University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING Solutions to **FINAL EXAMINATION, DECEMBER, 2011** First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS

MAT188H1F - LINEAR ALGEBRA Exam Type: A

General Comments:

- 1. In Question 2(a), few students realized that the zero vector is in *every* subspace of \mathbb{R}^n .
- 2. Questions 3, 6 and 7 were almost identical to analogous questions from last year's exam; these questions should have been aced.
- 3. In Question 4 very few students could actually draw the image of the unit square; and many used row-reduction (incorrectly!) to find the inverse of the matrix of T, instead of using the simple formula for the inverse of a 2×2 matrix.
- 4. In Question 5, many students calculated $C_R(x)$, but didn't use the quadratic formula to find the eigenvalues of R. The point of part (b) was to show geometrically why the only real solutions to $C_R(x) = 0$ are $x = \pm 1$.

Breakdown of Results: 947 students wrote this exam. The marks ranged from 1% to 100%, and the average was 67.0%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	7.2%
A	26.0%	80-89%	18.8%
В	22.1%	70-79%	22.1%
C	20.8%	60-69%	20.8%
D	17.5%	50-59%	17.5%
F	13.6%	40-49%	7.8%
		30 - 39%	3.5%
		20-29%	1.5%
		10-19%	0.5%
		0-9%	0.3%

1. Find the following:

(a) [6 marks] the values of *a* for which the matrix
$$A = \begin{bmatrix} 1 & a & 0 \\ 2 & 0 & a \\ a & -1 & 1 \end{bmatrix}$$
 is not invertible.

Solution: det
$$\begin{bmatrix} 1 & a & 0 \\ 2 & 0 & a \\ a & -1 & 1 \end{bmatrix} = a^3 - a = 0 \Leftrightarrow a = 0 \text{ or } a = \pm 1.$$

(b) [6 marks] the minimum distance between the skew lines \mathbb{L}_1 and \mathbb{L}_2

$$\mathbb{L}_1: \left\{ \begin{array}{rrrr} x &= 1 &+ t \\ y &= 0 &- t \\ z &= 1 &+ 3t \end{array} \right. \stackrel{}{} \mathbb{L}_2: \left\{ \begin{array}{rrrr} x &= 2 &- s \\ y &= 3 &- s \\ z &= 1 &+ s \end{array} \right.$$

where s and t are parameters.

Solution: the minimum distance is $D = \left\| \operatorname{proj}_{\vec{n}} \overrightarrow{PQ} \right\|$ with

$$\vec{n} = \vec{d_1} \times \vec{d_2} = \begin{bmatrix} 1\\-1\\3 \end{bmatrix} \times \begin{bmatrix} -1\\-1\\1 \end{bmatrix} = \begin{bmatrix} 2\\-4\\-2 \end{bmatrix} \text{ and } \overrightarrow{PQ} = \begin{bmatrix} 2-1\\3-0\\1-1 \end{bmatrix} = \begin{bmatrix} 1\\3\\0 \end{bmatrix};$$

so
$$D = |\overrightarrow{PQ} \cdot \vec{n}| / ||\vec{n}|| = |2 - 12| / \sqrt{24} = 5 / \sqrt{6}.$$

(c) [6 marks] a basis for U^{\perp} if

$$U = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 2 & -3 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}^T \right\}.$$

Solution: $U^{\perp} =$

$$\operatorname{null} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & -3 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 2 & -3 & 0 \\ 0 & 0 & 2 & -4 & 0 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 \end{bmatrix}$$
$$= \left\{ \begin{bmatrix} -2s - t \\ -s \\ 2s \\ s \\ t \end{bmatrix} \middle| s, t \in \mathbb{R} \right\}; \text{ so a basis for } U^{\perp} \text{ is } \left\{ \begin{bmatrix} -2 \\ -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

(d) [6 marks] the scalar equation of the plane passing through the three points

$$P(-2,3,5), Q(2,2,1), R(2,0,0)$$

Solution: $\vec{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{bmatrix} 4 & -1 & -4 \end{bmatrix}^T \times \begin{bmatrix} 4 & -3 & -5 \end{bmatrix}^T = \begin{bmatrix} -7 & 4 & -8 \end{bmatrix}^T$; so the equation is $-7x + 4y - 8z = -14 + 0 + 0 \Leftrightarrow 7x - 4y + 8z = 14$.

