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General Comments:

• Since it was only required to do 12 questions, there were many pages left blank. In particular, many
students ended up skipping one or two of Questions 3, 5, 6, 7, 8, 9, 10, 11, 12 and 14. The breakdown
of the number of zero’s by question is:

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

3 0 28 4 99 44 86 49 55 31 35 98 5 130

• On the whole, the proof questions were done very poorly. Note that Question 12 was actually a very
simple question, but many students didn’t even try it.

• There were only six questions with passing averages: Questions 1, 2, 3, 9, 10 and 13. For the most
part these questions were either definitions or computations. It seems as if proofs are still a challenge
to most students.

Breakdown of Results: 216 students wrote this
exam. The marks ranged from 2/140 to 129/140, and
the average was 67.2/140. However, since we ended
up taking your score on the exam as a mark out of
100, the average on the exam is in effect 67.2%. (It
turned out that fifteen students had a mark greater
than 100.) A histogram of the results by decade is to
the right:



1. [course avg: 7.33/10] Define the following. Your definitions must be concise, accurate, complete and a
definition, not an equivalent condition.

(a) [2 marks] A multiplicative inverse of the natural number a, modulo m.

Solution: a multiplicative inverse of the natural number a, modulo m, is an integer (accept
natural number) x such that

a x ≡ 1 (modm).

(b) [3 marks] A tower of fields.

Solution: a finite sequence F0,F1, . . . ,Fn of subfields of R such that F0 = Q, and for each i,
from 1 to n, there is a positive number ri ∈ Fi−1 such that

√
ri /∈ Fi−1 but Fi = Fi−1(

√
ri), is

called a tower of fields. We have

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn.

(c) [1 mark] A surd.

Solution: a surd is a number that is in some field that is in a tower of fields.

(d) [1 mark] An algebraic number.

Solution: a real number is algebraic if it is a root of a polynomial with integer coefficients.

(e) [1 mark] The power set of a set S.

Solution: the power set of S, denoted by P(S), is the set of all subsets of S.

(f) [1 mark] Q(
√

7)

Solution: Q(
√

7) = {a+ b
√

7 | a, b ∈ Q}

(g) [1 mark] The characteristic function fT of a subset T of the set S.

Solution: the characteristic function fT : S −→ {0, 1} is the function defined by

fT (s) =

{
1, if s ∈ T
0, if s /∈ T
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2. [course avg: 8.3/10]

2.(a) [3 marks] Use the Euclidean algorithm to show that 60 and 43 are relatively prime.

Solution: use the Euclidean algorithm.

60 = 1 · 43 + 17 (1)

43 = 2 · 17 + 9 (2)

17 = 1 · 9 + 8 (3)

9 = 1 · 8 + 1 (4)

8 = 8 · 1 + 0 (5)

Thus
gcd(60, 43) = 1.

2.(b) [4 marks] Find a solution to the congruence 43x ≡ 11 (mod 60)

Solution: use part (a) to find a multiplicative inverse of 43 modulo 60:

(4) ⇒ 1 = 9− 8;

(3) ⇒ 1 = 9− (17− 9) = 2 · 9− 17;

(2) ⇒ 1 = 2(43− 2 · 17)− 17 = 2 · 43− 5 · 17;

(1) ⇒ 1 = 2 · 43− 5(60− 43) = 7 · 43− 5 · 60.

Thus 7 · 43 ≡ 1 (mod 60), and so

43x ≡ 11 (mod 60)⇒ 7 · 43x ≡ 7 · 11 (mod 60)⇒ x ≡ 77 ≡ 17 (mod 60),

and x = 17 is one solution to the congruence.

2.(c) [3 marks] Prove that if p is a prime number that does not divide a, then ap
2 ≡ ap (mod p2).

Proof: since p does not divide a, p2 and a are relatively prime. So Euler’s Theorem applies.

φ(p2) = p2 − p ⇒ ap
2−p ≡ 1 (mod p2)

⇒ ap · ap2−p ≡ ap (mod p2)

⇒ ap
2 ≡ ap (mod p2)
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3. [course avg: 6.88/10]

3.(a) [4 marks] Use Wilson’s Theorem to prove:

if p is a prime number greater than 3, then 2(p− 3)! ≡ −1 (mod p).

