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General Comments:

1. Very few students knew the definition of a chaotic dynamical system! (Question 3(a).)

2. Very few students used the conjugacy from part 1(f) to solve the parts of 1(g). Without
conjugacy, 1(g) is extremely difficult!

3. Very few students made the connection between the negative Schwarzian derivative in
part 1(i) and the orbit diagram in part 1(j).

4. The best mark on Question 1 was 48/50.

5. Nobody got Question 4 completely correct. Parts 4(b) and 4(c) were the hardest parts
of the exam, but only counted for 7%.

Breakdown of Results: 37 students wrote this exam. The marks ranged from 37% to 89%,
and the average was 64.2%. The average on Question 1 was 33.5/50 or 67%; the average on
the rest of the exam was 30.7/50 or 61.4%. For most students the marks on the first and
second half of the exam were very similar. Some statistics on grade distributions are in the
table on the left, and a histogram of the marks (by decade) is on the right.

Grade % Decade %
90-100% 0.0 %

A 13.5% 80-89% 13.5%
B 16.2% 70-79% 16.2%
C 43.2% 60-69% 43.2%
D 8.1% 50-59% 8.1%
F 18.9% 40-49% 13.5%

30-39% 5.4%
20-29% 0.0%
10-19% 0.0%

0-9% 0.0%
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1. [50 marks] This question has 10 parts. For the whole question let

Fλ(x) = x2 + x + λ and Qc(x) = x2 + c.

(a) [3 marks] Find the critical point of Fλ and the vertex of the parabola with equation
y = Fλ(x).

Solution: F ′λ(x) = 2x + 1 = 0 ⇔ x = −1/2; the vertex of the parabola is(
−1

2
, λ− 1

4

)
.

(b) [5 marks] Find the fixed points of Fλ and determine for which values of λ they
are repelling or attracting.

Solution:

Fλ(x) = x ⇔ x2 + x + λ = x ⇔ x2 + λ = 0 ⇔ x = ±
√
−λ.

So for λ < 0 there are two fixed points: x =
√
−λ and x = −

√
−λ.

|F ′λ(
√
−λ)| = |2

√
−λ + 1| > 1 if λ < 0;

so x =
√
−λ is a repelling fixed point if λ < 0.

|F ′λ(−
√
−λ)| = | − 2

√
−λ + 1| < 1 ⇔ 1 >

√
−λ > 0 ⇒ −1 < λ < 0;

so x = −
√
−λ is an attracting fixed point if −1 < λ < 0.
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(c) [4 marks] Show that the family Fλ has a tangent bifurcation at λ = 0.

Solution: check the requirements for a tangent bifurcation.

1. If λ > 0 then Fλ has no fixed points.

2. If λ = 0 then F0 has a neutral fixed point at x = 0.

3. If λ < 0 then Fλ has two fixed points, ±
√
−λ, one of which is repelling for

λ < 0 and one of which is attracting for −1 < λ < 0.

(d) [4 marks] Use graphical analysis to show that if λ > 0 then for every x ∈ R

lim
n→∞

F n
λ (x) = ∞.

Solution: if λ > 0 the graph of y = Fλ(x) is always above the graph of the line
y = x. The following orbit diagrams illustrate the orbits of x0 = 0.5 and x0 = −1
under Fλ going to infinity, for λ = 1/8.

The divergence to infinity is more obvious the bigger λ > 0 is.
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(e) [4 marks] Use graphical analysis to show that if x /∈ [−1−
√
−λ,

√
−λ] for λ ≤ 0

then
lim

n→∞
F n

λ (x) = ∞.

Solution: Fλ(−1 −
√
−λ) = 1 + 2

√
−λ − λ − 1 −

√
−λ + λ =

√
−λ, so both

endpoints of [−1 −
√
−λ,

√
−λ] are eventually fixed. If x is not in this interval

there are two cases, illustrated by the two graphs below, with λ = −1:

(f) [4 marks]

Check that h(x) = x + 1/2 is a conjugacy between
Fλ and Qλ+1/4. State clearly all the properties that h
must satisfy.

