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Notation:

• Q∗ is the multiplicative group of non-zero rational numbers.

• R∗ is the multiplicative group of non-zero real numbers.

• If n ≥ 2, Zn is the additive group of integers modulo n.

• If n ≥ 2, U(n) is the multiplicative group of units modulo n consisting of all positive
integers less than n and relatively prime to n.

• Cn is the cyclic group of order n.

• Sn is the symmetric group of degree n.

• An is the alternating group of degree n.

• GL(n,R) is the group of n× n invertible matrices with real entries.

• If n ≥ 3, Dn is the dihedral group of order 2n.

• If G1, G2, . . . , Gk are groups, G1 ⊕ G2 ⊕ · · · ⊕ Gk is the external direct product of
G1, G2, . . . , Gk.

• If G is a group, Inn (G) is the group of inner automorphisms of G.

• If G is a group, Aut (G) is the group of automorphisms of G.



1. [10 marks] Define the following:

(a) [2 marks] H is a normal subgroup of the group G, given that H ≤ G.

Definition: H is a normal subgroup of G if for all g ∈ G, gH = Hg.

(b) [2 marks] the kernel of f, if f : G −→ H is a group homomorphism.

Definition: if eH is the identity element of H, ker(f) = {x ∈ G | f(x) = eH}.

(c) [2 marks] two elements a and b are conjugate in the group G.

Definition: two element a, b ∈ G are conjugate if there is an element x ∈ G such
that

b = xax−1.

(d) [2 marks] an automorphism f of a group G.

Definition: f : G −→ G is an automorphism of G if it is a homomorphism that
is also one-to-one and onto.

(e) [2 marks] a cyclic group G.

Definition: G is a cyclic group if there is an element a ∈ G such that G = 〈a〉.
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2. [20 marks] No justifications for your answers to the following questions are required:

(a) [5 marks] Consider the wall paper pattern
exhibited to the right. Which of the following
symmetries does the pattern have?

(i) a rotation of order 2 Yes

(ii) a rotation of order 3 No

(iii) a rotation of order 4 Yes

(iv) a rotation of order 5 No

(v) a rotation of order 6 No

(vi) a horizontal reflection Yes

(vii) a vertical reflection Yes

(viii) a diagonal reflection No

(ix) a glide reflection Yes

(b) [8 marks] List all possible non-isomorphic Abelian groups of order 900 = 4×9×25.

Solution: the part of order 4 is Z2 ⊕ Z2 or Z4; the part of order 9 is Z3 ⊕ Z3 or
Z9; the part of order 25 is Z5 ⊕ Z5 or Z25. So the eight possible non-isomorphic
Abelian groups of order 900 are:

Z4 ⊕ Z3 ⊕ Z3 ⊕ Z5 ⊕ Z5, Z4 ⊕ Z9 ⊕ Z5 ⊕ Z5, Z4 ⊕ Z3 ⊕ Z3 ⊕ Z25, Z4 ⊕ Z9 ⊕ Z25,

Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3 ⊕ Z5 ⊕ Z5, Z2 ⊕ Z2 ⊕ Z9 ⊕ Z5 ⊕ Z5, Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3 ⊕ Z25,

and Z2 ⊕ Z2 ⊕ Z9 ⊕ Z25.

(c) [1 mark] How many symmetries of a regular
5-prism are there? See the figure to the right.

Solution: 2 |D5| = 20

(d) [6 marks] How many elements of each order are there in Z12?

Solution: the divisors of 12 are d = 1, 2, 3, 4, 6 or 12 and the number of elements
of order d in Z12 is φ(d). So there are

• 1 element of order 1,

• 1 element of order 2,

• 2 elements of order 3,

• 2 elements of order 4,

• 2 elements of order 6,

• 4 elements of order 12.



3. [12 marks] How many elements of each possible order are there in the following groups?

(a) [6 marks] Z4 ⊕ U(8).