Solution: Wilson’s Theorem states: if p is prime then (p− 1)! + 1 ≡ 0 (modp). We have

(p− 1)! + 1 ≡ 0 (modp) ⇒ (p− 1)! ≡ −1 (modp)

(for p > 3) ⇒ (p− 1)(p− 2)(p− 3)! ≡ −1 (modp)

⇒ (−1)(−2)(p− 3)! ≡ −1 (modp)

⇒ 2(p− 3)! ≡ −1 (modp)

3.(b) [6 marks] Find the remainder when (38! + 6541)43 is divided by 41.

Solution: work inside the brackets first. Observe that 41 is a prime.

• By part (a), 2 · 38! ≡ −1 (mod 41). Then

21 · 2 · 38! ≡ −21 (mod 41)⇒ 38! ≡ −21 (mod 41).

• Since 41 does not divide 65, Fermat’s Theorem implies 6540 ≡ 1 (mod 41). Thus

6541 ≡ 6540 · 65 ≡ 65 ≡ 23 (mod 41).

• Therefore
38! + 6541 ≡ (−21 + 23) ≡ 2 (mod 41).

Finally, Fermat’s Theorem implies 240 ≡ 1 (mod 41). Putting it all together

(38! + 6541)43 ≡ 243 ≡ 23 ≡ 8 (mod 41).

Thus the remainder when (38! + 6541)43 is divided by 41 is 8.
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4. [course avg: 4.42/10]

4.(a) [4 marks] Let p be an odd prime, let n be a natural number. Prove that if

x2 ≡ 1 (mod pn),

then x ≡ 1 (mod pn) or x ≡ −1 (mod pn).

Proof: we have pn | x2 − 1 = (x − 1)(x + 1). Since p is prime, p | x − 1 or p | x + 1. But p can’t
divide both x− 1 and x+ 1, for then p divides the difference,

p | x+ 1− x+ 1 = 2,

which is impossible since p is an odd prime. Thus p divides only one of the factors x− 1 and x+ 1.
Consequently

pn | x2 − 1⇒ pn | x− 1 or pn | x+ 1⇒ x ≡ 1 (mod pn) or x ≡ −1 (mod pn).

4.(b) [2 marks] Show that the congruence x2 ≡ 1 (mod 8) has four solutions in the set {0, 1, 2, . . . , 7}.

Solution: x = 1, 3, 5, 7 all satisfy x2 ≡ 1 (mod 8).

4.(c) [4 marks] Show that the congruence x2 ≡ 1 ( mod 2n) has four solutions in the set {0, 1, 2, . . . , 2n−1}
if n ≥ 3.

Solution: the congruence x2 ≡ 1 (mod 2n) has the four solutions

x = 1, 2n−1 − 1, 2n−1 + 1 or 2n − 1,

since 12 = 1,
(2n − 1)2 ≡ (0− 1)2 ≡ 1 (mod 2n),

and
(2n−1 ± 1)2 ≡ 22n−2 ± 2 · 2n−1 + 1 ≡ 2n · 2n−2 ± 2n + 1 ≡ 0 + 0 + 1 ≡ 1 (mod 2n).
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5. [course average: 2.67/10]

5.(a) [4 marks] Given a polynomial p(z) with real coefficients and a complex root z0 = a + bi of p(z),
prove that z2 − 2az + a2 + b2 is a factor of p(z).

Solution: since the coefficients of p are real, we know that z0 = a− bi is also a root of p(z). Thus

(z − z0)(z − z0) = (z − (a+ bi))(z − (a− bi)) =

z2 − (a+ bi)z − (a− bi)z + (a+ bi)(a− bi) = z2 − 2a z + a2 + b2

is a factor of p(z).

5.(b) [6 marks] Explain why any non-constant polynomial with real coefficients can be factored into a
product of polynomials of degrees one or two (i.e. linear or quadratic factors) with real coefficients.

