MAT188H1S - Linear Algebra

Solutions to Term Test - Monday, March 13, 2017

Time allotted: 100 minutes.

Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

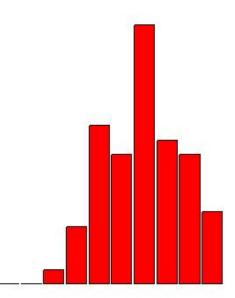
General Comments:

1. Every question has a passing average, but Question 1 should have had a much higher average!

2.

Breakdown of Results: 68 students wrote this test. The marks ranged from 22.7% to 98.7%, and the average was 64.2%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

70
76
0
1%
9%
9%
1%
1%
70
70
70
70



1. [avg: 9.54/15] Given that the reduced row echelon form of

	3	6	1	5	5	is $R =$	1	2	0	1	2	
A =	4	8	1	6	7	is $R =$	0	0	1	2	-1	,
	1	-2	1	1	-3		0	0	0	0	0	

find the following. (No justification is required.)

(a) $[1 \text{ mark}]$ the rank of A	Answer: 2
(b) $[1 \text{ mark}] \dim(\text{Row}(A))$	Answer:2
(c) $[1 \text{ mark}] \dim(\operatorname{Col}(A))$	Answer: 2
(d) $[1 \text{ mark}] \dim(\text{Null}(A))$	Answer: <u>3</u>
(e) $[1 \text{ mark}] \dim(\text{Row}(A^T))$	Answer:2
(f) $[1 \text{ mark}] \dim(\operatorname{Col}(A^T))$	Answer:2
(g) [1 mark] dim(Null(A^T))	Answer:1

(h) [2 marks] A basis for the row space of A.

Solution: any two independent rows of A or R will do: Answer:

wer: $\begin{vmatrix} 2 \\ 0 \\ 1 \\ 2 \end{vmatrix}$

1

0

0

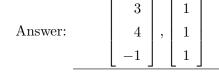
1

 $\mathbf{2}$

 $^{-1}$

(i) [2 marks] A basis for the column space of A.

Solution: any two independent columns of A will do:



(j) [4 marks] A basis for the null space of A.

	$\begin{bmatrix} x_1 \end{bmatrix}$		$\begin{bmatrix} -2s - t - 2u \end{bmatrix}$
	x_2		s
Solution:	x_3	=	-2t+u
	x_4		t
	x_5		

	$\begin{bmatrix} -2 \end{bmatrix}$		-1		$\begin{bmatrix} -2 \end{bmatrix}$	
	1		0		0	
Answer:	0	,	-2	,	1	
	0		1		0	
			0		1	

- 2. [avg: 6.99/10] Consider the plane in \mathbb{R}^3 that passes through the three points P(1,1,0), Q(2,-1,1)and R(-1,3,-4).
 - (a) [7 marks] Find the scalar equation of the plane.

Solution: for the normal vector take $\overrightarrow{PQ} \times \overrightarrow{PR}$ (or $\overrightarrow{QR} \times \overrightarrow{QP}$, or $\overrightarrow{RP} \times \overrightarrow{RQ}$.)

$$\vec{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \times \begin{bmatrix} -2\\ 2\\ -4 \end{bmatrix} = \begin{bmatrix} 6\\ 2\\ -2 \end{bmatrix}.$$

Then use any of the three given points P, Q or R, to calculate the point-normal form of the equation:

$$6x_1 + 2x_2 - 2x_3 = 6 \cdot 1 + 2 \cdot 1 - 2 \cdot 0 = 8 \Leftrightarrow 3x_1 + x_2 - x_3 = 4.$$

(b) [3 marks] What is the area of the triangle with vertices P, Q, R?

Solution: use your calculations from part (a).

Area of
$$\Delta PQR = \frac{1}{2} \left\| \overrightarrow{PQ} \times \overrightarrow{PR} \right\| = \frac{1}{2} \left\| \begin{bmatrix} 6\\2\\-2 \end{bmatrix} \right\| = \frac{\sqrt{44}}{2} = \sqrt{11}.$$

3. [avg: 7.68/10] Write the system of equations

$$\begin{cases} x_1 + x_2 &= -7\\ 2x_1 + 4x_2 + x_3 &= -16\\ x_1 + 2x_2 + x_3 &= 9 \end{cases}$$

in matrix form, $A\vec{x} = \vec{b}$. Then solve it by finding and using the inverse of the coefficient matrix A.

