MAT246H1S LEC0101 - Concepts In Abstract Mathematics

Solutions for Term Test 1 - February 6, 2019

Time allotted: 105 minutes.

Aids permitted: None.

General Comments:

NO HALF MARKS, Please

Denot Deduct marks for imprecise, sloppy, or los ically incorrect statements.

Don't waste a lot of time trying to figure out what students are doing; they are supposed to make it clear what they are doing.

Breakdown of Results: ? students wrote this test. The marks ranged from ?% to ?%, and the average was ?%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks

(by decade) is on the right.

(b) decade) is on the right.							
Grade %		Decade	%				
		90-100%	%				
Α	%	80-89%	%				
В	%	70-79%	%				
\mathbf{C}	%	60-69%	%				
D	%	50-59%	%				
\mathbf{F}	%	40-49%	%				
		30-39%	%				
	v	20-29%	%				
		10-19%	%				
		0-9%	% -				

- Only look at pages 12, 13 or 14

If a Student directs you to it.

Don't enter any marks on pages

12, 13 or 14; all marks should be

Included in on the page for

the question.

- Leave some land of comment,

Sign, or other indicatum, to

Show students where they lost

marks.

Marks, District

1.(a	to marks, Let a, p, m and n be natural numbers. Define the following:
<i>-</i> .	(i) a is a divisor of n
	Solution: a is a divisor of n if there is a natural number k such that $n = k \cdot a$.
$\frac{1}{2}$	(ii) p is a prime number
9, \	Solution: a natural number p greater than 1 is a prime number if the only natural number
inch)	divisors of p are 1 and itself.
	(iii) m is a composite number
	\mathcal{O}
	Solution: a natural number m greater than 1 is a composite number if it is not a prime number.
	(That's the definition in the book.)
	Or: a natural number m greater than 1 is a composite number if there are natural numbers a, b
	with $1 < a, b < m$ and $m = a \cdot b$.
1.(b	[4 marks] State precisely the following theorems.
	(i) Fermat's Theorem (i) for correct hypotheses
	Solution: if p is a prime number and a is any natural number not divisible by p , then
(2)	$a^{p-1} \equiv 1 \pmod{p}$. Of the correct conclusion
oroch	(ii) Wilson's Theorem
100	Solution: if p is prime then $(p-1)! + 1 \equiv 0 \pmod{p}$.
, (Der Ober correct conclusion
	correct

2.(a) [3 marks] State the Well-Ordering Principle.

Solution: every non-empty set of natural numbers contains a least element.

Or: if $S \subseteq \mathbb{N}$ and $S \neq \emptyset$, then there is an $m \in S$ such that $m \leq n$ for all $n \in S$.

2.(b) [7 marks] Let a and b be positive integers, and assume that a > b. Use the Well-Ordering Principle to prove there are non-negative integers q and r, with $0 \le r \le b-1$, such that a = qb + r.

Mother Proof: if a = k b for $k \in \mathbb{N}$, take q = k and r = 0. Now assume b does not divide a. Let

$$S = \{a - q \cdot b \mid q \in \mathbb{N} \text{ and } a - q \cdot b > 0\}.$$

Since a > b, the number $a - b = a - 1 \cdot b > 0$, so a - b is in S, and $S \neq \emptyset$. By the well-ordering principle, S has a least element, call it r. Then r > 0, because it is in S, and there is a number $q \in \mathbb{N}$ such that

$$a - qb = r \Leftrightarrow a = qb + r.$$

We claim r < b. We shall show $r \ge b$ is impossible:

- If r = b, then a = qb + b = (q + 1)b and $b \mid a$, contradicting our assumption.
- If r > b, then a = qb + r > qb + b = (q+1)b, and so a (q+1)b > 0, which means a (q+1)bis in S. Since a - (q+1)b < r, this is a contradiction. That is, r = a - qb and

$$a - (q+1)b < a - qb$$

$$\Leftrightarrow -(q+1)b < -qb$$

$$\Leftrightarrow qb < qb + b$$

$$\Leftrightarrow 0 < b, \text{ which is true.}$$

Mc Alternate Proof: let $S = \{a - kb \mid k \in \mathbb{N} \text{ and } a - kb > 0\}$. Then $S \neq \emptyset$, since for k = 1 the expression $a-1 \cdot b = a-b > 0$. By the Well Ordering Principle S contains a least element, call it r, which must be positive because $r \in S$. Then there is a $q \in \mathbb{N}$ such that

$$a - qb = r \Leftrightarrow a = qb + r.$$

We claim $r \leq b$: if r > b, then $a - qb > b \Leftrightarrow a - (q+1)b > 0$, so $a - (q+1)b \in S$. But then

$$a - (q+1)b < a - qb,$$

which contradicts the fact that a - qb is the least element in S. Thus r < b, in which case we're finished; or r = b. In this latter case we can write a = qb + r = qb + b = (q + 1)b + 0.

3.(a) [3 marks] State the Principle of Mathematical Induction.

Solution: if S is any set of natural numbers such that $\underbrace{\bullet \text{ 1 is in } S, \text{ and}}_{\bullet \text{ } k+1 \text{ is in } S \text{ whenever } k \text{ is in } S,$ then $S=\mathbb{N}$.

3.(b) [7 marks] Let q be any real number such that $q \neq 1$. Use the Principle of Mathematical Induction to prove that

$$1 + 2q + 3q^{2} + \dots + nq^{n-1} = \frac{1 - (n+1)q^{n} + nq^{n+1}}{(1-q)^{2}} \quad (\dagger)$$

for every natural number n.

Proof: let $S = \{n \in \mathbb{N} \mid (\dagger) \text{ is true}\}$ $1 \in S$, since for n = 1 the left side of (\dagger) is 1 and the right side of (\dagger) is

$$\frac{1-2q+q^2}{(1-q)^2} = \frac{(1-q)^2}{(1-q)^2} = 1.$$

Now assume $k \in S$. Then

$$1 + 2q + 3q^{2} + \dots + kq^{k-1} + (k+1)q^{k}$$

$$= \frac{1 - (k+1)q^{k} + kq^{k+1}}{(1-q)^{2}} + (k+1)q^{k}$$

$$= \frac{1 - (k+1)q^{k} + kq^{k+1} + (k+1)q^{k}(1-q)^{2}}{(1-q)^{2}}$$

$$= \frac{1 - (k+1)q^{k} + kq^{k+1} + (k+1)q^{k} - 2(k+1)q^{k+1} + (k+1)q^{k+2}}{(1-q)^{2}}$$

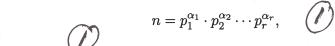
$$= \frac{1 - (k+2)q^{k+1} + (k+1)q^{k+2}}{(1-q)^{2}}$$

Thus the formula (†) is true for n = k + 1 as well, and by the Principle of Mathematical Induction, $S = \mathbb{N}$.

4.(a) [3 marks] State the Principle of Complete Mathematical Induction.
Solution: if S is any set of natural numbers with the properties that • A: 1 is in S, and
• B: $k+1$ is in S whenever k is a natural number and all the natural numbers from 1 through k are in S ,
then $S = \mathbb{N}$.
 4.(b) [7 marks] Show that the Well-Ordering Principle is a consequence of the Principle of Complete Mathematical Induction. That is, use the Principle of Complete Mathematical Induction to prove the Well-Ordering Principle. Proof: suppose W is a set of natural numbers that has no least element. Let S = {n ∈ N : n ∉ W}. Then A: 1 ∈ S : if 1 ∈ W it would be the least element of W. B: suppose natural numbers 1, 2,, k are all in S. Then none of 1, 2,, k are in W, by definition of S. Thus k + 1 ∉ W, else k + 1 would be the least element of W. Thus k + 1 ∈ S. By the Principle of Complete Mathematical Induction, S = N, and consequently W = Ø. Thus:
There may be other ways to prove this! Repove above is hastally by cont

5.(a) [3 marks] Let n be a natural number other than 1. Define the canonical factorization of n into a product of primes.

Solution: if n > 1 then the canonical factorization of n is



where each p_i is a prime, $p_i < p_{i+1}$, and α_i is a natural number.

5.(b) [7 marks] Find the canonical factorization of 1940400.

Solution: 1940400 is even, ends in a zero, and the sum of its digits is divisible by 9; so 2, 9 and 5 all divide it. We have

an divide it. We have

• $16 \mid 1940400 \text{ since } 1940400 = 16 \cdot 121275$ • $9 \mid 121275 \text{ since } 121275 = 9 \cdot 13475$ • $25 \mid 13475 \text{ since } 13475 = 25 \cdot 539$ Is $539 \text{ divisible by } 7? \text{ Yes: } 539 = 7 \cdot 77 = 7^2 \cdot 11. \text{ Thus the canonical factorization of } 1940400 \text{ is}$

$$1940400 = 2^4 \cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 11.$$

Altrante Calculations: obviously, $1940400 = 100 \cdot 19404$. Since the sum of the digits of 19404 is 18, which is divisible by 9, 9 divides 19404 as well. In particular

$$19404 = 9 \cdot 2156.$$

Now 4 divides 2156:

$$2156 = 4 \cdot 539$$
.

And $539 = 7 \cdot 77$. Putting it all together

$$1940400 = 100 \cdot 9 \cdot 4 \cdot 7 \cdot 77 = 4 \cdot 25 \cdot 9 \cdot 4 \cdot 7 \cdot 77 = 2^4 \cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 11.$$

	→ Re	ally: for discrease that a and	6a) p hon, so Ley w	act ma ice 1 tll do	ades have this	are at no idea one!	your how	
6.(a) [6]	marks Sup	pose that a and	d n are natur	al numbers	and p is a	prime number	:. Assume tha	it p^4
divi	$des a^n but$	p^5 does not divi	de a^n . Prove	that n divid	les 4.			
Pro	of: let p^k	be the highest p	ower of p tha	t divides a.	Then $a = p$	$p^k m$ for some	natural numbe	$\operatorname{er} \frac{\zeta}{m}$

Proof: let p^k be the highest power of p that divides a. Then $a = p^k m$ for some natural number m not divisible by p. Then $a^n = p^{nk} m^n$. If p^4 divides a^n then $4 \le nk$; if p^5 does not divide a^n , then $nk \le 4$. Combining these two inequalities gives nk = 4, which means n is a divisor of 4.

6.(b) [4 marks] A natural number is a perfect square if it has the form n^2 , for some natural number n. Find all primes p such that 5p + 1 is a perfect square.

Solution: since $5 \cdot 5 + 1 = 26$ is not a perfect square, $p \neq 5$. Let $5p + 1 = n^2$. Then n > 3 and

$$5p = n^2 - 1 = (n-1)(n+1).$$

@ for setting up

By the Fundamental Theorem of Arithmetic, there are two possibilities:

1. n-1=5 and p=n+1, in which case n=6 and p=7;

(i) Ag

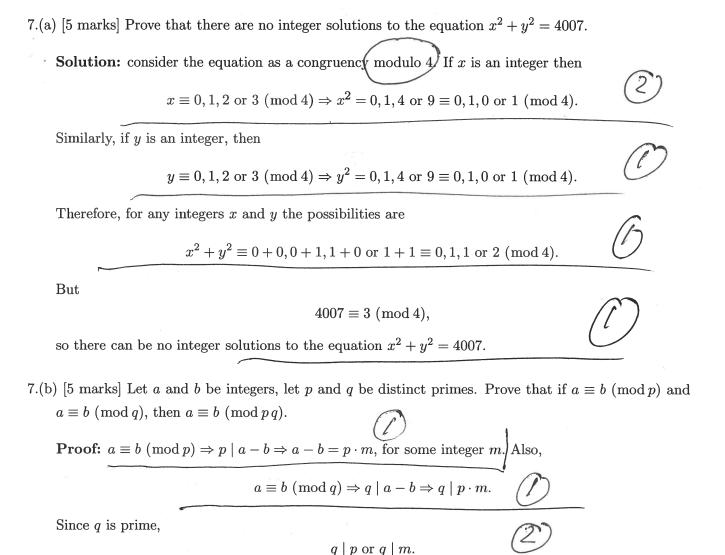
2. n+1=5 and p=n-1, in which case n=4 and p=3.

NB: If they just find p=7 and p=3

by "trial and error", give

then 2 marks and ask,

"how do you know there are no more?"



Since p and q are distinct primes, we must have $q \mid m$. Thus $m = q \cdot n$, for some integer n, and

which means $a \equiv b \pmod{pq}$.

 $a - b = p \cdot m = p \cdot q \cdot n,$

8.(a) [7 marks] Find gcd(1292, 14440), the greatest common divisor of 1292 and 14440, and express it as an integral linear combination of the numbers 1292 and 14440.

Solution: use the Euclidean algorithm.

$$14440 = 11 \cdot 1292 + 228 \tag{1}$$

$$1292 = 5 \cdot 228 + 152 \tag{2}$$

$$228 = 1 \cdot 152 + 76 \tag{3}$$

$$152 = 2 \cdot 76 \tag{4}$$

Thus

$$\gcd(1292, 14440) = 76.$$

4

Now use 'backward substitution' to express it as an integral combination of 1292 and 14440:

$$(3) \Rightarrow 76 = 228 - 152;$$

$$(2) \Rightarrow 76 = 228 - (1292 - 5 \cdot 228) = 6 \cdot 228 - 1292;$$

$$(1) \Rightarrow 76 = 6(14440 - 11 \cdot 1292) - 1292 = 6 \cdot 14440 - 67 \cdot 1292$$
. Thus

$$76 = 6 \cdot 14440 - 67 \cdot 1292.$$

Alternate Calculation: you could find the greatest common divisor by using the prime factorizations of the two numbers:

$$1292 = 2^2 \cdot 17 \cdot 19$$
 and $14440 = 2^3 \cdot 5 \cdot 19^2$.