Solution: let p(z) be a polynomial of degree n and suppose the coefficients of p(z) are all real
numbers. We know that p(z) can be factored as

p(z) = c(z − z1)(z − z2) · · · (z − zn),

for some real constant c and n complex numbers, z1, z2, . . . , zn. Since the coefficients of p(z) are
all real, the complex conjugates z1, z2, . . . , zn are also roots of p(z). Thus the roots of p(z) are real
numbers or come in pairs of complex conjugates. Suppose the roots z1, z2, . . . , zj are all real, and the
remaining non-real roots are

zj+1, zj+1, zj+2, zj+2, . . . , zj+k, zj+k,

where n = j + 2k. For each pair of roots zj+m = am + bm, zj+m = am − bm i, 1 ≤ m ≤ k, part (a)
implies

(z − zj+m)(z − zj+m) = z2 − 2amz + a2m + b2m

is a quadratic factor of p(z). Thus

p(z) = c (z − z1)(z − z2) · · · (z − zj)︸ ︷︷ ︸
j linearfactors

(z2 − 2a1z + a21 + b21)(z
2 − 2a2z + a22 + b22) · · · (z2 − 2akz + a2k + b2k)︸ ︷︷ ︸

k quadraticfactors

,

all with real coefficients.
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6. [course avg: 4.67/10]

6. For each of the following pairs of sets define a bijection from one set to the other, and verify that it is
a bijection.

(a) [5 marks] {0, 1}S and P(S) for any set S. (Recall: AB is set of all functions f : B −→ A.)

Solution: we can make use of the characteristic functions, fT : S −→ {0, 1}, defined by

fT (s) =

{
1, if s ∈ T
0, if s /∈ T ,

where T ⊂ S. For T a non-empty subset of S, define G : P(S) −→ {0, 1}S by G(T ) = fT ; if
T = ∅, define G(T ) to be the zero-map: (G(∅))(s) = 0, for all s ∈ S. Check that G is a bijection.

• G is one-to-one:

G(T ) = G(U)⇒ fT (s) = fU (s) for all s ∈ S ⇒ s ∈ T if and only if s ∈ U ⇒ T = U

• G is onto: if f ∈ {0, 1}S , let T = {s ∈ S | f(s) = 1}. Then G(T ) = fT = f.

(b) [5 marks] [0, 1]× [0, 1]× [0, 1] and [0, 1].

Solution: if (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1], write each of x, y, z as an infinite decimal:

x = 0.a1a2 . . . ai . . . , y = 0.b1b2 . . . bi . . . and z = 0.c1c2 . . . ci . . . .

Define f : [0, 1]× [0, 1]× [0, 1] −→ [0, 1] by

f( (x, y, z) ) = 0.a1b1c1a2b2c2 . . . aibici . . .

Check that f is a bijection.

1. f is onto: if w = 0.d1d2d3 . . . didi+1di+2 . . . , let

x = 0.d1d4d7 . . . d3j+1 . . . , y = 0.d2d5d8 . . . d3j+2 . . . , z = 0.d3d6d9 . . . d3j . . .

for j = 0, 1, 2, . . . . Then f((x, y, z)) = w.

2. f is one-to-one: suppose f((x, y, z)) = f((x′, y′, z′)). Then

0.a1b1c1a2b2c2 . . . aibici · · · = 0.a′1b
′
1c
′
1a
′
2b
′
2c
′
2 . . . a

′
ib
′
ic
′
i · · · ⇒ ai = a′i, bi = b′i, ci = c′i,

which means x = x′, y = y′, z = z′. Hence (x, y, z) = (x′, y′, z′).
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7. [course avg: 2.0/10] Prove the following:

(a) [6 marks] If S and T are disjoint sets with |S| = c and |S| ≤ |T |, then |S ∪ T | = |T |.

Proof: we shall construct a bijection between S ∪ T and T . Since |S| ≤ |T |, there is a subset
U ⊂ T such that |U| = c. Since all of [0, 1], [2, 3] and [0, 1] ∪ [2, 3] have cardinality c, there are
bijections f, g, h such that

f : S −→ [0, 1], g : U −→ [2, 3], h : [0, 1] ∪ [2, 3] −→ U .

Define F : S ∪ T −→ T by

F (x) =


h(f(x)) , if x ∈ S
h(g(x)) , if x ∈ U

x , if x ∈ T \U

Then F is a bijection.