Solution: to begin wth, U(8) = {1, 3, 5, 7} and elements 3, 5, 7 all have order 2.
Then |Z4⊕U(8)| = 4×4 = 16, and the only possible orders of (m,n) ∈ Z4⊕U(8)
are

lcm(|a|, |b|) =


1 if a = 0, b = 1
2 if a = 0 and b = 3, 5 or 7
2 if a = 2 and b ∈ U(8)
4 if a = 1 or 3 and b ∈ U(8)

Thus in Z4 ⊕ U(8) there are

• 1 element of order 1,

• 7 elements of order 2,

• 8 elements of order 4.

(b) [6 marks] Z8 ⊕ Z3/〈(4, 2)〉.

Solution: observe that |(4, 2)| = lcm(|4|, |2|) = lcm(2, 3) = 6, or that

〈(4, 2)〉 = {(4, 2), (0, 1), (4, 0), (0, 2), (4, 1), (0, 0)},

Either way, |〈(4, 2)〉| = 6 and |Z8⊕Z3/〈(4, 2)〉| = 24/6 = 4. Then Z8⊕Z3/〈(4, 2)〉
consists of the four cosets

〈(4, 2)〉, (1, 0) + 〈(4, 2)〉, (2, 0) + 〈(4, 2)〉, 1, 0) + 〈(4, 2)〉 and (3, 0) + 〈(4, 2)〉,

the orders of which in Z8 ⊕ Z3/〈(4, 2)〉 are, respectively, 1, 4, 2 and 4. That is,

Z8 ⊕ Z3/〈(4, 2)〉 ≈ Z4,

so it has 1 element of order 1, 2 elements of order 4, and 1 element of order 2.



4. [18 marks] Let Y =

[
0 −1
1 0

]
; let GL(2,R) be the group of 2 × 2 invertible matrices

with real entries.

(a) [5 marks] Find C(Y ), the centralizer of Y in GL(2,R).

Solution: let A =

[
a b
c d

]
∈ GL(2,R) such that AY = Y A. Then

[
a b
c d

] [
0 −1
1 0

]
=

[
0 −1
1 0

] [
a b
c d

]
⇔
[
b −a
d −c

]
=

[
−c −d
a b

]
,

so we must have d = a and b = −c. Thus

C(Y ) =

{[
a −c
c a

] ∣∣ a2 + c2 6= 0

}
.

Note: some observations that could be useful:

1. C(Y ) is Abelian,

2. and for A ∈ C(Y ), AAT = AT A = det(A).

(b) [4 marks] Let H = {A ∈ C(Y ) | det(A) = 1}. Prove: H is a subgroup of C(Y ).
To which subgroup of GL(2,R) is H isomorphic?

Solution: you can use the subgroup test, but it is easier to observe that

H = C(Y ) ∩ ker(det),

and the intersection of two subgroups is itself a subgroup. Finally, if A ∈ C(Y )
and a2 + c2 = 1, then

A =

[
a −c
c a

]
=

[
cos θ − sin θ
sin θ cos θ

]
= Rθ,

for some θ. So H ≈ SO(2,R); that is, H is isomorphic to the group of 2 × 2
rotation matrices.

Using the Subgroup Test: to show H is a subgroup of C(Y ), suppose A,B
are in C(Y ) with det(A) = det(B) = 1. Then

det(AB−1) = det(A) det(B−1) = 1× 1−1 = 1

and AB−1 ∈ C(Y ), because C(Y ) is a subgroup of GL(2,R2). So AB−1 ∈ C(Y ).



(c) [4 marks] Find a homomorphism f : C(Y ) −→ C(Y ) such that ker(f) = H, and
show that your answer is correct.

Solution: define f : C(Y ) −→ C(Y ) by f(A) = det(A) I. Then:

• f(A) is in C(Y ), since kI commutes with every matrix in GL(2,R).

• f is a homomorphism:

f(AB) = det(AB) I = det(A) det(B) I = det(A) I det(B) I = f(A)f(B),

• ker(f) = H: let A ∈ ker(f). Then A ∈ C(Y ) and

f(A) = I ⇒ det(A) I = I ⇒ det(A) = 1⇒ A ∈ H.

(d) [5 marks] Find to which group the factor group C(Y )/H is isomorphic. Express
your answer as s subgroup of R∗.

Solution: by the First Isomorphism Theorem,

C(Y )/H = C(Y )/ ker(f) ≈ im (f) = {(a2 + c2) I | a2 + c2 6= 0} = {xI | x > 0}.

