University of Toronto Solutions to MAT188H1F TERM TEST of Tuesday, October 29, 2013 Duration: 100 minutes

Only aids permitted: Casio FX-991 or Sharp EL-520 calculator.

General Comments about the Test:

- 1. In Question 1, you should follow instructions: find A^{-1} and use it to solve the equations in parts (b) and (c). If you solved the equations in (b) and (c) without using A^{-1} you could get at most one mark for each part, and that only if your answer for **x** is correct!
- 2. Unfortunately in Question 2 there was a typographical error in A: the entry in the second row, fifth column should have been +3, not -3. However, there is no need to check R; it was given so that you wouldn't have to do any row reduction at all. See solutions. Nevertheless, some of you actually did the reduction

$$A = \begin{bmatrix} 1 & -2 & 3 & 0 & -1 \\ 2 & -4 & 7 & -3 & -3 \\ 3 & -6 & 8 & 3 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 9 & 0 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = R.$$

Answers for parts (a), (b) and (c) will be considered correct based on *either* version of R, even if your answers from one part contradict the answer from another part.

3. Its not necessary to use the definition of a subspace to do Question 5(a). In general, it is usually more convenient to show a set S is a subspace by showing S is the null space of some matrix, or that S is the span of some vectors.

Breakdown of Results: 893 students wrote this test. The marks ranged from 8.3% to 96.7%, and the average was 55.4%, surprisingly low. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	1.2%
А	7.0%	80-89%	5.8%
В	12.2%	70-79%	12.2%
С	22.8%	60-69%	22.8%
D	22.3%	50-59%	22.3%
F	35.7%	40-49%	19.3%
		30 - 39%	12.2%
		20-29%	3.4%
		10-19%	0.7%
		0-9%	0.1%

1. [10 marks] Let
$$A = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -5 & 4 \\ -1 & 3 & -2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$.

(a) [4 marks] Find the inverse of A

Solution: use the Gaussian algorithm.

$$(A|I) = \begin{bmatrix} 1 & -3 & 1 & | & 1 & 0 & 0 \\ 2 & -5 & 4 & | & 0 & 1 & 0 \\ -1 & 3 & -2 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 2 & 3 & 7 \\ 0 & 1 & 0 & | & 0 & 1 & 2 \\ 0 & 0 & 1 & | & -1 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 2 & 3 & 7 \\ 0 & 1 & 0 & | & 0 & 1 & 2 \\ 0 & 0 & 1 & | & -1 & 0 & -1 \end{bmatrix} = (I|A^{-1})$$

So
$$A^{-1} = \begin{bmatrix} 2 & 3 & 7 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix}$$

and use it to solve the following equations for $\mathbf{x}:$

(b) [2 marks] $A \mathbf{x} = \mathbf{b}$

Solution:

$$\mathbf{x} = A^{-1} \mathbf{b} = \begin{bmatrix} 2 & 3 & 7 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -12 \\ -4 \\ 1 \end{bmatrix}.$$

(c) [4 marks] $A^T A \mathbf{x} = \mathbf{b}$

Solution:

$$\mathbf{x} = (A^T A)^{-1} \mathbf{b} = A^{-1} (A^T)^{-1} \mathbf{b} = A^{-1} (A^{-1})^T \mathbf{b}$$
$$= \begin{bmatrix} 2 & 3 & 7 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 \\ 3 & 1 & 0 \\ 7 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 7 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 80 \\ 21 \\ -13 \end{bmatrix}.$$

2. [10 marks] Given that the reduced echelon form of

$$A = \begin{bmatrix} 1 & -2 & 3 & 0 & -1 \\ 2 & -4 & 7 & -3 & 3 \\ 3 & -6 & 8 & 3 & -8 \end{bmatrix} \text{ is } R = \begin{bmatrix} 1 & -2 & 0 & 9 & -16 \\ 0 & 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

and $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$ is defined by $T(\mathbf{x}) = A \mathbf{x}$, find the following:

(a) [4 marks] a basis for null(A)

Solution: null(A) = null(R). Let $x_2 = s, x_4 = t, x_5 = u$ be parameters. Then

$$\mathbf{x} \in \text{null}(A) \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2s - 9t + 16u \\ s \\ 3t - 5u \\ t \\ u \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -9 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} 16 \\ 0 \\ -5 \\ 0 \\ 1 \end{bmatrix}.$$
A basis of null(A) is the set of independent vectors
$$\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -9 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -9 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 16 \\ 0 \\ -5 \\ 0 \\ 1 \end{bmatrix} \right\}$$

(b) [3 marks] a basis for range(T)

Solution: range(T) is spanned by the columns of A. From R columns 2, 4 and 5 of A are linear combinations of columns 1 and 3 of A. Therefore, a basis for range(T) is

T		3	
2	,	7	
3		8	J
	23	$\begin{bmatrix} 2\\3 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 7 \\ 8 \end{bmatrix}$

(c) [3 marks] the general solution \mathbf{x} to the equation $A\mathbf{x} = \mathbf{b}$, for $\mathbf{b} = \begin{bmatrix} -2\\ -4\\ -6 \end{bmatrix}$.