• F is one-to-one: suppose F (x) = F (y). Then (1) F (x) and F (y) are both in T \U , or (2)
F (x) and F (y) are both in U , since U and T \U are disjoint. We take each case separately.

1. In this case, F (x) = x and F (y) = y, so x = y.

2. In this case, there are two distinct possibilities:

(a) h(f(x)) = h(f(y)) or h(g(x)) = h(g(y)), and either way x = y, since f, g, h are all
one-to-one.

(b) h(f(x)) = h(g(y)) [or similarly h(g(x)) = h(f(y)).] Then f(x) = g(y), since h is
one-to-one. But f(x) can’t equal g(y), since f(x) ∈ [0, 1] and g(y) ∈ [2, 3]. Thus this
case is impossible.

• F is onto: if t ∈ T \U , then F (t) = t. If u ∈ U , then h−1(u) ∈ [0, 1] ∪ [2, 3].

1. If h−1(u) ∈ [0, 1], then f−1(h−1(u)) ∈ S and F (f−1(h−1(u))) = h(f(f−1(h−1(u)))) = u.

2. If h−1(u) ∈ [2, 3], then g−1(h−1(u)) ∈ U and F (g−1(h−1(u))) = h(g(g−1(h−1(u)))) = u.

(b)[4 marks] There is no set with a countably infinite power set.

Proof: we consider two cases.

1. If S is a finite set, then |S| = n, for some n ∈ N, and

|P(S)| = 2n < ℵ0,

so the power set is finite.

2. If S is infinite, then |S| < |P(S)|, which is a Theorem in the book. But if S is infinite
another Theorem in the book states that |S| ≥ ℵ0, which is the smallest infinite cardinal
number. Together, these two inequalities imply

|P(S)| > ℵ0.

Hence the power set is uncountably infinite in this case.

.
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8. [course avg: 2.37/10]

8.(a) [5 marks] Suppose h : T −→ S is onto and g : U −→ W is one to one. Use these functions to show
that

|US | ≤ |WT |.

Solution: define F : US −→WT by F (f) = g ◦ f ◦ h. That is,

(F (f))(t) = g(f(h(t))).

Then F (f) : T −→ W since h(t) ∈ S, f(h(t)) ∈ U and g(f(h(t))) ∈ W. We claim F is one-to-one.
Suppose F (f1) = F (f2) for functions f1, f2 ∈ US . We need to show f1 = f2. To this end, let s ∈ S.
We need to show f1(s) = f2(s). Since h is onto, there is a t ∈ T such that h(t) = s. Then

F (f1) = F (f2) ⇒ (F (f1))(t) = (F (f2))(t)

⇒ g(f1(h(t))) = g(f2(h(t)))

⇒ g(f1(s)) = g(f2(s))

⇒ f1(s) = f2(s), since g is one-to-one

⇒ f1 = f2, since s is any element of S

Thus F is one-to-one, which means |US | ≤ |WT |.

8.(b) [5 marks] Given an infinite set A that is a subset of N define a bijection g : N −→ A.

Solution 1: A is an infinite subset of N, so

ℵ0 ≤ |A| ≤ |N| = ℵ0.

By the Cantor-Bernstein Theorem, |A| = ℵ0. That is, A is countably infinite so we can list the
elements of A :

A = {a1, a2, a3, . . . , an, . . . }.

Define g : N −→ A by
g(n) = an.

Then (clearly) g is a bijection:

• one-to-one: g(n) = g(m)⇒ an = am ⇒ n = m

• onto: if an ∈ A, then g(n) = an.

Solution 2: define g : N −→ A recursively by

• g(1) is the least element of A,

• g(n+ 1) is the least element of A \ {g(1), g(2), . . . , g(n)}.

Then g is well-defined by the Well-Ordering Principle and the fact that A is infinite. Then you need
to check that g is one-to-one and onto.
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9. [course avg: 5.38/10] Find all the solutions z ∈ C to the equation 2(z + i)6 − i =
√

3, and plot them
in the complex plane.

Solution: let w = z + i. Then

w6 =

√
3

2
+

1

2
i = cos 30◦ + i sin 30◦.

