/13 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 8/13 & -12/13 \\ -12/13 & 18/13 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 2 & -3 \\ 0 & 0 \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right\};$$
$$\operatorname{null} \begin{bmatrix} \lambda_2 - 5/13 & -12/13 \\ -12/13 & \lambda_2 + 5/13 \end{bmatrix} = \operatorname{null} \begin{bmatrix} -18/13 & -12/13 \\ -12/13 & -8/13 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ -3 \end{bmatrix} \right\}.$$

The eigenvectors are orthogonal to each other; each eigenspace is a line passing through the origin. **Geometrical Interpretation:** A is the matrix of a reflection in the line with equation 3y = 2x. 4. [avg: 7.4/10] Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by

$$L\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} 3x_1 - x_2\\ 9x_1 + 2x_2 \end{array}\right]$$

(a) [5 marks] Draw the image of the unit square¹ under L and find its area.

Solution:

$$[L] = \begin{bmatrix} L(\vec{e_1}) & L(\vec{e_2}) \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 9 & 2 \end{bmatrix}$$

The image of the image of the unit square is to the right; the area of this parallelogram is

$$\left| \det \begin{bmatrix} 3 & -1 \\ 9 & 2 \end{bmatrix} \right| = 15$$

•

(b) [5 marks] Find $L^{-1}\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right)$.

Solution: use the formula for the inverse of a 2×2 matrix.

$$[L^{-1}] = [L]^{-1} = \begin{bmatrix} 3 & -1 \\ 9 & 2 \end{bmatrix}^{-1} = \frac{1}{6+9} \begin{bmatrix} 2 & 1 \\ -9 & 3 \end{bmatrix} = \frac{1}{15} \begin{bmatrix} 2 & 1 \\ -9 & 3 \end{bmatrix}$$

Thus

$$L^{-1}\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right) = \frac{1}{15}\left[\begin{array}{c} 2 & 1\\ -9 & 3 \end{array}\right]\left[\begin{array}{c} x_1\\ x_2 \end{array}\right] = \frac{1}{15}\left[\begin{array}{c} 2x_1 + x_2\\ -9x_1 + 3x_2 \end{array}\right].$$

¹The unit square is the square with the four vertices (0,0), (1,0), (0,1), (1,1).

5. [avg: 2.4/10]
Let

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 1 & 5 & 2 & 6 \\ 3 & 2 & 7 & 1 \\ 3 & 6 & 7 & 4 \end{bmatrix}.$$
(a) [5 marks] Show that $S = \{\vec{x} \in \mathbb{R}^4 \mid A \, \vec{x} = A^T \, \vec{x}\}$ is a subspace of \mathbb{R}^4 .

Solution: the easy way is to observe that $S = \text{null}(A - A^T)$, so S is a subspace.

5.(b) [5 marks] Find a basis for S.

Solution:

$$\operatorname{null}(A - A^{T}) = \operatorname{null} \begin{bmatrix} 2 - 2 & 1 - 1 & 3 - 3 & 4 - 3 \\ 1 - 1 & 5 - 5 & 2 - 2 & 6 - 6 \\ 3 - 3 & 2 - 2 & 7 - 7 & 1 - 7 \\ 3 - 4 & 6 - 6 & 7 - 1 & 4 - 4 \end{bmatrix}$$
$$= \operatorname{null} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -6 \\ -1 & 0 & 6 & 0 \end{bmatrix}$$
$$= \operatorname{null} \begin{bmatrix} 1 & 0 & -6 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Note that the rank of $A - A^T$ is 2, so that $\dim(\operatorname{null}(A - A^T)) = 4 - 2$. A basis for S is

$$\left\{ \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 6\\0\\1\\0 \end{bmatrix} \right\}.$$

6. [avg: 6.1/10] Find an orthogonal matrix P and a diagonal matrix D such that $D = P^T A P$, if

$$A = \begin{bmatrix} 7 & 1 & -1 \\ 1 & 7 & -1 \\ -1 & -1 & 7 \end{bmatrix}.$$

Step 1: Find the eigenvalues of *A*.

$$\det \begin{bmatrix} \lambda - 7 & -1 & 1 \\ -1 & \lambda - 7 & 1 \\ 1 & 1 & \lambda - 7 \end{bmatrix} = \det \begin{bmatrix} \lambda - 7 & -1 & 1 \\ -1 & \lambda - 7 & 1 \\ 0 & \lambda - 6 & \lambda - 6 \end{bmatrix} = (\lambda - 6) \det \begin{bmatrix} \lambda - 7 & -1 & 1 \\ -1 & \lambda - 7 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
$$= (\lambda - 6) \det \begin{bmatrix} \lambda - 7 & -2 & 1 \\ -1 & \lambda - 8 & 1 \\ 0 & 0 & 1 \end{bmatrix} = (\lambda - 6) \det \begin{bmatrix} \lambda - 7 & -2 \\ -1 & \lambda - 8 \end{bmatrix}$$
$$= (\lambda - 6)(\lambda^2 - 15\lambda + 54) = (\lambda - 6)(\lambda - 6)(\lambda - 9) = (\lambda - 6)^2(\lambda - 9)$$

So the eigenvalues of A are $\lambda_1 = 6$, repeated, and $\lambda_2 = 9$.