Solution: the general solution is any particular solution plus the solution to the corresponding homogeneous system. Since **b** is the second column of A, an obvious particular solution is $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0, x_5 = 0$. Hence

$\begin{bmatrix} x_1 \end{bmatrix}$		0		2		-9		16
x_2		1		1		0		0
x_3	=	0	+s	0	+t	3	+u	-5
x_4		0		0		1		0
x_5		0		0		0		1

Another obvious particular solution is $x_1 = -2, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0$ since **b** is negative two times the first column of A. 3. [10 marks] Let $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ and $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ be defined by the formulas

$$S\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right) = \left[\begin{array}{c}x_1+2x_2\\x_2-2x_3\\x_1+x_3\\x_1-x_2\end{array}\right], \ T\left(\left[\begin{array}{c}x_1\\x_2\\x_3\\x_4\end{array}\right]\right) = \left[\begin{array}{c}x_1-x_2\\x_2-x_3\\x_3-x_4\end{array}\right]$$

(a) [3 marks] Is S one-to-one?

Solution: Yes. Let the matrix of S be A. Then $\operatorname{kernel}(S) = \operatorname{null}(A)$ and

$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 & 1 \\ 0 & -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	A =	$\left[\begin{array}{c}1\\0\\1\\1\end{array}\right]$	$2 \\ 1 \\ 0 \\ -1$	$\begin{array}{c} 0 \\ -2 \\ 1 \\ 0 \end{array}$	~	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$2 \\ 1 \\ -2 \\ -3$	$\begin{array}{c} 0 \\ -2 \\ 1 \\ 0 \end{array}$	~	$\begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix}$	2 1 0 1	$\begin{array}{c} 0 \\ -2 \\ 1 \\ 0 \end{array}$	~	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0 1 0 0	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$].
--	-----	--	---------------------	--	---	--	----------------------	--	---	---	------------------	--	---	--	------------------	---	----

So $\operatorname{null}(A) = \{\mathbf{0}\}$ and S must be one-to-one.

(b) [3 marks] Is T onto?

Solution: Yes. Let the matrix of T be B. Then range(T) is spanned by the columns of B. We have

$$B = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}.$$

So the first three columns of B are independent. Three independent vectors in \mathbb{R}^3 form a basis of \mathbb{R}^3 . Hence range $(T) = \mathbb{R}^3$ and T is onto.

(c) [4 marks] Find the formula for $T(S(\mathbf{x}))$ for \mathbf{x} in \mathbb{R}^3 .

Solution: the matrix of $T \circ S$ is BA. So

$$T(S(\mathbf{x})) = \begin{bmatrix} 1 & -1 & 0 & 0\\ 0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0\\ 0 & 1 & -2\\ 1 & 0 & 1\\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 2\\ -1 & 1 & -3\\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + 2x_3\\ -x_1 + x_2 - 3x_3\\ x_2 + x_3 \end{bmatrix}$$

Note: this whole question can be done without matrices, simply by calculating kernel(S), range(T) and $T(S(\mathbf{x}))$ directly.

- 4. [10 marks] The parts of this question are unrelated.
 - (a) [5 marks] Show that if $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly independent set of vectors in \mathbb{R}^4 , then so is $\{\mathbf{u}_1, c \, \mathbf{u}_1 + \mathbf{u}_2, \mathbf{u}_3\}$ for any scalar c.

Solution: suppose $a_1 \mathbf{u}_1 + a_2(c \mathbf{u}_1 + \mathbf{u}_2) + a_3 \mathbf{u}_3 = \mathbf{0}$, for scalars a_i . Then

$$(a_1 + ca_2)\mathbf{u}_1 + a_2 \,\mathbf{u}_2 + a_3 \,\mathbf{u}_3 = \mathbf{0}$$

Since $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly independent set it follows that

$$a_1 + ca_2 = 0, a_2 = 0, a_3 = 0$$

 $\Rightarrow a_1 = 0, a_2 = 0, a_3 = 0.$

Hence $\{\mathbf{u}_1, c \, \mathbf{u}_1 + \mathbf{u}_2, \mathbf{u}_3\}$ is also a linearly independent set.