- 2. [2 marks each] Decide if the following statements are True or False, and give a brief, concise justification for your choice. Circle your choice.
 - (a) An $n \times n$ matrix A is not invertible if and only if col(A) contains the zero vector.

True or False

False: the zero vector is in *every* subspace, so col(A) always contains the zero vector, regardless of A. In particular, the identity matrix I is invertible, but col(I) contains the zero vector.

(b) dim
$$\left(im \begin{bmatrix} 5 & 1 & -1 & 2 \\ 3 & 6 & 1 & 1 \\ 2 & -5 & -2 & 1 \end{bmatrix} \right) = 2$$
 True or False

True: dim (im(A)) = r, where r is the rank of A. The matrix

5	1	-1	2]	
3	6	1	1	
2	-5	-2	1	

has rank 2 because it only has 2 independent rows: $R_1 = R_2 + R_3$.

(c) If U is a subspace of \mathbb{R}^6 and dim U = 2 then dim $U^{\perp} = 4$. True or False

True: $6 = \dim U + \dim U^{\perp} \Rightarrow \dim U^{\perp} = 6 - 2 = 4.$

(d) If $\lambda \neq 0$ is an eigenvalue of A, then $\frac{\det(A)}{\lambda}$ is an eigenvalue of $\operatorname{adj}(A)$.

True or False

True:
$$AX = \lambda X \Rightarrow \operatorname{adj}(A)(AX) = \operatorname{adj}(A)(\lambda X) \Rightarrow \det(A)X = \lambda \operatorname{adj}(A)X$$

(e) If the eigenvalues of A are all real, then A is symmetric. **True** or **False**

False: the eigenvalues of $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	2 3	are real, but A is not symmetric.
---	--------	-------------------------------------

3. [10 marks] Given that the reduced row-echelon form of

$$A = \begin{bmatrix} 1 & 2 & 3 & 1 & 1 \\ 0 & 6 & 6 & 0 & 0 \\ -1 & 4 & 3 & -1 & -1 \\ 1 & -1 & 0 & 1 & 2 \end{bmatrix} \text{ is } R = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

state the rank of A, and find a basis for each of the following: the row space of A, the column space of A, and the null space of A.

Solution: the rank of A is r = 3, the number of leading 1's in R.

U	$\dim U$	description of basis	vectors in basis
$\mathrm{row}A$	r = 3	three non-zero rows of R	$\left\{ \begin{bmatrix} 1\\0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$
		three independent rows of A	$ \{ R_1, R_2, R_4 \} \\ \{ R_1, R_3, R_4 \} \\ \{ R_2, R_3, R_4 \} $
			NB: $R_3 = R_2 - R_1$
$\operatorname{col} A$	r = 3	three independent columns of A	$\{C_1, C_2, C_5\}$
			NB: $C_3 = C_1 + C_2; C_4 = C_1$
		not three independent columns of R	$\operatorname{col} R \neq \operatorname{col} A$
null A	5 - r = 2	two basic solutions to $AX = 0$	$\left\{ \begin{bmatrix} -1\\ -1\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 0\\ 0\\ 1\\ 0 \end{bmatrix} \right\}$

4. [10 marks] Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by

$$T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}3x-4y\\2x+y\end{array}\right].$$

(a) [5 marks] Draw the image under T of the unit square, and calculate its area.

Solution: the image of the unit square is the parallelogram determined by

(b) [5 marks] Find the formula for $T^{-1}\left(\begin{bmatrix} x \\ y \end{bmatrix} \right)$.

Solution: the matrix of T is $A = \begin{bmatrix} 3 & -4 \\ 2 & 1 \end{bmatrix}$ and the matrix of T^{-1} is $A^{-1} = \begin{bmatrix} 3 & -4 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{11} \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix};$ $T^{-1}\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \frac{1}{11}\left[\begin{array}{c}1&4\\-2&3\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right] = \frac{1}{11}\left[\begin{array}{c}x+4y\\-2x+3y\end{array}\right].$

 \mathbf{SO}

5. [10 marks] Let
$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
.

(a) [5 marks] Find the eigenvalues of R.

