University of Toronto SOLUTIONS to MAT 188H1F TERM TEST 1 of Thursday, October 11, 2007 Duration: 60 minutes TOTAL MARKS: 50

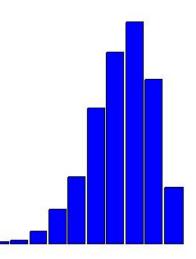
Only aids permitted: Casio 260, Sharp 520, or Texas Instrument 30 calculator.

General Comments about the Test:

- 1. Questions 1, 2, 3, 4 and 5(b) are completely routine calculations, making up 66% of the test. These are the parts that should allow everybody to pass this test.
- 2. Question 6 is a type of question that occurs in the homework. It can be done with or without determinants. It requires some thought to set up.
- 3. In Question 7, two of the True or False parts (a) and (b) are very straightforward
- 4. Questions 5(a) and 7(c) require a little thought and a fair bit of computation for the marks allotted.

Breakdown of Results: 1002 students wrote this test. The marks ranged from 8% to 100%, and the average was 67.2%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	7.0%
A	25.3%%	80-89%	18.4%
В	24.8%	70-79%	24.8%
C	21.4%	60-69%	21.4%
D	15.2%	50-59%	15.2%
F	13.4%	40-49%	7.5%
		30-39%	3.9%
		20-29%	1.4%
		10-19%	0.4%
		0-9%	0.2 %



1. [7 marks] Find the reduced row-echelon form of the matrix

$$A = \begin{bmatrix} 1 & 3 & -1 & 5 \\ -2 & 4 & 3 & 0 \\ 1 & -7 & -2 & -5 \\ 2 & -4 & 5 & 0 \end{bmatrix}.$$

What is the rank of A?

Solution:

$$\begin{bmatrix} 1 & 3 & -1 & 5 \\ -2 & 4 & 3 & 0 \\ 1 & -7 & -2 & -5 \\ 2 & -4 & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1 & 5 \\ 0 & 10 & 1 & 10 \\ 0 & -10 & 7 & -10 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 3 & -1 & 5 \\ 0 & 10 & 1 & 10 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & 10 & 0 & 10 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & 10 & 0 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The rank of A is 3.

Note: The reduced row-echelon form of a matrix is unique; there is only one correct answer.

2. [8 marks] Find the inverse of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$ and use it to solve

for X if
$$AX = \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$$
.

Solution:

$$\begin{split} (A|I) &= \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 2 & -1 & 3 & | & 0 & 1 & 0 \\ 4 & 1 & 8 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & -1 & -1 & | & -2 & 1 & 0 \\ 0 & 1 & 0 & | & -4 & 0 & 1 \\ 0 & 0 & -1 & | & -6 & 1 & 1 \end{bmatrix} \\ \rightarrow \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -4 & 0 & 1 \\ 0 & 0 & 1 & | & 6 & -1 & -1 \end{bmatrix} \\ \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -11 & 2 & 2 \\ 0 & 1 & 0 & | & -4 & 0 & 1 \\ 0 & 0 & 1 & | & 6 & -1 & -1 \end{bmatrix} = (I|A^{-1}) \end{split}$$

 So

$$A^{-1} = \begin{bmatrix} -11 & 2 & 2\\ -4 & 0 & 1\\ 6 & -1 & -1 \end{bmatrix} \text{ and } X = A^{-1} \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix} = \begin{bmatrix} -11\\ -5\\ 6 \end{bmatrix}.$$

Alternate Method: you could use the adjoint formula to find A^{-1} :

$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$$

= $\frac{1}{1} [C_{ij}(A)]^T$
= $\begin{bmatrix} -11 & -4 & 6\\ -(-2) & 0 & -1\\ 2 & -(-1) & -1 \end{bmatrix}^T$
= $\begin{bmatrix} -11 & 2 & 2\\ -4 & 0 & 1\\ 6 & -1 & -1 \end{bmatrix}$

3. [7 marks] Find the determinant of the matrix

$$A = \begin{bmatrix} 1 & 2 & 7 & -5 \\ 2 & 6 & 11 & 1 \\ -1 & 0 & -6 & 13 \\ -2 & 0 & -15 & 30 \end{bmatrix}.$$

Solution: Use a combination of row or column operations and cofactor expansions. For example:

$$\det A = 2 \det \begin{bmatrix} 1 & 1 & 7 & -5 \\ 2 & 3 & 11 & 1 \\ -1 & 0 & -6 & 13 \\ -2 & 0 & -15 & 30 \end{bmatrix}$$
$$= 2 \det \begin{bmatrix} 1 & 1 & 7 & -5 \\ -1 & 0 & -10 & 16 \\ -1 & 0 & -6 & 13 \\ -2 & 0 & -15 & 30 \end{bmatrix}$$
$$= 2(-1) \det \begin{bmatrix} -1 & -10 & 16 \\ -1 & -6 & 13 \\ -2 & -15 & 30 \end{bmatrix}$$
$$= -2 \det \begin{bmatrix} -1 & -10 & 16 \\ 0 & 4 & -3 \\ 0 & 5 & -2 \end{bmatrix}$$
$$= (-2)(-1) \det \begin{bmatrix} 4 & -3 \\ 5 & -2 \end{bmatrix}$$
$$= 2(-8+15)$$
$$= 14$$

4. [7 marks] Find all the solutions to the system of homogeneous equations

$$\begin{cases} 4x_1 + 8x_2 - x_3 + 5x_4 = 0\\ 2x_1 + 4x_2 + 3x_3 - x_4 = 0\\ 2x_1 + 4x_2 - 4x_3 + 6x_4 = 0 \end{cases}$$

and express your answer as a linear combination of basic solutions. Solution:

$$\begin{bmatrix} 4 & 8 & -1 & 5 & | & 0 \\ 2 & 4 & 3 & -1 & | & 0 \\ 2 & 4 & -4 & 6 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 8 & -1 & 5 & | & 0 \\ 0 & 0 & 7 & -7 & | & 0 \\ 0 & 0 & -7 & 7 & | & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 4 & 8 & -1 & 5 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 4 & 8 & 0 & 4 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Let $x_2 = s$ and $x_4 = t$ be parameters. Then

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2s-t \\ s \\ t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

The solution must be expressed as a linear combination to get full marks.