Let w = r(cos θ + i sin θ). Then by De Moivre’s Theorem, w6 = r6(cos(6θ) + i sin(6θ)). Then

w6 = cos 30◦ + i sin 30◦ ⇒ r6(cos(6θ) + i sin(6θ)) = cos 30◦ + i sin 30◦

⇒ r6 = 1 and 6θ = 30◦ + 360◦k

⇒ r = 1 and θ = 5◦ + 60◦k

⇒ θ = 5◦, 65◦, 125◦, 185◦, 245◦ or 305◦

w3
w2

w1

w6

w4

w5

Thus the six distinct values for w are

w1 = cos 5◦ + i sin 5◦, w2 = cos 65◦ + i sin 65◦,

w3 = cos 125◦+i sin 125◦, w4 = cos 185◦+i sin 185◦,

w5 = cos 245◦+i sin 245◦, w6 = cos 305◦+i sin 305◦.

The figure to the left shows how the six distinct
values of w are symmetrically distributed around
the origin of the complex plane. However z = w−i;
so the distribution of the six distinct values of z are
obtained from the values of w by shifting them all
down by 1 unit. See the figure below, where the
blue circle is the unit circle, |z| = 1, and the red
points are the six solutions:

z3
z2

z1
z4

z6z5

10



10. [course avg: 7.13/10]

10.(a) [5 marks] Show that the equation x3 − x +
√

3 = 0 has no constructible root by first making a
suitable substitution.

Solution: if x is constructible, so is
x√
3
, since the constructible numbers form a field. Let

y =
x√
3
⇔ x = y

√
3.

So if the given equation has a constructible root so do the equations

(y
√

3)3 − (y
√

3) +
√

3 = 0⇔
√

3(3y3)−
√

3y +
√

3 = 0⇔ 3y3 − y + 1 = 0.

This last equation has integer coefficients, so by a Theorem in the book it should have a rational root,
but it doesn’t. By the Rational Roots Theorem the only possible rational roots of the polynomial
q(y) = 3y3 − y + 1 are

y = ±1, ±1

3
,

none of which work:

• q(1) = 3− 1 + 1 = 3 6= 0

• q(−1) = −3 + 1 + 1 = −1 6= 0

• q(1/3) = 1/9− 1/3 + 1 = 7/9 6= 0

• q(−1/3) = −1/9 + 1/3 + 1 = 11/9 6= 0

10.(b) [5 marks] Does the polynomial x9 − x6 + 3x3 − 2 have a constructible root?

Solution: if x is constructible, so is y = x3, since the constructible numbers form a field.

x9 − x6 + 3x3 − 2 = 0⇔ y3 − y2 + 3y − 2 = 0.

That is, if the 9-th degree polynomial in x has a constructible root, so does the cubic polynomial in
y. Let p(y) = y3 − y2 + 3y − 2. By a Theorem in the book: if p(y) has a constructible root it must
have a rational root. By the Rational Roots Theorem, the only possibilities are

y = ±1, ±2,

none of which work:

• p(1) = 1− 1 + 3− 2 = 1 6= 0

• p(−1) = −1− 1− 3− 2 < 0

• p(2) = 8− 4 + 6− 2 = 6 6= 0

• p(−2) = −8− 4− 6− 2 < 0
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11. [course avg: 4.84/10] Let {an : n ∈ N} be a sequence of real numbers satisfying

a1 = 1 and an =

√√√√sin
( π

2n

)
1 + a3n−1

, for n ≥ 2.

Prove that an is constructible for all natural numbers n.

Proof: by induction on n. If n = 1, then a1 = 1, which is constructible. Now assume an−1 is
constructible for n > 1. We need to show an is also constructible. If an−1 is constructible, then so
are

a3n−1, 1 + a3n−1 and
1

1 + a3n−1
,

since the set of constructible numbers is a field. (And by definition, an ≥ 0 for all n, so 1+a3n−1 6= 0.)
Since the square root of a constructible number is also constructible, an will be constructible if

sin
( π

2n

)
is constructible. To prove this we can use a separate induction proof:

• sin
( π

21

)
= 1 is constructible.

• If sin
( π

2n−1

)
is constructible, then so is cos

( π

2n−1

)
=

√
1− sin2

( π

2n−1

)
. This means the angle

measured by π/2n−1 radians is constructible. Then, by a theorem in the book, this angle can
be bisected by straight edge and compass, so

1

2

( π

2n−1

)
=

π

2n

is also a constructible angle. But this means that cos
( π

2n

)
, and consequently sin

( π
2n

)
, are

both constructible numbers.

• Thus sin
( π

2n

)
is constructible for all n ∈ N.

Putting it altogether, an is constructible, which competes the proof.
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12. [course avg: 2.99/10] According to the Gauss-Wantzel Theorem a regular n-gon is constructible if
and only if φ(n) is a power of 2, where φ is the Euler phi function. Make use of this result to prove
the following:

(a) [4 marks] If n = pk for odd prime p and the regular n-gon is constructible, then k = 1 and p− 1
is a power of 2. (Such primes are called Fermat primes. Only five are known: 3, 5, 17, 257 and
65537.)

Proof: φ(pk) = pk−pk−1 = pk−1(p−1). For this to be a power of 2, k−1 must be zero—otherwise
φ(pk) would have an odd factor—and for some natural number m,

p− 1 = 2m.

(b) [4 marks] A regular m-gon is constructible if m is a product of distinct Fermat primes and any
power of 2.

Proof: let F1, F2, . . . , Fj be distinct Fermat primes, and suppose m = F1 · F2 · · ·Fj · 2k. Then

φ(m) = φ(F1 · F2 · · ·Fj · 2k)

= φ(F1)φ(F2) · · · φ(Fj) · φ(2k)

= (F1 − 1)(F2 − 1) · · · (Fj − 1) · (2k − 2k−1)

= 2n1 · 2n2 · · · 2nj · 2k−1 · 1,

which is a power of 2.

(c) [2 marks] Regular 255, 256 and 257-gons are all constructible, but a regular 258-gon is not.

Solution: we have

• 255 = 3 · 5 · 17, which is a product of distinct Fermat primes, so a 255-gon is constructible.

• 256 = 27, which is a power of 2, so a 256-gon is constructible.

• 257 is a Fermat prime, so a 257-gon is constructible.

• 258 = 2 · 3 · 43, so φ(258) = φ(2)φ(3)φ(43) = 1 · 2 · 42 = 84, which is not a power of 2. Thus
a 258-gon is not constructible.
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13. [course avg: 6.47/10]

13.(a) [6 marks] Determine whether each of the following is a tower of fields:

(i) Q ⊂ Q(π)

Solution: not a tower of fields because π is not algebraic, so not a surd.

(ii) Q ⊂ Q( 3
√

2)

Solution: not a tower of fields because 3
√

2 is not constructible. If it were, x3 − 2 = 0 would
have a rational root, but it doesn’t, by the Rational Roots Theorem.

(iii) Q ⊂ Q(
√
p) (where p is a prime number)

Solution: is a tower of fields since
√
p /∈ Q, and thus Q(

√
p) is a field extension of Q.

(iv) Q ⊂ Q(31/4)

Solution: not a tower of fields: 31/4 =
√√

3, but
√

3 /∈ Q. Aside: Q ⊂ Q(
√

3) ⊂ (Q(
√

3))(
√√

3)
is a tower of fields.

13.(b) [4 marks] Determine whether
3
√

6
√

3− 5 is constructible or not. Justify your answer.

Solution: mimic the solution to the last question on Problem Set 4. Let x =
3
√

6
√

3− 5. Then

x3 = 6
√

3− 5⇔ x3 + 5− 6
√

3 = 0.

Let p(x) = x3 + 5 − 6
√

3. Assume p(x) has a constructible root. Then p(x) has a root r = a + b
√

3
in Q(

√
3). Thus

r3 = −5 + 6
√

3.

Additionally, r̄ = a− b
√

3 is a root of the polynomial x3 + 5 + 6
√

3, so

(r̄)3 = −5− 6
√

3.

Therefore
(r r̄)3 = (−5 + 6

√
3)(−5− 6

√
3) = −83⇒ r r̄ = − 3

√
83.

On the other hand,
r r̄ = (a+ b

√
3)(a− b

√
3) = a2 − 3b2.