Solution:

$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 4 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -7 \\ -16 \\ 9 \end{bmatrix}; \text{ or simply state } A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 4 & 1 \\ 1 & 2 & 1 \end{bmatrix}, \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \vec{b} = \begin{bmatrix} -7 \\ -16 \\ 9 \end{bmatrix}.$$

Use the Gaussian algorithm to find ${\cal A}^{-1}$:

$$\begin{split} [A|I] = \begin{bmatrix} 1 & 1 & 0 & | 1 & 0 & 0 \\ 2 & 4 & 1 & | 0 & 1 & 0 \\ 1 & 2 & 1 & | 0 & 0 & 1 \end{bmatrix} & \sim \begin{bmatrix} 1 & 1 & 0 & | 1 & 0 & 0 \\ 0 & 2 & 1 & | -2 & 1 & 0 \\ 0 & 1 & 1 & | -1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & | 1 & 0 & 0 \\ 0 & 2 & 1 & | -2 & 1 & 0 \end{bmatrix} \\ & \sim \begin{bmatrix} 1 & 1 & 0 & | 1 & 0 & 0 \\ 0 & 1 & 1 & | -1 & 0 & 1 \\ 0 & 0 & -1 & | 0 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & | 1 & 0 & 0 \\ 0 & 1 & 0 & | -1 & 1 & -1 \\ 0 & 0 & 1 & | 0 & -1 & 2 \end{bmatrix} \\ & \sim \begin{bmatrix} 1 & 0 & 0 & | 2 & -1 & 1 \\ 0 & 1 & 0 & | -1 & 1 & -1 \\ 0 & 0 & 1 & | 0 & -1 & 2 \end{bmatrix} = [I|A^{-1}] \end{split}$$

Then $\vec{x} = A^{-1} \vec{b}$:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} -7 \\ -16 \\ 9 \end{bmatrix} = \begin{bmatrix} 11 \\ -18 \\ 34 \end{bmatrix}$$

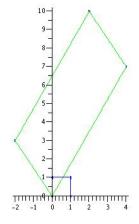
4. [avg: 7.06/10] Let $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by

$$L\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} 4x_1 - 2x_2\\ 7x_1 + 3x_2 \end{array}\right].$$

(a) [4 marks] Draw the image of the unit square¹ under L and label all four vertices.

Solution:

$$[L] = \begin{bmatrix} L(\vec{e_1}) & L(\vec{e_2}) \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 7 & 3 \end{bmatrix}$$



(b) [6 marks] Find $L^{-1}\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right)$.

Solution: use the formula for the inverse of a 2×2 matrix.

$$[L^{-1}] = [L]^{-1} = \begin{bmatrix} 4 & -2 \\ 7 & 3 \end{bmatrix}^{-1} = \frac{1}{12+14} \begin{bmatrix} 3 & 2 \\ -7 & 4 \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 3 & 2 \\ -7 & 4 \end{bmatrix}$$

Thus

$$L^{-1}\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \frac{1}{26}\left[\begin{array}{c}3&2\\-7&4\end{array}\right]\left[\begin{array}{c}x_1\\x_2\end{array}\right] = \frac{1}{26}\left[\begin{array}{c}3x_1+2x_2\\-7x_1+4x_2\end{array}\right]$$

¹The unit square is the square with the four vertices (0,0), (1,0), (0,1), (1,1).

5. [avg: 5.0/10] Consider the linear transformations $S_1, S_2, S_3 : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined geometrically as: S_1 is a rotation of $\pi/4$ counterclockwise around the origin;

 S_2 is projection onto the vector $\vec{v} = \begin{bmatrix} 3 & 2 \end{bmatrix}^T$;

 S_3 is a reflection in the line passing through the origin with direction vector $\vec{d} = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$.

(a) [2 marks] Write down the matrix of S_1 .