Solution: det
$$\begin{bmatrix} \lambda - \cos \theta & \sin \theta \\ -\sin \theta & \lambda - \cos \theta \end{bmatrix} =$$

 $(\lambda - \cos \theta)^2 + \sin^2 \theta = \lambda^2 - 2\lambda \cos \theta + \cos^2 \theta + \sin^2 \theta = \lambda^2 - 2\lambda \cos \theta + 1.$

Use the quadratic formula:

$$\lambda^2 - 2\lambda\,\cos\theta + 1 = 0 \Leftrightarrow \lambda = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2} = \cos\theta \pm \sqrt{-\sin^2\theta},$$

which you can express as $\lambda = \cos \theta \pm i \sin \theta$, if you like.

(b) [5 marks] Show geometrically that R has eigenvalues in \mathbb{R} and eigenvectors in \mathbb{R}^2 only if θ is an integral multiple of π . What are the eigenvalues?

Solution: let X be an eigenvector of R with corresponding eigenvalue $\lambda \neq 0$. So $RX = \lambda X$, which means RX and X are parallel vectors. On the other hand, R is the rotation matrix so RX is the result of rotating X around the origin by θ , counterclockwise. Then,

1. RX = X and $\lambda = 1$ means $\theta = 0$, or any even multiple of π ;

2. RX = -X and $\lambda = -1$ means $\theta = \pi$, or any odd multiple of π .

where we have also used the fact that ||RX|| = ||X||.

Or draw a picture:

For RX to be parallel to X and in the same direction as X, $\theta = 0$ or any even multiple of π . Then from part (a), $\lambda = 1$.

For RX to be parallel to X and in the opposite direction as X, $\theta = \pi$ or any odd multiple of π . Then from part (a), $\lambda = -1$.

- 6. Let $U = \operatorname{span} \{ X_1 = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}^T, X_2 = \begin{bmatrix} 2 & 0 & 0 & -1 \end{bmatrix}^T, X_3 = \begin{bmatrix} 1 & 1 & 0 & -1 \end{bmatrix}^T \};$ let $X = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^T$. Find:
 - (a) [6 marks] an orthogonal basis of U.

Solution: since $X_1 \cdot X_2 = 0$ already, you only need to use the Gram-Schmidt algorithm to find F_3 . Take $F_1 = X_1$, $F_2 = X_2$, and

$$F_3 = X_3 - \frac{X_3 \cdot X_1}{\|X_1\|^2} X_1 - \frac{X_3 \cdot X_2}{\|X_2\|^2} X_2 = X_3 - \frac{1}{2} X_1 - \frac{3}{5} X_2 = \frac{1}{10} \begin{bmatrix} -2\\5\\5\\-4 \end{bmatrix}.$$

Optional: clear fractions and take

$$F_3 = \begin{bmatrix} -2\\5\\5\\-4 \end{bmatrix}.$$

Either way $\{F_1, F_2, F_3\}$ is an orthogonal basis of U.

(b) [6 marks] $\operatorname{proj}_U(X)$.

Solution: using $\{F_1, F_2, F_3\}$ with fractions cleared.

$$\operatorname{proj}_{U} X = \frac{X \cdot F_{1}}{\|F_{1}\|^{2}} F_{1} + \frac{X \cdot F_{2}}{\|F_{2}\|^{2}} F_{2} + \frac{X \cdot F_{3}}{\|F_{3}\|^{2}} F_{3}$$
$$= \frac{1}{2} F_{1} + \frac{1}{5} F_{2} - \frac{1}{70} F_{3}$$
$$= \frac{1}{7} \begin{bmatrix} 3\\ -4\\ -1 \end{bmatrix}.$$

Cross-check/Alternate Solution: $U^{\perp} = \operatorname{span}\{Y\}$ with $Y = \begin{bmatrix} 1 & 1 & 1 & 2 \end{bmatrix}^T$. Then

$$\mathrm{proj}_{U}X = X - \mathrm{proj}_{U^{\perp}}(X) = X - \frac{X \cdot Y}{\|Y\|^{2}}Y = X - \frac{4}{7}Y = \frac{1}{7} \begin{bmatrix} 3\\ 3\\ -4\\ -1 \end{bmatrix}.$$

7. [12 marks] Find an orthogonal matrix P and a diagonal matrix D such that $D = P^T A P$, if

$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}.$$

Step 1: Find the eigenvalues of *A*.