R Fλ−−−→ R

h

y yh

R −−−−→
Qλ+1/4

R

Solution: You have to check that h is 1-1, onto, continuous, with continuous
inverse—which are all obviously true—and that h ◦ Fλ = Qλ+1/4 ◦ h. This last
equation should be verified:

(h ◦ Fλ)(x) = h(Fλ(x)) = h(x2 + x + λ) = x2 + x + λ +
1

2
;

and

(Qλ+1/4 ◦ h)(x) = Qλ+1/4(h(x)) = Qλ+1/4(x + 1/2) =

(
x +

1

2

)2

+ λ +
1

4

= x2 + x + λ +
1

4
+

1

4
= x2 + x + λ +

1

2
.
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(g) [8 marks] Are the following statements True or False? Justify your answer.

(i) [4 marks] F−9/4 : [−2.5, 1.5] −→ [−2.5, 1.5] is chaotic.

Solution: True. h([−2.5, 1.5]) = [−2, 2]
and

h ◦ F−9/4 = Q−2 ◦ h.

From class we know that Q−2 is chaotic on
[−2, 2]; so by conjugacy, F−9/4 is chaotic
on [−2.5, 1.5].

[− 2.5, 1.5]
F−9/4−−−→ [− 2.5, 1.5]

h

y yh

[− 2, 2] −−−→
Q−2

[− 2, 2]

(ii) [4 marks] If λ < −9/4, then {x ∈ [−1 −
√
−λ,

√
−λ] | F n

λ (x) 6→ ∞} is a
Cantor-like set.

Solution: True. Assume λ < −9/4, and let J = [−1−
√
−λ,

√
−λ], Then

h(J) =

[
−1

2
−
√
−λ,

1

2
+
√
−λ

]
and

Qλ+1/4

(
±

(
1

2
+
√
−λ

))
=

1

4
+
√
−λ− λ + λ +

1

4
=

1

2
+
√
−λ.

That is
h(J) = [−p+, p+] = I,

where

p+ =
1

2
+
√
−λ

is the positive fixed point of Qλ+1/4. Also: λ < −9/4 ⇒ λ + 1/4 < −2. Let

K = {x ∈ J | F n
λ (x) 6→ ∞} and Λ =

{
x ∈ I | Qn

λ+1/4(x) 6→ ∞
}

.

Since Λ is a Cantor-like set, as covered in class,
K too is a Cantor-like set, by conjugacy.

K
Fλ−−−→ K

h

y yh

Λ −−−−→
Qλ+1/4

Λ
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(h) [10 marks] Find both points of prime period 2 for Fλ and determine for which
values of λ the 2-cycle is repelling or attracting. What kind of bifurcation, if any,
does Fλ have at λ = −1? Draw the bifurcation diagram of Fλ, for−3/2 ≤ λ ≤ 1/2.

Solution:

F 2
λ (x) = x ⇒ (x2 + x + λ)2 + x2 + x + λ + λ = x

⇒ x4 + 2x3 + 2(1 + λ)x2 + 2λx + λ2 + 2λ = 0

⇒ (x2 + λ)(x2 + 2x + 2 + λ) = 0

⇒ x2 = −λ or x =
−2±

√
4− 4 (2 + λ)

2

⇒ x = ±
√
−λ or x = −1±

√
−1− λ

F ′λ(x) = 2x + 1, so

F ′λ(−1−
√
−1− λ)F ′λ(−1+

√
−1− λ) = (−1−2

√
−1− λ)(−1+2

√
−1− λ) = 5+4λ

and the 2-cycle is attracting if and only if

|5 + 4λ| < 1 ⇔ −1 < 5 + 4λ < 1 ⇔ −3

2
< λ < −1.

Bifurcation Diagram: there is a period-doubling bifurcation at λ = −1.

[red] x =
√
−λ is a repelling fixed point for

all λ < 0

[green] x = −
√
−λ is an attracting fixed

point for −1 < λ < 0.

[yellow] x = −1 +
√
−1− λ is an attracting

point of period 2 for −1.5 < λ < −1.

[blue] x = −1 −
√
−1− λ is an attracting

point of period 2 for −1.5 < λ < −1.
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(i) [3 marks] Compute S(Fλ)(x), the Schwarzian derivative of Fλ.

Solution: F ′λ(x) = 2x + 1, F ′′λ (x) = 2, F ′′′λ (x) = 0, so

S(Fλ)(x) =
F ′′′λ (x)

F ′λ(x)
− 3

2

(
F ′′λ (x)

F ′λ(x)

)2

= 0− 3

2

(
2

2x + 1

)2

= − 6

(2x + 1)2
< 0.