Solution: the rotation matrix with $\theta = \pi/4$:

$$[S_1] = \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

(b) [3 marks] Write down the matrix of S_2 . **Solution:** use the projection formula.

-

$$[S_2] = \left[\operatorname{proj}_{\vec{d}}(\vec{e}_1) \quad \operatorname{proj}_{\vec{d}}(\vec{e}_1) \right] = \left[\begin{array}{c} \frac{3}{13} \begin{pmatrix} 3\\2 \end{pmatrix} \quad \frac{2}{13} \begin{pmatrix} 3\\2 \end{pmatrix} \right] = \frac{1}{13} \left[\begin{array}{c} 9 & 6\\6 & 4 \end{array} \right].$$

(c) [3 marks] Write down the matrix of S_3 .

Solution: a reflection matrix with m = -1 (or with $\theta = 3\pi/2$):

$$[S_3] = \frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m\\ 2m & m^2-1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -2\\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix}.$$
$$[S_3] = \begin{bmatrix} \cos(3\pi/2) & \sin(3\pi/2)\\ \sin(3\pi/2) & -\cos(3\pi/2) \end{bmatrix} = \begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix}.$$
$$\mathbf{OR: use } S_3(x) = \operatorname{refl}_{\vec{n}}(\vec{x}) = \vec{x} - 2\operatorname{proj}_{\vec{n}}(\vec{x}) \text{ where } \vec{n} = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \text{ so that}$$
$$S_3(\vec{x}) = \begin{bmatrix} x_1\\ x_2 \end{bmatrix} - \frac{2(x_1+x_2)}{1^2+1^2} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} -x_2\\ -x_1 \end{bmatrix} = \begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}.$$

(d) [2 marks] What is the matrix of the linear transformation obtained by first applying S_2 , then applying S_3 , and then applying S_1 ?

Solution: use $[S_1 \circ S_3 \circ S_2] = [S_1][S_3][S_2]$; so the matrix of the composition is

$$[S_1][S_3][S_2] = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \frac{1}{13} \begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix} = \frac{1}{13\sqrt{2}} \begin{bmatrix} 3 & 2 \\ -15 & -10 \end{bmatrix}$$

- 6. [avg: 5.62/10] Suppose A is a 8×5 matrix with rank equal to 3.
 - (a) [4 marks] Let L be the linear transformation defined by $L(\vec{x}) = A \vec{x}$, for all \vec{x} in \mathbb{R}^5 What is the dimension of the nullspace (or kernel) of L?

Solution: $\dim(\operatorname{Null}(L)) = \dim(\operatorname{Null}(A)) = 5 - \operatorname{rank}(A) = 5 - 3 = 2.$

- (b) [6 marks; 3 for each part] Let K be the linear transformation defined by $K(\vec{y}) = A^T \vec{y}$, for all \vec{y} in \mathbb{R}^8 . Decide if the following two statements are true or false.
 - (*i*) the range of K is \mathbb{R}^5

Solution: False. $K : \mathbb{R}^8 \longrightarrow \mathbb{R}^5$. The range of K is $\operatorname{Col}(A^T)$. So

$$\dim(\operatorname{range}(K)) = \dim(\operatorname{Col}(A^T)) = \operatorname{rank}(A^T) = \operatorname{rank}(A) = 3 < 5,$$

and the range of K cannot be \mathbb{R}^5 .

(*ii*) the nullspace of K is $\{\vec{0}\}$.

Solution: False. Use $Null(K) = Null(A^T)$. We have

$$\dim(\text{Null}(A^T)) = 8 - \operatorname{rank}(A^T) = 8 - 3 = 5 > 0;$$

so $\operatorname{Null}(K) \neq \{\vec{0}\}.$

- 7. [avg: 6.26/10] Consider the plane Π in \mathbb{R}^3 with scalar equation $2x_1 3x_2 5x_3 = 7$ and the point with coordinates Q(2, -3, -1). Find both
 - (a) [5 marks] the minimum distance from the point Q to the plane.
 - (b) [5 marks] the point on the plane Π closest to the point Q.

You can solve either part (a) or part (b) first; its up to you.

Solution: setting things up.