$$det(\lambda I - A) = det \begin{bmatrix} \lambda & -1 & 1 \\ -1 & \lambda & -1 \\ 1 & -1 & \lambda \end{bmatrix} = det \begin{bmatrix} \lambda & -1 & 1 \\ -1 & \lambda & -1 \\ 0 & \lambda - 1 & \lambda - 1 \end{bmatrix}$$
$$= (\lambda - 1) det \begin{bmatrix} \lambda & -1 & 1 \\ -1 & \lambda & -1 \\ 0 & 1 & 1 \end{bmatrix} = (\lambda - 1) det \begin{bmatrix} \lambda & -2 & 1 \\ -1 & \lambda + 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= (\lambda - 1) (\lambda(\lambda + 1) - 2) = (\lambda - 1)(\lambda^2 + \lambda - 2)$$
$$= (\lambda - 1)^2(\lambda + 2)$$

So the eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = -2$.

Step 2: Find mutually orthogonal eigenvectors of A.

$$E_{-2}(A) = \operatorname{null} \begin{bmatrix} -2 & -1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}.$$
$$E_{1}(A) = \operatorname{null} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}.$$

OR: use either $E_1(A) = (E_{-2}(A))^{\perp}$ or $E_{-2}(A) = (E_1(A))^{\perp}$ to simplify calculations.

Step 3: Divide each eigenvector by its length to get an orthonormal basis of eigenvectors, which are put into the columns of P. So

$$P = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

- 8. [12 marks] Let $X_1 = \begin{bmatrix} 1 & 3 & 1 & 0 \end{bmatrix}^T, X_2 = \begin{bmatrix} 2 & 4 & 1 & -1 \end{bmatrix}^T, X_3 = \begin{bmatrix} 1 & 5 & 0 & 2 \end{bmatrix}^T.$
 - (a) [6 marks] Show that $S = \{X_1, X_2, X_3\}$ is linearly independent.

Solution: Let $a_1X_1 + a_2X_2 + a_3X_3 = O$. Then the augmented matrix for the system (with variables a_1, a_2, a_3) is

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 5 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

whence $a_1 = a_2 = a_3 = 0$, and S is linearly independent.

(b) [6 marks] Show that $U = \{X \in \mathbb{R}^4 \mid \det[X_1 \mid X_2 \mid X_3 \mid X] = 0\}$ is a subspace of \mathbb{R}^4 and find a basis for U.

Solution: show U is one of the types of sets we know is a subspace. Method 1:

$$X \in U \Rightarrow \det[X_1 \mid X_2 \mid X_3 \mid X] = 0 \Rightarrow$$

 $\{X_1, X_2, X_3, X\}$ is linearly dependent $\Rightarrow X \in \text{span}\{X_1, X_2, X_3\}$, by part (a)

On the other hand,

$$X \in \operatorname{span}\{X_1, X_2, X_3\} \Rightarrow \det[X_1 \mid X_2 \mid X_3 \mid X] = 0 \Rightarrow X \in U.$$

Thus $U = \text{span}\{X_1, X_2, X_3\}$ and $S = \{X_1, X_2, X_3\}$ is a basis for U. **Method 2:** use the cofactor expansion of $[X_1 \mid X_2 \mid X_3 \mid X]$ along column 4 to obtain

det[$X_1 \mid X_2 \mid X_3 \mid X$] = $x_1C_{41} + x_2C_{42} + x_3C_{43} + x_4C_{44}$.

Thus $U = \text{null}[\begin{array}{ccc} C_{41} & C_{42} & C_{43} & C_{44} \end{array}]$. Moreover $X_i \in U$ since

$$\det[X_1 \mid X_2 \mid X_3 \mid X_i] = 0,$$

for i = 1, 2, 3. Since dim(U) = 3 and S is a set of 3 linearly independent vectors in U, S is a basis for U.

Method 3: $C = \begin{bmatrix} C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix}^T$, as in Method 2. Then $U = (\text{span}\{C\})^{\perp}$ and dim U = 4 - 1 = 3. Then as in Method 2, S is a basis for U.

Method 4: use the subspace test directly, but first re-write U as

 $U = \{X \in \mathbb{R}^4 \mid 7x_1 - 3x_2 + 2x_3 + 4x_4 = 0\}$, where we simplified C from above, or equivalently, calculated the determinant. Then it is straightforward to show that U is non-empty:

 ${\cal U}$ is closed under scalar multiplication:

 \boldsymbol{U} is closed under vector addition: