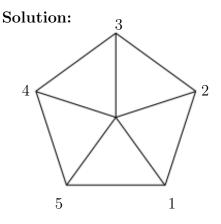
University of Toronto Solutions to MAT301H1F TERM TEST, Part 2 Friday, October 28, 2016 Duration: 50 minutes

No aids permitted.

Instructions: Answer all questions. Present your solutions in the space provided. The value for each question is indicated in parentheses beside the question number. **Total Marks: 25**

1. [5 marks] Viewing the members of D_5 as a group of permutations of a regular pentagon with consecutive vertices labeled 1, 2, 3, 4, 5, what geometric symmetry corresponds to the permutation (13524)? Which symmetry corresponds to the permutation (23)(14)?



The cycle (13524) represents a rotation of

$$2 \times 72^{\circ} = 144^{\circ}$$

counter clockwise around the centre of the pentagon. That is,

$$1 \rightarrow 3, 2 \rightarrow 4, 3 \rightarrow 5, 4 \rightarrow 1, 5 \rightarrow 2.$$

Or you could describe it as a rotation of 216° clockwise around the centre.

The permutation (23)(14) represents a reflection in the line joining vertex 5 with the midpoint of side connecting vertices 2 and 3.

2. [10 marks] Let $\phi: G \longrightarrow H$ be a group homomorphism. Recall that

$$\ker(\phi) = \{ x \in G \mid \phi(x) = e_H \} \text{ and } \operatorname{im}(\phi) = \{ \phi(x) \mid x \in G \}.$$

(a) [4 marks] Prove that $\ker(\phi)$ is a subgroup of G.

Solution: use the subgroup test.

1. $\ker(\phi)$ is non-empty, since $\phi(e_G) = e_H \Leftrightarrow e_G \in \ker(\phi)$. 2.

$$x, y \in \ker(\phi) \implies \phi(x) = e_H \text{ and } \phi(y) = e_H$$
$$\implies \phi(x) = e_H \text{ and } \phi(y^{-1}) = (\phi(y))^{-1} = e_H^{-1} = e_H$$
$$\implies \phi(xy^{-1}) = \phi(x)\phi(y^{-1}) = e_H \cdot e_H = e_H$$
$$\implies xy^{-1} \in \ker(\phi)$$

Thus $\ker(\phi) \leq G$.

- (b) [6 marks; 2 marks for each part.] Let $\phi : \mathbb{Z}_{50} \longrightarrow \mathbb{Z}_{15}$ be the homomorphism defined by $\phi(x) = 3x$. Find the elements in each of the following:
 - 1. ker(ϕ)

Solution:

$$\ker(\phi) = \{x \in \mathbb{Z}_{50} \mid \phi(x) \equiv 0 \mod 15\}$$

=
$$\{x \in \mathbb{Z}_{50} \mid 3x \equiv 0 \mod 15\}$$

=
$$\{0, 5, 10, 15, 20, 25, 30, 35, 40, 45\}$$

2. $im(\phi)$

Solution:

$$\operatorname{im}(\phi) = \{\phi(x) \in \mathbb{Z}_{15} \mid x \in \mathbb{Z}_{50}\} = \{3x \in \mathbb{Z}_{15} \mid x \in \mathbb{Z}_{50}\} = \{0, 3, 6, 9, 12\}$$

3. the left coset $7 + \ker(\phi)$

Solution:

$$7 + \ker(\phi) = 7 + \{0, 5, 10, 15, 20, 25, 30, 35, 40, 45\} = \{2, 7, 12, 17, 22, 27, 32, 37, 42, 47\}$$

3. [10 marks] Recall that D_4 , the dihedral group of order 8, can be described as

$$D_4 = \langle a, b \mid a^4 = b^2 = e, bab = a^3 \rangle.$$

(a) [4 marks] How many elements are there in D_4 of order 4? of order 3? of order 2?

Solution: D_4 consists of one identity; two rotations of order 4: a, a^3 ; one rotation of order 2: a^2 ; and four reflections of order 2: b, ba, ba^2, ba^3 . So D_4 has

- two elements of order 4
- zero elements of order 3 (also because 3 does not divide $8 = |D_4|$)
- five elements of order 2

(b) [2 marks] Suppose $f \in Aut(D_4)$ such that $f(a) = a^3$ and f(b) = ba. What is $f(ba^2)$? Solution:

$$f(ba^2) = f(b)f(a)^2 = (ba)(a^3)^2 = ba \cdot a^6 = ba^7 = ba^3.$$

(c) [4 marks] How many automorphisms of D_4 are there?

Solution: if f is an automorphism, then |f(a)| = |a|. Thus the possibilities are

$$f(a) = a \text{ or } a^3 \text{ AND } f(b) = a^2, b, ba, ba^2 \text{ or } ba^3.$$

We must also have $f(bab) = f(a^3)$, which will be true if and only if

$$f(b)f(a)f(b) = f(a)^3 \Leftrightarrow f(b) a f(b) = a^3,$$

since |f(b)| = 2. The only four choices of f(b) that satisfy this equation are

$$f(b) = b, ba, ba^2, ba^3.$$

For example:

$$f(b) = ba \Rightarrow f(b)af(b) = ba \ a \ ba \Rightarrow bab \ bab \ a = a^3a^3a = a^7 = a^3.$$

But $f(b) = a^2$ doesn't since

$$a^2 a a^2 = a \neq a^3$$

Thus there are $2 \times 4 = 8$ automorphisms of D_4 .

Alternate Solution: f must take a cyclic group to a cyclic group, so

$$f(\langle a \rangle) = \langle f(a) \rangle$$
 which must be $\langle a \rangle$,

by an exercise in the book. Taking orders of elements into account,

$$f(a) = a \text{ or } a^3 \text{ and } f(a^2) = a^2$$

This only leaves four possibilities for f(b), namely, f(b) = b, ba, ba^2 or ba^3 .