University of Toronto Solutions to MAT301H1F TERM TEST, Part 1 Wednesday, October 26, 2016 Duration: 50 minutes

No aids permitted.

Instructions: Answer all questions. Present your solutions in the space provided. The value for each question is indicated in parentheses beside the question number. **Total Marks: 25**

- 1. [5 marks; 1 mark for each part.] Let G be a group with operation 'multiplication' and identity element e. Define the following:
 - (a) the center of G

Solution: the center of G is $\{g \in G \mid gx = xg, \text{ for all } x \in G\}$

(b) the order of $a \in G$

Solution: the order of a is the least positive integer n such that $a^n = e$.

(c) a homomorphism from G to another group H

Solution: the function $f: G \longrightarrow H$ is a homomorphism if for all $x, y \in G$,

$$f(xy) = f(x)f(y).$$

(d) the centralizer of $a \in G$

Solution: the centralizer of $a \in G$ is $\{x \in G \mid xa = ax\}$

(e) a subgroup of G

Solution: H is a subgroup of G if H is a non-empty subset of G that is itself a group using the operation of G.

- 2. [10 marks; 2 marks for each part.] Find the order of the following elements in the following groups. Put your answer in the appropriate blank to the right.
 - (a) 7 in \mathbb{Z}_{35} Ans: <u>5</u>

Solution: $2 \cdot 7 \neq 0 \mod 35$, $3 \cdot 7 \neq 0 \mod 35$, $4 \cdot 7 \neq 0 \mod 35$, $5 \cdot 7 \equiv 0 \mod 35$

(b) 5 in U(16) Ans: _____4

Solution: $|U(16)| = \phi(16) = 16 - 8 = 8$, so the order of 5 must be 1, 2, 4, or 8.

$$5^2 = 25 \neq 1 \mod 16, \ 5^4 = 625 \equiv 1 \mod 16$$

(c) $\begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix}$ in D_{16} Ans: 8

Solution: this matrix represents a rotation of $\pi/4$ about the origin, so its order is

$$\frac{2\pi}{\pi/4} = 8.$$

Or, say it represents a rotation of 45° , so its order is 360/45 = 8.

(d) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 1 & 3 & 6 & 7 & 5 \end{pmatrix}$ in S_7 Ans: <u>12</u>

Solution: write the permutation in cycle notation:

So its order is lcm(4,3) = 12.

(e) f in Aut (Z_8) , defined by f(1) = 5. Ans: 2

Solution: $\mathbb{Z}_8 = \langle 1 \rangle$ and f is determined by what it does to a generator.

$$f(f(1)) = f(5) = 5 \cdot f(1) = 5 \cdot 5 = 25 \equiv 1 \mod 8,$$

so the order of f is 2. Or: express f as a permutation of the numbers $0, 1, \ldots, 7$:

$$0 \to 0, 1 \to 5, 2 \to 10 \equiv 2 \mod 8, 3 \to 15 \equiv 7 \mod 8,$$

 $4 \rightarrow 20 \equiv 4 \mod 8, 5 \rightarrow 25 \equiv 1 \mod 8, 6 \rightarrow 30 \equiv 6 \mod 8, 7 \rightarrow 35 \equiv 3 \mod 8.$

That is, f can be considered as the permutation (0)(15)(2)(37)(4)(6), which has order 2.

- 3. [10 marks; 2 marks for each part.] Determine if the following statements are True or False and give a brief explanation why. Circle your choice to the right.
 - (a) If H and K are both subgroups of a group G, such that |H| = 7 and |K| = 13, then $|H \cap K| = 1.$ True False

Solution: by Lagrange's Theorem, $|H \cap K|$ divides both |H| = 7 and |K| = 13, which are relatively prime, so $|H \cap K| = 1$.

(b) U(16) is cyclic.

Solution: $U(16) = \{1, 3, 5, 7, 9, 11, 13, 15\}$. If U(16) were cyclic, it would only have $\phi(2) = 1$ element of order 2. But both 7 and 9 have order 2:

$$7^2 = 49 \equiv 1 \mod 16, \ 9^2 = 81 \equiv 1 \mod 16.$$

(c) |U(36)| = 12True False

Solution: $|U(36)| = \phi(36) = \phi(4)\phi(9) = (4-2)(9-3) = 12.$

(d) $\mathbb{Z}_8 \approx D_4$

Solution: both groups have order 8, but \mathbb{Z}_8 is Abelian and D_4 isn't.

(e) Every group of order 60 must have an element of order 15. True False

Solution: consider A_5 , the alternating group of degree 5. Its order is 5!/2 = 60. But it has no element of order 15. Consider the possible cycle structure of elements in A_5 : they must be even. The possibilities are

- ϵ , which has order 1
- two 2-cycles, (ab)(cd), which has order 2
- a 3-cycle, (abc), which has order 3
- a 5-cycle, (abcde), which has order 5

So A_5 has no element of order 15.

False

True

True

False