University of Toronto Faculty of Arts and Science

MAT221H1F

Applied Linear Algebra

Final Examination

December 2013

S. Uppal

Duration: 3 hours

Last Name:				
Given Name: _			·	
Student Number: _				
	: .	Aven Lein		

No calculators or other aids are allowed.

The Control of the South

FOR MARKER USE ONLY				
Question	Mark			
1	/10			
2 1 1000	/10			
3	/10			
4	/10			
5	/10			
6	/10			
7	/10			
8	/10			
TOTAL	100 Mar 1941 /80			

1. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 3x_1 - 2x_2 - x_3 - 4x_4 \\ x_1 + x_2 - 2x_3 - 3x_4 \\ 2x_1 - 3x_2 + x_3 - x_4 \end{bmatrix}.$$

- (a) Find a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for every $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4$.
- (b) Find a basis for the range of T. Is T onto?

2. Let
$$W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^4 \mid x_1 + x_3 = x_4 \right\}.$$

- (a) Show that W is a subspace of \mathbb{R}^4 .
- (b) Find a basis for W and determine $\dim(W)$.

3. Find a basis for the rowspace, columnspace, and nullspace of $A = \begin{bmatrix} 0 & 2 & 3 \\ -1 & 3 & 2 \\ 0 & 1 & 1 \end{bmatrix}$.

- 4(a) Evaluate det $\begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 & 0 \\ 5 & 0 & 0 & 0 & 6 \end{bmatrix}.$
- **4(b)** Find all values of c such that the matrix $\begin{bmatrix} c & 2 & 1 \\ 0 & 3 & c \\ 2 & -4 & 1 \end{bmatrix}$ is invertible.

5. Let
$$W = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
.

- (a) Find an orthonormal basis for W.
- (b) Find a basis for W^{\perp} .

(c) Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. Find $\text{proj}_W(\mathbf{x})$.

6. Let
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
.

- (a) Find the eigenvalues of A and a basis for each of the corresponding eigenspaces.
- (b) Find an orthogonal matrix P and a diagonal matrix D such that $A = PDP^T$.

- 7. Consider the quadratic form $q(\mathbf{x}) = 11x^2 + 4xy + 14y^2$.
- (a) Express q as $\mathbf{x}^T A \mathbf{x}$ where A is a symmetric matrix, and $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$.
- (b) Find new variables $\mathbf{x}' = \begin{bmatrix} x' \\ y' \end{bmatrix}$ that will diagonalize q and find $q(\mathbf{x}')$.
- (c) Using your answer from part (b), sketch the graph of $11x^2 + 4xy + 14y^2 = 60$ clearly indicating the new x' y' axes relative to the original x y axes.

8. Find the equation y = a + bx of the least-squares line that best fits the points (-1,0),(0,1),(1,2), and (2,4).