(j) [5 marks] Explain why the orbit diagram for the family Fλ, −9/4 ≤ λ ≤ 0, can be
obtained by considering all orbits of x = −1/2 under Fλ.

Solution: since S(Fλ)(x) < 0, the basin of attraction for any periodic point
of Fλ will extend to infinity or include a critical point of Fλ. By part (e) the
basin of attraction cannot extend to infinity, so the basin of attraction must
include a critical point of Fλ. The only critical point of Fλ is x = −1/2; thus the
orbit diagram for the family Fλ can be obtained by considering all the orbits of
x = −1/2 under Fλ.

(The significance of the restriction −9/4 ≤ λ ≤ 0 is that then

Fλ : [−2.5, 1.5] −→ [−2.5, 1.5],

as shown in part (g)(i). Consequently all orbits of x = −1/2 are bounded for
−9/4 ≤ λ ≤ 0. Of course, the orbit diagram of the family Fλ for −9/4 ≤ λ ≤ 0 is
just the orbit diagram of the family

Qc : [−2, 2] −→ [−2, 2]

for −2 ≤ c ≤ 0.25, appropriately shifted.)
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2.(a) [4 marks] Sketch the orbit of 1 in the complex plane under Lα(z) = αz, if α = i/2.

Solution: let zn = Ln
α(1). Then

z0 = 1 ⇒ z1 =
i

2

⇒ z2 = −1

4

⇒ z3 = − i

8

⇒ z4 =
1

16

⇒ z5 =
i

32

etc lim
n→∞

zn = 0

s
s

s sss
z1

z2 z0z3

z4z5

2.(b) [6 marks] Show that z0 = e2πi/7 lies on a cycle of period 3 for Q0(z) = z2. Is this cycle
attracting, repelling or neutral?

Solution: if z = eiθ then Q0(z) = z2 = e2iθ, so

z1 = Q0(z0) = e4πi/7; z2 = Q0(z1) = e8πi/7; z3 = Q0(z2) = e16πi/7 = e2πi/7 = z0

since e14πi/7 = 1. The 3-cycle is repelling since Q′
0(z) = 2z and

|Q′(z0)||Q′(z1)||Q′
0(z2)| = 2 · 2 · 2 = 8 > 1.
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3.(a) [5 marks] According to Devaney, a dynamical system F : X −→ X is chaotic if it has
three properties:

1. Density

Solution: the periodic points of F are dense in X.

2. Transitivity

Solution: if x, y ∈ X and ε > 0 is given, then there is z ∈ X such that
d[x, z] < ε and d[F k(z), y] < ε for some k.

3. Sensitivity

Solution: there is a β > 0 such that for any x ∈ X and any ε > 0 there
is a y ∈ X such that d[x, y] < ε and d[F k(x), F k(y)] ≥ β, for some k.

Define precisely, in terms of F and X, what each of these properties is.

3.(b) [5 marks] Prove that the orbit of

ŝ = ( 0 1︸︷︷︸
all 1 blocks

00 01 10 11︸ ︷︷ ︸
all 2 blocks

000 010 101 . . .︸ ︷︷ ︸
all 3 blocks

. . . )

under the shift map σ is dense in Σ.

Solution: let t = (t0t1t2 . . . tn . . . ) be an arbitrary sequence in Σ and let ε > 0 be
given. Pick n large enough so that

1

2n
< ε.

Pick k large enough such that the first n + 1 entries of σk (̂s) form the (n + 1)-block
t0t1t2 . . . tn. Then

d[σk (̂s), t] ≤ 1

2n
< ε.

Page 9 of 12



4. [10 marks] Suppose F : R −→ R is continuous.

(a) [3 marks] Explain why F must have a point of prime period 56 if it has a point
of prime period 60.

Solution: 56 = 23 ·7 and 60 = 22 ·15, so 60 is before 56 in the Sarkovskii ordering.
By Sarkovskii’s Theorem, F must have a point of prime period 56 if it has a point
of prime period 60.

(b) [4 marks] If F is increasing for all x explain why

1. all orbits of x under F are unbounded, ie. |F n(x)| → ∞,

2. or else F has a fixed point, but no periodic points of any prime period greater
than 1.