Step 2: recall null $(A - \lambda I)$ is the eigenspace of A corresponding to the eigenvalue λ . Find three mutually **orthogonal** eigenvectors of A. For $\lambda_2 = 9$, null(9I - A) =

$$\operatorname{null} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 0 & 3 & 3 \\ -1 & 2 & 1 \\ 0 & 3 & 3 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right\},$$
and for $\lambda_1 = 6$, $\operatorname{null}(6I - A) =$

$$\operatorname{null} \begin{bmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \right\}.$$

Step 3: Divide each eigenvector by its length to get an orthonormal basis of eigenvectors, which are put into the columns of *P*. So

$$P = \begin{bmatrix} 1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ -1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \end{bmatrix}; \quad D = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

- 7. [avg: 6.4/10] Let $S = \operatorname{span}\left\{ \begin{bmatrix} 1 & 0 & -1 & 1 \end{bmatrix}^T, \begin{bmatrix} 3 & 1 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 2 & 0 & 1 & 1 \end{bmatrix}^T \right\}.$
 - (a) [5 marks] Find an orthogonal basis of S.

Solution: call the three given vectors $\vec{x}_1, \vec{x}_2, \vec{x}_3$ and apply the Gram-Schmidt algorithm to find an orthogonal basis $\vec{v}_1, \vec{v}_2, \vec{v}_3$. Take $\vec{v}_1 = \vec{x}_1$,

$$\vec{v}_{2} = \vec{x}_{2} - \frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} = \begin{bmatrix} 3\\1\\1\\1\\1 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\0\\-1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\1\\2\\0 \end{bmatrix},$$
$$\vec{v}_{3} = \vec{x}_{3} - \frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} - \frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\|\vec{v}_{2}\|^{2}} \vec{v}_{2} = \begin{bmatrix} 2\\0\\1\\1\\1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1\\0\\-1\\1\\1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 2\\1\\2\\0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 0\\-2\\1\\1\\1 \end{bmatrix}.$$

Then $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an orthogonal basis of S.

(b) [5 marks] Let
$$\vec{x} = \begin{bmatrix} 2 & -3 & 3 & 4 \end{bmatrix}^T$$
. Find $\operatorname{proj}_S(\vec{x})$.

Solution: use the projection formula, and your orthogonal basis from part (a).

$$\operatorname{proj}_{S} \vec{x} = \frac{\vec{x} \cdot \vec{v}_{1}}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} + \frac{\vec{x} \cdot \vec{v}_{2}}{\|\vec{v}_{2}\|^{2}} \vec{v}_{2} + \frac{\vec{x} \cdot \vec{v}_{3}}{\|\vec{v}_{3}\|^{2}} \vec{v}_{3} = \frac{3}{3} \begin{bmatrix} 1\\ 0\\ -1\\ 1 \end{bmatrix} + \frac{7}{9} \begin{bmatrix} 2\\ 1\\ 2\\ 0 \end{bmatrix} + \frac{13}{6} \begin{bmatrix} 0\\ -2\\ 1\\ 1 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 46\\ -64\\ 49\\ 57 \end{bmatrix}.$$

Alternate Solution: observe that $S^{\perp} = \operatorname{span}\{\vec{y}\}$ with $\vec{y} = \begin{bmatrix} -2 & 2 & 1 & 3 \end{bmatrix}^T$, since

$$\operatorname{null} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 3 & 1 & 1 & 1 \\ 2 & 0 & 1 & 1 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 4 & -2 \\ 0 & 0 & 3 & -1 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 3 & 0 & 0 & 2 \\ 0 & 3 & 0 & -2 \\ 0 & 0 & 3 & -1 \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} -2 \\ 2 \\ 1 \\ 3 \end{bmatrix} \right\}$$

. -

Then

$$\operatorname{proj}_{S}(\vec{x}) = \vec{x} - \operatorname{proj}_{S^{\perp}}(\vec{x}) = \vec{x} - \frac{\vec{x} \cdot \vec{y}}{\|\vec{y}\|^{2}} \vec{y} = \vec{x} - \frac{5}{18} \vec{y} = \frac{1}{18} \begin{bmatrix} 46 & -64 & 49 & 57 \end{bmatrix}^{T}.$$

8. [avg: 7.2/10] Consider the plane Π in \mathbb{R}^3 with scalar equation $2x_1 - 3x_2 - 5x_3 = 0$ and the point with coordinates Q(1,3,1). Find the point on the plane Π closest to the point Q.