We claim
{xI | k > 0} ≈ {x ∈ R∗ | x > 0}.

(Aside: the set of positive real numbers is a subgroup of R∗ since 1 is positive, the
product of positive numbers is positive, and the inverse (reciprocal) of a positive
number is also positive.) The isomorphism is the ‘obvious’ one: φ(xI) = x :

• φ is a homomorphism: φ(xI yI) = φ(xyI) = x y = φ(xI)φ(yI)

• φ is one-to-one: φ(xI) = 1⇒ x = 1⇒ xI = I

• φ is onto: for x > 0, φ(xI) = x.



5.(a) [5 marks] Let G be a group. Assume that Inn (G) ≤ Aut (G). Prove that

Inn (G) C Aut (G).

Solution: let φg ∈ Inn (G) and let h ∈ Aut (G)). Then, for x ∈ G,

(h ◦ φg ◦ h−1)(x) = h(φg(h
−1(x)))

= h(g h−1(x) g−1)

= h(g)h(h−1(x))h(g−1)

= h(g)x (h(g))−1

= φh(g)(x)

Thus h ◦ φg ◦ h−1 = φh(g) ∈ Inn (G) and Inn (G) C Aut (G).

5.(b) [5 marks] Prove that the mapping f : GL(n,R) −→ GL(n,R) defined by

f(A) = (A−1)T

is an automorphism.

Solution: we use the facts that for A,B ∈ GL(n,R),

(AB)−1 = B−1A−1, (AB)T = BTAT and (A−1)T = (AT )−1.

Then

1. f is a homomorphism:

f(AB) = ((AB)−1)T = (B−1A−1)T = (A−1)T (B−1)T = f(A) f(B)

2. f is one-to-one. Show that ker(f) = {I}:

f(A) = I ⇒ (A−1)T = I ⇒ A−1 = IT = I ⇒ A = I−1 = I.

3. f is onto. If A ∈ GL(n,R), then

f
(
(A−1)T

)
=
((

(A−1)T
)−1
)T

=
((

(A−1)−1
)T)T

= (AT )T = A

That is, f has order 2. This can also be used to prove that f is one-to-one:

f(A) = I ⇒ f(f(A)) = f(I)⇒ A = I.



6. [15 marks] For the group S5 find the following:

(a) [8 marks] the number of elements in S5 of each possible order, and indicate whether
the elements are even or odd.

Solution: for parts (a) and (b) we use the fact that in Sn elements of the same
cycle structure have the same order and that elements are conjugate if and only
if they have the same cycle structure. For S5:

Cycle structure Number of conjugates Order Parity

(1) 1 1 even

(ab) (5× 4)/2 = 10 2 odd

(abc) (5× 4× 3)/3 = 20 3 even

(abcd) (5× 4× 3× 2)/4 = 30 4 odd

(abcde) (5× 4× 3× 2× 1)/5 = 24 5 even

(ab)(cd) 1
2

(
5×4
2
× 3×2

2

)
= 15 2 even

(abc)(de) 5×4×3
3
× 2×1

2
= 20 6 odd

So S5 has

• 1 even element of order 1,

• 10 odd elements of order 2,

• 20 even elements of order 3,

• 30 odd elements of order 4,

• 24 even elements of order 5,

• 15 even elements of order 2,

• 20 odd elements of order 6.



(b) [5 marks] the number of elements in each conjugacy class of S5 and the class
equation of S5.

Solution: reading off the number of elements in each conjugacy class from the
chart in part (a), and observing that Z(S4) = {(1)}, we have

|S5| = 1+|cl ((12))|+|cl ((123))|+|cl ((1234))|+|cl ((12345))+|cl ((12)(34))|+|cl ((123)(45)|

⇔ 120 = 1 + 10 + 20 + 30 + 24 + 15 + 20.

(c) [2 marks] an element α ∈ S5 such that α ((123)(45))α−1 = (451)(32).

Solution: α can be determined by the correspondence between the two elements:

(123)(45)

and
(451)(32).