- The normal vector to Π is $\vec{n} = \begin{vmatrix} 2 \\ -3 \\ -5 \end{vmatrix}$.
- Let R be the point on Π that is closest to Q.
- Suppose P is any point on the plane Π .
- Then

$$\overrightarrow{RQ} = \operatorname{proj}_{\vec{n}} \left(\overrightarrow{PQ} \right)$$

and

$$\overrightarrow{PR} = \operatorname{perp}_{\vec{n}} \left(\overrightarrow{PQ} \right)$$

For calculations, pick the point P to be (1, 0, -1). (But any point on Π would do.)

(a) Then the minimum distance from Q to the plane is given by $D = \|\overrightarrow{RQ}\| = \|\operatorname{proj}_{\vec{n}}\left(\overrightarrow{PQ}\right)\|$. We have

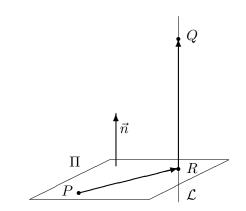
$$\overrightarrow{PQ} = \begin{bmatrix} 2-1\\ -3-0\\ -1-(-1) \end{bmatrix} = \begin{bmatrix} 1\\ -3\\ 0 \end{bmatrix}$$

and

$$D = \|\operatorname{proj}_{\vec{n}}\left(\overrightarrow{PQ}\right)\| = \left\| \frac{2+9+0}{4+9+25} \begin{bmatrix} 2\\ -3\\ -5 \end{bmatrix} \right\| = \frac{11}{38}\sqrt{38} = \frac{11}{\sqrt{38}}$$

(b) Let R have coordinates (r_1, r_2, r_3) . Then $\overrightarrow{QR} = -\text{proj}_{\vec{n}} \left(\overrightarrow{PQ}\right)$, so that

$$\begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} - \frac{11}{38} \begin{bmatrix} 2 \\ -3 \\ -5 \end{bmatrix} = \frac{1}{38} \begin{bmatrix} 54 \\ -81 \\ 17 \end{bmatrix}$$



Then $\overrightarrow{PR} = \operatorname{perp}_{\vec{n}} \left(\overrightarrow{PQ} \right) = \overrightarrow{PQ} - \operatorname{proj}_{\vec{n}} \left(\overrightarrow{PQ} \right)$. Rearranging gives $\overrightarrow{PR} + \overrightarrow{QP} = -\operatorname{proj}_{\vec{n}} \left(\overrightarrow{PQ} \right)$, whence $\overrightarrow{QR} = -\operatorname{proj}_{\vec{n}} \left(\overrightarrow{PQ} \right)$, so that

$$\Leftrightarrow \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} - \frac{11}{38} \begin{bmatrix} 2 \\ -3 \\ -5 \end{bmatrix} = \frac{1}{38} \begin{bmatrix} 54 \\ -81 \\ 17 \end{bmatrix}.$$

Alternate Solution: let \mathcal{L} be the line that passes through the point Q and is perpendicular to the plane Π . Then \mathcal{L} has parametric equations

$$\begin{cases} x_1 = 2 + 2t \\ x_2 = -3 - 3t \\ x_3 = -1 - 5t \end{cases}$$

The closest point on Π to the point Q is the point R, which is the intersection of the line \mathcal{L} and the plane Π . To find this intersection point substitute from the line into the plane, and solve for t:

$$2(2+2t) - 3(-3-3t) - 5(-1-5t) = 7 \Leftrightarrow t = -\frac{11}{38}$$

Then:

(b) R has coordinates

$$\left(2-2\left(\frac{11}{38}\right), -3+3\left(\frac{11}{38}\right), -1+5\left(\frac{11}{38}\right)\right) = \left(\frac{54}{38}, -\frac{81}{38}, \frac{17}{38}\right)$$

and (a), the minimum distance from the point Q to the plane Π is

$$\|\overrightarrow{QR}\| = \left\| -\frac{11}{38} \begin{pmatrix} 2\\ -3\\ -5 \end{pmatrix} \right\| = \frac{11}{38}\sqrt{4+9+25} = \frac{11}{\sqrt{38}}$$

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.