(b) [5 marks] Set up the following problem

A total of 385 people attend the premiere of a new movie. Ticket prices are \$11 for adults and \$8 for children. If the total revenue is \$3974, how many adults and children attended?

as a system of linear equations, and solve it.

Solution: let x be the number of adults who attended; let y be the number of children who attended. Then the revenue is 11x + 8y. We have

$$\begin{cases} x + y = 385\\ 11x + 8y = 3974 \end{cases}$$

Solve this any way you like. For instance:

$$\begin{bmatrix} 1 & 1 & 385\\ 11 & 8 & 3974 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 385\\ 0 & 3 & 261 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 385\\ 0 & 1 & 87 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 298\\ 0 & 1 & 87 \end{bmatrix}$$

So 298 adults and 87 children attended the premiere.

- 5. [10 marks] Let S be the set of vectors $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ in \mathbb{R}^4 such that $x_1 x_2 + x_3 x_4 = 0$.
 - (a) [6 marks] Show that S is a subspace of \mathbb{R}^4 and find its dimension.

Solution: $S = \text{null} \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}$, so S is a subspace of \mathbb{R}^4 . To find a basis of S solve the system $x_1 - x_2 + x_3 - x_4 = 0$: let $x_2 = s, x_3 = t, x_4 = u$ be parameters, then

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} s-t+u \\ s \\ t \\ u \end{bmatrix} = s \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$

and

$$S = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \right\},$$

which is another way to show that S is a subspace. In particular the three spanning vectors are independent, and so form a basis for S. Thus $\dim(S) = 3$.

(b) [4 marks] Find a linear transformation $T : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ such that range(T) = S and

$$\operatorname{kernel}(T) = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \right\}.$$

Solution: let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$ be the standard basis of \mathbb{R}^4 . Then the matrix of T is

 $A = \left[T(\mathbf{e}_1) \mid T(\mathbf{e}_2) \mid T(\mathbf{e}_3) \mid T(\mathbf{e}_4) \right].$

Since kernel $(T) = \text{span}\{\mathbf{e}_1\}$, we must have $T(\mathbf{e}_1) = \mathbf{0}$. For the remaining three columns of A let $T(\mathbf{e}_2), T(\mathbf{e}_3), T(\mathbf{e}_4)$ be the three basis vectors of S, in any order. For instance, you could take

$$A = \begin{bmatrix} 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Then $T(\mathbf{x}) = A \mathbf{x}$ and range $(T) = \operatorname{span}\{T(\mathbf{e}_2), T(\mathbf{e}_3), T(\mathbf{e}_4)\} = S.$

- 6. [10 marks; 2 marks each.] Indicate if the following statements are True or False, and give a brief explanation why. Circle your choice.
 - (a) If A and B are invertible $n \times n$ matrices, then A + B is also invertible.

True False

Solution: False. If A = I, B = -I, then both A and B are invertible, but A + B is the zero matrix which is not invertible.

(b) If A is an $n \times n$ matrix such that $A^3 - 2A - 4I = 0$, where I and 0 are the $n \times n$ identity and zero matrices, respectively, then A is invertible.

True False

Solution: True.

$$A^{3} - 2A - 4I = 0 \Rightarrow A(A^{2} - 2I) = 4I \Rightarrow A\left(\frac{1}{4}(A^{2} - 2I)\right) = I$$

which means A is invertible (and its inverse is $\frac{1}{4}(A^2 - 2I)$.)

(c) dim
$$\left(\operatorname{span} \left\{ \begin{bmatrix} 4\\3\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\2 \end{bmatrix}, \begin{bmatrix} 8\\7\\5 \end{bmatrix} \right\} \right) = 3$$
 True False

Solution: False. If it were true the three given vectors would be a basis for \mathbb{R}^3 , and so would be independent. But they are dependent:

$$\begin{bmatrix} 8\\7\\5 \end{bmatrix} = \begin{bmatrix} 4\\3\\1 \end{bmatrix} + 2\begin{bmatrix} 2\\2\\2 \end{bmatrix}.$$

(d) span $\left\{ \begin{bmatrix} 1\\3\\1\\5 \end{bmatrix}, \begin{bmatrix} 2\\4\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\5\\1\\4 \end{bmatrix} \right\} = \mathbb{R}^4$ True False

Solution: False. It takes at least four vectors to span \mathbb{R}^4 .

(e) If A is an $n \times n$ matrix, then the set S consisting of all vectors **x** in \mathbb{R}^n such that $A \mathbf{x} = 3 \mathbf{x}$, is a subspace of \mathbb{R}^n . **True False**

Solution: True. $S = \operatorname{null}(A - 3I)$.