Solution 1: let R be the point on the plane closest to Q. Then, by the Best Approximation Theorem, $\overrightarrow{OR} = \text{proj}_{\Pi}(\overrightarrow{OQ})$. To use this formula, though, we need an orthogonal basis of Π : take (by trial and error)

$$\vec{v}_1 = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 8\\ 7\\ -1 \end{bmatrix}.$$

(Or, take any vector in Π and cross it with the normal vector to Π ; that will give you another vector in Π ; or find a basis of Π and then apply the Gram-Schmidt Algorithm to it.) Then

$$\overrightarrow{OR} = \operatorname{proj}_{\Pi}(\overrightarrow{OQ}) = \frac{\overrightarrow{OQ} \cdot \overrightarrow{v}_1}{\|\overrightarrow{v}_1\|^2} \overrightarrow{v}_1 + \frac{\overrightarrow{OQ} \cdot \overrightarrow{v}_2}{\|\overrightarrow{v}_2\|^2} \overrightarrow{v}_2$$
$$= -\frac{1}{3} \begin{bmatrix} 1\\-1\\1 \end{bmatrix} + \frac{14}{57} \begin{bmatrix} 8\\7\\-1 \end{bmatrix}$$
$$= \frac{1}{19} \begin{bmatrix} 31\\39\\-11 \end{bmatrix}$$

Solution 2: let \mathcal{L} be the line that passes through the point Q and is perpendicular to the plane Π . Then \mathcal{L} has parametric equations

$$\begin{array}{rcrrr} x_1 & = & 1+2t \\ x_2 & = & 3-3t \\ x_3 & = & 1-5t \end{array}$$

The closest point on Π to the point Q is the point R, which is the intersection of the line \mathcal{L} and the plane Π . To find this intersection point substitute from the line into the plane, and solve for t:

$$2(1+2t) - 3(3-3t) - 5(1-5t) = 0 \Leftrightarrow 38t - 12 = 0 \Leftrightarrow t = \frac{6}{19}$$

Then R has coordinates

$$\left(1+2\left(\frac{6}{19}\right), 3-3\left(\frac{6}{19}\right), 1-5\left(\frac{6}{19}\right)\right) = \left(\frac{31}{19}, \frac{39}{19}, -\frac{11}{19}\right)$$

9. [avg: 5.8/10] Use the method of least squares to find the best fitting quadratic function for the five data points

(-2, 4.9), (-1, 2.1), (0, 0.9), (1, 1.9), (2, 5.1).

Solution: take $x_1 = -2$, $x_2 = -1$, $x_3 = 0$, $x_4 = 1$, $x_5 = 2$ and $\vec{y} = \begin{bmatrix} 4.9 \\ 2.1 \\ 0.9 \\ 1.9 \\ 5.1 \end{bmatrix}$. Let the quadratic

function be $y = a + bx + cx^2$. We have

$$M = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \text{ and } M^T M = \begin{bmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{bmatrix}.$$

The normal equations are

$$M^{T}M\begin{bmatrix} a\\b\\c \end{bmatrix} = M^{T}\vec{y} \Leftrightarrow \begin{bmatrix} 5 & 0 & 10\\0 & 10 & 0\\10 & 0 & 34 \end{bmatrix} \begin{bmatrix} a\\b\\c \end{bmatrix} = \begin{bmatrix} 14.9\\0.2\\44.0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 5 & 0 & 10\\0 & 10 & 0\\0 & 0 & 14 \end{bmatrix} \begin{bmatrix} a\\b\\c \end{bmatrix} = \begin{bmatrix} 14.9\\0.2\\14.2 \end{bmatrix}$$

This system is actually easy to solve directly, since b is already completely isolated:

$$a = 333/350, b = 1/50, c = 71/70.$$

OR: Use the Gaussian algorithm to find the inverse of $M^T M$:

$$\begin{bmatrix} 5 & 0 & 10 & | & 1 & 0 & 0 \\ 0 & 10 & 0 & | & 0 & 1 \\ 10 & 0 & 34 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & | & 1/5 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 1/10 & 0 \\ 0 & 0 & 14 & | & -2 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 7 & 0 & 0 & | & 17/5 & 0 & -1 \\ 0 & 1 & 0 & | & 0 & 1/10 & 0 \\ 0 & 0 & 14 & | & -2 & 0 & 1 \end{bmatrix}$$

 So

$$(M^{T}M)^{-1} = \begin{bmatrix} 17/35 & 0 & -1/7 \\ 0 & 1/10 & 0 \\ -1/7 & 0 & 1/14 \end{bmatrix}; \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 17/35 & 0 & -1/7 \\ 0 & 1/10 & 0 \\ -1/7 & 0 & 1/14 \end{bmatrix} \begin{bmatrix} 14.9 \\ 0.2 \\ 44.0 \end{bmatrix} = \begin{bmatrix} 33.3/35 \\ 0.02 \\ 35.5/35 \end{bmatrix}.$$

Either way, the best fitting quadratic to the data is

$$y = \frac{333}{350} + \frac{1}{50}x + \frac{71}{70}x^2 \approx 0.951428571 + 0.02x + 1.014285714x^2$$

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.