- 5. [7 marks] The parts of this question are unrelated.
 - (a) [3 marks] Express the matrix $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ as a product of ele-

mentary matrices.

Solution: Reduce $A \to I$ by interchanging R_1 and R_2 , then by interchanging R_2 and R_3 , and then by interchanging R_3 and R_4 . Then

$$I = E_3 E_2 E_1 A \Leftrightarrow A = E_1^{-1} E_2^{-1} E_3^{-1} \Leftrightarrow A = E_1 E_2 E_3,$$

for

$$E_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

(b) [4 marks] Suppose A and B are 3×3 matrices such that det A = -3 and det B = 2. Find the value of

$$\det\left(A^3 B^T (2A)^{-1} B^3\right).$$

Solution:

$$det (A^{3}B^{T}(2A)^{-1}B^{3}) = det A^{3} det B^{T} det(2A)^{-1} det B^{3}$$

$$= (det A)^{3} det B det \left(\frac{1}{2}A^{-1}\right) (det B)^{3}$$

$$= (det A)^{3} det B \left(\frac{1}{8}(det A)^{-1}\right) (det B)^{3}$$

$$= \frac{1}{8}(det A)^{2}(det B)^{4}$$

$$= \frac{1}{8}(-3)^{2}2^{4}$$

$$= 18$$

6. [8 marks] For which values of a and b does the system of equations

$$\begin{cases} x + y + az = 0 \\ -x + z = 0 \\ ax - y + z = b \end{cases}$$

have (i) no solutions? (ii) a unique solution? (iii) infinitely many solutions? Solution:

det
$$\begin{bmatrix} 1 & 1 & a \\ -1 & 0 & 1 \\ a & -1 & 1 \end{bmatrix} = 2 + 2a = 2(1+a).$$

(ii) The system has a unique solution if the coefficient matrix is invertible

$$\Leftrightarrow 1 + a \neq 0 \Leftrightarrow a \neq -1.$$

If a = -1, reduce the augmented matrix:

$$\begin{bmatrix} 1 & 1 & -1 & | & 0 \\ -1 & 0 & 1 & | & 0 \\ -1 & -1 & 1 & | & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & b \end{bmatrix}$$

(i) So if a = -1 and $b \neq 0$, the system has no solutions.

(*iii*) But if a = -1 and b = 0, the system has infinitely many solutions.

Alternate Solution: reduce the augmented matrix:

$$\begin{bmatrix} 1 & 1 & a & | & 0 \\ -1 & 0 & 1 & | & 0 \\ a & -1 & 1 & | & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & a & | & 0 \\ 0 & 1 & 1+a & | & 0 \\ 0 & -1-a & 1-a^2 & | & b \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & a & | & 0 \\ 0 & 1 & 1+a & | & 0 \\ 0 & 0 & 2+2a & | & b \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 1+a & | & 0 \\ 0 & 0 & 2+2a & | & b \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 1+a & | & 0 \\ 0 & 0 & 2+2a & | & b \end{bmatrix}$$

This augmented matrix corresponds to the system

$$x = z, y = -\frac{b}{2}$$
, and $(2+2a)z = b$.

So, (i) the system has no solutions if a = -1 and $b \neq 0$;

(*ii*) the system has a unique solution if $a \neq -1$;

(*iii*) and the system has infinitely many solutions if a = -1 and b = 0.

- 7. [6 marks; 2 marks for each part] Determine if the following statements are True or False. Justify your choice with a *brief* explanation.
 - (a) Every homogeneous system of linear equations is consistent.True: because the trivial solution is always a solution to a homogeneous system.
 - (b) If A and B are 3×3 matrices, then $\det(A + B) = \det(A) + \det(B)$. False: If

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

then det A = 0, det B = 0, but det $(A + B) = \det I = 1$.

(c) Suppose A is a 3×3 matrix such that $A \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$. If det A = 2, then the third column of $\operatorname{adj}(A)$ is $\begin{bmatrix} 1/2\\ 1\\ 3/2 \end{bmatrix}$.

False:

$$A\begin{bmatrix}1\\2\\3\end{bmatrix} = \begin{bmatrix}0\\0\\1\end{bmatrix} \implies \begin{bmatrix}1\\2\\3\end{bmatrix} = A^{-1}\begin{bmatrix}0\\0\\1\end{bmatrix}$$
$$\implies \begin{bmatrix}1\\2\\3\end{bmatrix} = \frac{1}{\det A} \operatorname{adj}(A)\begin{bmatrix}0\\0\\1\end{bmatrix}$$
$$\implies \begin{bmatrix}1\\2\\3\end{bmatrix} = \frac{1}{2} \operatorname{adj}(A)\begin{bmatrix}0\\0\\1\end{bmatrix}$$
$$\implies 2\begin{bmatrix}1\\2\\3\end{bmatrix} = \operatorname{adj}(A)\begin{bmatrix}0\\0\\1\end{bmatrix}$$
$$\implies 2\begin{bmatrix}1\\2\\3\end{bmatrix} = \operatorname{adj}(A)\begin{bmatrix}0\\0\\1\end{bmatrix}$$
$$\implies \begin{bmatrix}2\\4\\6\end{bmatrix} = \operatorname{third \ column \ of \ adj}(A)$$