Thus

$$\gcd(1292, 14440) = 2^2 \cdot 19 = 76.$$

But this method doesn't help you with the second part of the problem.

8.(b) [3 marks] Find an integral solution to the equation 1292x + 14440y = 228.

Solution: observe that 228 = 3.76 So

$$76 = 6 \cdot 14440 - 67 \cdot 1292 \implies 228 = 3(6 \cdot 14440 - 67 \cdot 1292)$$
$$\Rightarrow 228 = -201 \cdot 1292 + 18 \cdot 14440,$$

so one integral solution is (x, y) = (-201, 18).

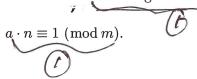
- 9.(a) [4 marks] Let m, n be natural numbers. Define the following:
 - (i) m and n are relatively prime.

Solution: the natural numbers m and n are relatively prime if gcd(m, n) = 1.

Or: the natural numbers m and n are relatively prime if their greatest common divisor is 1.

(ii) a multiplicative inverse of n modulo m, if m > 1.

Solution: a multiplicative inverse of n module m is an integer a such that



9.(b) [6 marks] Find a multiplicative inverse of 17 modulo 60 and use it to find a solution to the congruency $17x \equiv 4 \pmod{60}$.

Solution: use the Euclidean algorithm with 17 and 60:

$$60 = 3 \cdot 17 + 9 \tag{5}$$

$$17 = 1 \cdot 9 + 8 \tag{6}$$

$$9 = 1 \cdot 8 + 1 \tag{7}$$

$$8 = 8 \cdot 1 \tag{8}$$

Then

$$(7) \Rightarrow 1 = 9 - 8;$$

$$(6) \Rightarrow 1 = 9 - (17 - 9) = 2 \cdot 9 - 17;$$

$$(6) \Rightarrow 1 = 9 - (17 - 9) = 2 \cdot 9 - 17;$$

 $(5) \Rightarrow 1 = 2(60 - 3 \cdot 17) - 17 = 2 \cdot 60 - 7 \cdot 17.$ Thus

$$-7 \cdot 17 \equiv 1 \pmod{60},$$

and -7 is a multiplicative inverse of 17, modulo 60. (So is -7+60=53.) Consequently, there are $17x \equiv 4 \pmod{60} \Rightarrow -7 \cdot 17x \equiv -7 \cdot 4 \pmod{60}$ in finitely $\Rightarrow x \equiv -28 \pmod{60}$, many $x \equiv -28 \pmod{60}$.

$$17x \equiv 4 \pmod{60} \quad \Rightarrow \quad -7 \cdot 17x \equiv -7 \cdot 4 \pmod{60}$$
$$\Rightarrow \quad x \equiv -28 \pmod{60},$$

so one solution is x = -28; another solution is x = -28 + 60 = 32.

Solution: make use of Fermat's Theorem and Wilson's Theorem. Consider the four terms separately:

1. By Fermat's Theorem, $2^{16} \equiv 1 \pmod{17}$. And $47829 = 16 \cdot 2989 + 5$, so

$$2^{47829} = (2^{16})^{2989} \cdot 2^5 \equiv (1)^{2989} \cdot 2^5 \equiv 1 \cdot 32 \equiv 15 \pmod{17}$$
.

2. By Fermat's Theorem, $7^{16} \equiv 1 \pmod{17}$. And $6593 = 16 \cdot 412 + 1$, so

$$7^{6593} = (7^{16})^{412} \cdot 7 \equiv (1)^{412} \cdot 7 \equiv 7 \pmod{17}.$$

3. 17 | 19!, so

$$19! \equiv 0 \pmod{17}.$$

4. By Wilson's Theorem, $16! \equiv -1 \pmod{17}$. Consequently,

$$16! \equiv -1 \pmod{17} \quad \Rightarrow \quad 16 \cdot 15! \equiv -1 \pmod{17}$$
$$\Rightarrow \quad -15! \equiv -1 \pmod{17}$$
$$\Rightarrow \quad 15! \equiv 1 \pmod{17}$$

Putting it all together we have

$$2^{47829} - 7^{6593} + 19! + 15! \equiv 15 - 7 + 0 + 1 \pmod{17}$$

 $\equiv 9 \pmod{17}.$

Thus the remainder when $2^{47829} - 7^{6593} + 19! + 15!$ is divided by 17 is 9.

This is correct fincel answer, not this.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.