Comparing these two results gives
3
√

83 = 3b2 − a2 ∈ Q,

which is a contradiction, since 83 is a prime number.
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14. [course avg: 1.72/10]

14.(a) [6 marks] Describe straight-edge and compass constructions you could perform to construct the
following angles. (Assume only that the points (0, 0) and (1, 0) have been labelled in the surd plane.
You do not actually have to perform the constructions, but you should use diagrams to illustrate
your solution.)

(i) 30◦

Solution: use the fact that cos 60◦ = 0.5

O

X

A

Y

M

1. Construct the circle with radius 1, centre at O.

2. Construct the perpendicular bisector of the line
segment OA. (black line MX)

3. Label the point of intersection of the bisector
and the circle X.

4. The angle < OXM is 30◦, so you are done.

5. OR: The angle < XOA is 60◦. (red line)

6. Bisect the angle < XOA.

7. The angle < Y OA is 30◦. (green line)

(ii) 36◦

Solution: in the textbook this construction is part of constructing a regular 10-gon; see Figure.
In particular, if the line segment AB, with length s, is one side of the 10-gon, and central angle
< BOA is to be 36◦, then the isosceles triangle ∆BOA has angles of 72◦ at B and at A. Bisecting
the angle < OBA gives angle < CBA, which is also 36◦. Since ∆OBC is an isosceles triangle,
the length of OC is s. And: ∆OBA ∼ ∆BAC, by AAA. Thus s : 1 as 1− s : s. This means

36◦
s s

O

B

A
C

Figure

s2 = 1− s⇔ s2 + s− 1 = 0.

However, to construct an angle of 36◦ all you
have to take from all of this is the fact that

s =
−1 +

√
5

2

or, by the cosine law, that

cos 36◦ =
1 +
√

5

4
.

Thus it all boils down to constructing
√

5. The
construction of

√
5 is described on the next page:
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The easiest way to construct
√

5 is to construct a line segment of length 2 perpendicular to the
line segment from (0, 0) to (1, 0), with the right angle at (1, 0). The length of the line segment
from (0, 0) to (1, 2) is

√
5, by the Pythagorean Theorem.

The general way to construct
√
a, as outlined in the text, applied to a = 5 is:

O

C

A

x

D

1. With compass radius at 1, construct the points (2, 0)
to (6, 0), by repeatedly moving 1 unit to the right.

2. Draw the circle of radius 3, centred at (3, 0).

3. Construct the perpendicular bisector of the segment
from (4, 0) to (6, 0) at D, the point (5, 0). Label the
intersection of the bisector and the circle C.

4. Draw the lines OC and CA; < OCA is a right angle.

5. ∆COD ∼ ∆DCA, by AAA.

6. Let x be the length of CD.

7. By similar triangles,
5

x
=
x

1
⇔ x2 = 5.

8. Thus the length of CD is
√

5.

Finally, having constructed
√

5 you can construct the point(
1 +
√

5

4
, 0

)
= (cos 36◦, 0)

on the horizontal axis. From this point, draw a perpendicular up to the unit circle centred at
the origin. Then the line segment from the origin to the intersection point makes an angle of
36◦ with the x-axis.

14.(b) [4 marks] Outline the proof of Theorem 12.4.13, which states: if n is a natural number, then an
angle of n degrees is constructible if and only if n is a multiple of 3.

Solution: by part (a), we know angles of 36◦ and 30◦ are constructible. If you construct both
of these angles on a common line segment, then the angle between them is 6◦ and has thus been
constructed. Now bisect the angle of 6◦ to construct an angle of 3◦. By duplicating an angle of 3
degrees k times you can construct any angle of n = 3k degrees.

You cannot go smaller than 3◦ though. If you could construct an angle of 1◦ then twenty duplications
of it would give you an angle of 20◦, which we proved in class is not constructible. And if you could
construct an angle of 2◦, then constructing angles of 3◦ and 2◦ on a common line segment would
permit you to construct an angle of 1◦, which as we’ve just seen is impossible. (Or, if you could
construct an angle of 2◦ then ten duplications of it would give you angle of 20◦, also impossible.)
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