That is, take α = (143)(25). Then α−1 = (134)(25) and for

α ((123)(45))α−1 = (143)(25) ((123)(45)) (134)(25)

we have

• 1→ 3→ 1→ 4,

• 2→ 5→ 4→ 3,

• 3→ 4→ 5→ 2

• 4→ 1→ 2→ 5,

• 5→ 2→ 3→ 1,

as required.

Other correct choices of α that were found on the exam:

1. α = (35)(24)

2. α = (152)(34)

3. α = (2435)

4. α = (54321)



7. [15 marks] Recall that the dihedral group of order 10 can be described as

D5 = 〈a, b | a5 = b2 = e, bab = a−1〉.

Determine how many homomorphisms there are

(a) [4 marks] from D5 to Z2

⊕
Z2

Solution: let f : D5 −→ Z2 ⊕ Z2 be a homomorphism. Then |im (f)| divides
both 10 and 4, so there are only two possibilities:

1. |im (f)| = 2 : then | ker(f)| = 5, so ker(f) = 〈a〉 and f(a) = (0, 0). As for
f(b), its order must be 2, otherwise im (f) = {(0, 0)}, so there are three
possibilities for f(b), namely

f(b) = (0, 1), (1, 0) or (1, 1).

Hence in this case there are three homomorphisms.

2. |im (f)| = 1 : there is only one homomorphism in this case, the zero homo-
morphism defined by f(x) = (0, 0).

Thus there are four homomorphisms from D5 to Z2

⊕
Z2.

(b) [4 marks] from D5 to Q∗

Solution: suppose f : D5 −→ Q∗ is a homomorphism. Since |f(x)| must divide
|x|, and there are only two elements in Q∗ with finite order, namely 1 (with order
1) and −1 (with order 2), we must have

f(a) = ±1 and f(b) = ±1.

But |a| = 5, so in fact f(a) = 1. That leaves only two possibilities left,

f(b) = 1 or f(b) = −1.

Thus there are two homomorphisms from D5 to Q∗.

Aside: as it says on the front page, Q∗ is the multiplicative group of non-zero
rational numbers, not the quaternions.



(c) [3 marks] from Z to D5.

Solution: suppose f : Z −→ D5 is a homomorphism. Since Z = 〈1〉, f is
completely determined by f(1). Let f(1) = x, for any x ∈ D5. Then f(0) = e = x0,
by convention. For n > 0,

f(n) = f(n · 1) = (f(1))n = xn

and
f(−n) = f(n(−1)) = (f(−1))n = (x−1)n = x−n.

Thus for m,n ∈ Z,

f(m+ n) = xm+n = xmxn = f(m)f(n);

that is, f is a homomorphism for each x ∈ D5. Thus there are ten homomorphisms
from Z to D5.

Aside: the homomorphism f : Z −→ D5 defined by f(1) = x, for x ∈ D5 is
interesting for two reasons:

1. im (f) = 〈x〉
2. ker(f) = 〈n〉, where the order of x ∈ D5 is n.

(d) [4 marks] from D5 to Z10.

Solution: suppose f : D5 −→ Z10 is a homomorphism. Since |D5| = |Z10| there
are at most four possibilities:

1. |im (f)| = 10 and | ker(f)| = 1 : in this case, f would be an isomorphism.
But D5 and Z10 are not isomorphic: one is Abelian, the other isn’t. So there
are no homomorphisms in this case.

2. |im (f)| = 5 and | ker(f)| = 2 : in this case, ker(f) = {e, r}, for some reflection
r ∈ D5. Since ker(f) CD5, the reflection r commutes with all x ∈ D5. That
implies that r ∈ Z(D5); but this is impossible because Z(Dn) = {e} if n is
odd. So there are also no homomorphisms in this case.

3. |im (f)| = 2 and | ker(f)| = 5 : in this case, ker(f) = 〈a〉, so f(a) = 0. What
about f(b)? f(b) must have order 2, and there is only one element of order 2
in Z10 : f(b) = 5. So there is one homomorphism in this case.

4. |im (f)| = 1 and | ker(f)| = 10 : in this case there is one homomorphism,
namely f(x) = 0 for all x ∈ D5.

Thus there are two homomorphisms from D5 to Z10.