Solution:

If the graph of F (x) doesn’t in-
tersect the line y = x then the
orbit of x under F is unbounded,
as illustrated by the two graphic
analyses to the right:

Otherwise the graph of F (x) intersects the line y = x and F has at least one fixed
point of period 1. Suppose F 2(x) = x. If F (x) < x, then F 2(x) < F (x) < x, since
F is increasing. Similarly, if x < F (x), then x < F (x) < F 2(x). In each case we
contradict the fact that F 2(x) = x. The only possibility left is that F (x) = x, so
x is actually a fixed point, not a point of prime period 2. Finally, by Sarkovskii’s
Theorem, F has no periodic point with prime period greater than 1, since 2 is
the second last number in the Sarkovskii ordering.

(c) [3 marks] If F is decreasing for all x explain why F has a fixed point, but no
periodic points of any prime period greater than 2.

Solution: F is decreasing for all x so its graph must intersect the line y = x.
Now, let G(x) = F 2(x). Since G′(x) = F ′(F (x)) F ′(x) > 0, G2 is increasing
with at least one fixed point. By part (b), G2(x) = x ⇒ G(x) = x; that is,
F 4(x) = x ⇒ F 2(x) = x. So F has no periodic point with prime period 4. By
Sarkovskii’s Theorem F has no periodic points with prime period greater than 2,
since 4 is the third last number in the Sarkovskii ordering.
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5. [10 marks]

Describe clearly and briefly two different algorithms that
both generate the Sierpinski triangle. What is the fractal
dimension of the Sierpinski triangle?

Solution: we mentioned three algorithms in class, which are really three ‘sides’ of the
same coin. Any two of them will do.

Algorithm 1: the chaos game. Start with an equilateral triangle with vertices A, B, C.
Pick a point p0 anywhere in the plane. Randomly pick one of the three vertices and
go half way from p0 to the selected vertex, giving you p1. Randomly pick one of the
three vertices and go halfway from p1 to the selected vertex, giving you p2. Repeat this
process ad infinitum. The attractor of this infinite process is the Sierpinski triangle.

Algorithm 2: an Iterated Function System. This is a formalization of the first one.
Let

A1

[
x
y

]
=

1

2

[
x
y

]
; A2

[
x
y

]
=

1

2

[
x− 1

y

]
+

[
1
0

]
; A3

[
x
y

]
=

1

2

[
x− 1

2

y −
√

3
2

]
+

[ 1
2√
3

2

]
;

then the fixed points of A1, A2, A3 are the vertices of an equilateral triangle. Now pick
an arbitrary initial point and compute its orbit under random iterations of A1, A2, A3.
The orbit will converge to the Sierpinski triangle (with vertices the fixed points of
A1, A2, A3.)

Algorithm 3: the removal algorithm.

Start with an equilateral triangle. Remove the middle equilateral triangle. In each of
the three remaining equilateral triangles, remove the middle equilateral triangle. In
each of the subsequent 9 equilateral triangles, remove the middle equilateral triangle.
Repeat this process ad infinitum. What’s left is the Sierpinski triangle.

Fractal Dimension:

D =
log 3

log 2
' 1.585
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6. [10 marks]

To the right is the Mandelbrot
set, with some of its period
bulbs labeled. Let

Qc(z) = z2 + c;

let Kc be the filled Julia set
of Qc; and let Jc be the Julia
set of Qc. Answer the following
five questions, 2 marks each:

(a) In general, what is the connection between Kc and Jc?

Solution: Jc is the boundary of Kc.

(b) If c is in the period 2 bulb what is the eventual fate of the orbit of 0 under Qc?

Solution: the orbit of 0 under Qc is eventually attracted to a 2-cycle.

(c)

If c is in a period 3
bulb, which one of
the following could
be Kc?

Solution: the middle fractal, which has 3-fold similarity.

(d) If c = −1.8 + 1.8i, is Kc connected or totally disconnected?

Solution: c is not in the Mandlebrot set, so Kc is totally disconnected.
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(e) Above the Mandelbrot set, and properly aligned with it, sketch the orbit diagram of
Qc : R −→ R for −2 ≤ c ≤ 0.25.

Solution:


