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MAT335H1F Solutions
Chaos, Fractals and Dynamics
Examiner: D. Burbulla

Duration - 3 hours
Examination Aids: A Scientific Hand Calculator

General Comments:
1. Many students used bad logic, especially in proffered solutions to Questions 2 and 3.
2. A simpler solution (than mine) to Question 3, part (c¢) was supplied: note that
F:[1/4,3] — [-2,1/4] and F : [-2,1/4] — [1/4,3].

Then for any odd value ¢,
1
Fq(x):xixzz,

which is the fixed point of F. So the cycle has prime period ¢ = 1.

3. In Question 5, if you want to describe the action of A; and Ay geometrically, you have
to find the fixed point of each transformation; only one of them has fixed point (0, 0).

4. Questions 2 and 5 were the least popular questions.

Breakdown of Results: 65 students wrote this exam. The marks ranged from 35% to
98%, and the average was 63.3%. Some statistics on grade distributions are in the table on
the left, and a histogram of the marks (by decade) is on the right.

Grade % Decade %
90-100% 7.7%
16.9% 80-89% 9.2%

16.9% | 70-79% 16.9%
24.6% | 60-69% 24.6%
15.4% | 50-59% 15.4%
26.2% | 40-49% 18.5%
30-39% 7.7%
20-29% 0.0%
10-19% 0.0%
0-9% 0.0%
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1. [20 marks] Let V' : [-2,2] — [-2,2] by V(z) = 2|z| — 2.

(a) [5 marks] Plot the graphs of V and V2.

Solution: with the line y = x also drawn in.
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(b) [5 marks| Find all the fixed points and 2-cycles of V' and determine if they are
attracting or repelling.

Solution: For fixed points, V(z) = x:
r<0=>-2r—-2=zx=z=-23andx>0=2r—2=x< 1 =2

Both fixed points are repelling since |V'(—=2/3)| = [V'(2)| =2 > 1.

For 2-cycles, V?(z) = z but V(x) # x:

2<r<-1l=>-4dr—-6=z=2=-6/5

and
O<z<l=—-drx+2=x=2=2/5

So the only 2-cycle is —6/5 and 2/5, which is repelling since

[V'(=6/5)|[V'(2/5)] = 2* =4 > 1.



(c) [10 marks] Let 7" : [0,1] — [0, 1] by

2x if0<ax<
T(x) =
2 —2x if%<x§1

let h:[0,1] — [=2,2] by h(z) = —4x + 2. Prove that h is a conjugacy between
T and V.

Solution: You have to check that h is 1-1, onto, continuous, with continuous
inverse—which are all obvious since h is linear—and that

hoT =V oh.
This last equation should be verified:

MT(z)) = —4T(x)+2
_ —4(2z)+2, if0<z<1/2
B {—4(2—2x)+2, if1/2<x<1

=8z +2, H0<z<1/2
- 8z —6, ifl1/2<z<1

2(—4x+2)—2, if —4x4+2>0
20x—2)—2, if —4x+2<0
[ —Se+2, ifx<1/2
- 8¢ —6, ifx>1/2

V(h(z)) = V(—4z+2) = 2| 4 +2| =2 — {

Thus Voh=hoT.
2. [20 marks] This question has five parts.

(a) [3 marks| Define: the subset D is dense in X.

Solution: the definition on page 114 of Devaney is

D is dense in X if for any point x € X there is a point d € D arbitrarily
close to x.

I would also accept any of these two equivalent conditions:

D is dense in X if for any point x € X there is a sequence {d, }, consisting
of points in D, that converges to x.

D is dense in X if for every open subset A of X, DN A # ¢.



(b) [7 marks| Prove that the periodic points of ¢ are dense in 3.

Solution: Let s = (5¢S1...8,8041-..) be an arbitrary sequence in X, let € > 0.
Pick n such that 1/2™ < ¢; let t = (S0S1.-.5,). Then t is a periodic point of o
and, by the Proximity Theorem,

dls,t] < 1/2" < .

(¢) [6 marks] Define the Cantor middle-thirds set, K. What is its fractal dimension?

Solution: here’s a recursive definition for K.

1. Start with the interval [0, 1].

2. Remove the middle third (1/3,2/3), leaving two closed intervals left, [0, 1/3]
and [2/3, 1], each of length 1/3.

3. Repeat this process: remove the open middle third from each of the previous
closed intervals.

4. K is the set of points remaining in [0, 1] in the limit as this process is repeated
over and over without end.

The fractal dimension of K is

log 2

= 0.630929753 . ..
log 3

(d) [2 marks| Show that K is not dense in [0, 1].

Solution: by definition of the Cantor middle-thirds set, (1/3,2/3) N K = ¢; so
there is an open interval that does not intersect K.

(e) [2 marks] Show that the complement of K is dense in [0, 1].

Solution: since the Cantor middle-thirds set is totally disconnected, it contains
no open interval. Thus every open interval (a,b) C [0,1] must intersect the
complement of K. That is

(a,b) ¢ K = (a,b) N ([0,1] — K) # ¢.



3. [20 marks| The graph of F' : [-2,3] — [—2, 3] is shown below, along with the line y = .

3

—1

-2 -1 0 1 2 3
(a) [5 marks] Show that —2 is on a 6-cycle for F.
Solution: the 6-cycle for F is

—2—-2—--1-3—-0—-1— -2

(b) [5 marks] Explain why F' has cycles with prime period p for any even number p.

Solution: by Sarkovskii’s Theorem F' will have cycles of prime period p for any
number p after 6 in the Sarkovskii ordering. But these numbers comprise all the

even numbers.

(c) [10 marks] Prove that F' has no cycles of any odd prime period ¢ > 1.
Solution: Observe that F': [-2,0] — [1,3] and F': [1,3] — [—2,0]. So for any
odd value ¢ > 1
Fo([=2,0]) = [1,3] and F9([1,3]) = [~2,0].

If F? has a fixed point it must be in the interval (0, 1). Suppose the fixed point is
x; then the ¢-cycle for F must be

v, H(z), H(2), ..., H(2),
for H = F, restricted to the interval (0, 1), with each point
x, H(x), H*(z),...,H" () € (0,1).

Since H is 1-1, the only solution to H?(z) = x is the fixed point of H in (0, 1),
and so the cycle has prime period 1.



4. [20 marks| For ¢ # 0, let . : R — R by F.(z) = csinz.

(a) [4 marks|] Show that for |c| < 1, x = 0 is the only fixed point of F, and its basin
of attraction is R = (—o0, 00).

Solution: for 0 < |¢| < 1 the amplitude of F,(z) = c¢sinz is |¢| < 1, so the graph

of F.(x) will never intersect the line y = x for  # 0. Then use graphical analysis
to show that for ¢ € R, x,, — 0.
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(b) [4 marks| Calculate the Schwarzian derivative of F,. and show it is negative.

Solution: for cosz # 0, S(F,)(x) =

F'(z) 3 (F(x) 2 _ —ccosx 3 (—csinz 2 _ 4 §tan2:z: <o
Fl(x) 2\ F!(x) ccosx 2\ ccoszw 2




(c) [4 marks] Give a graphical example of a fixed point of F, for which the immediate
basin of attraction does not extend to infinity.

Solution: pick ¢ > 1 such that y = F.(x) intersects the line y = x with slope
between —1 and 0. For the following graphs, ¢ = 2.
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orbit of 3 under 2sinx orbit of 4 under 2sin

The immediate basin of attraction of the fixed point of 2sinz close to 2, is (0, 7).

Note: if you take ¢ = /2, then the fixed points of Fy/, are exactly p = +7/2,
which are also critical points of F.. The immediate basin of attraction of the fixed
point p = 7/2 is also (0, 7):

(d) [8 marks| Below is the bifurcation diagram for F,, for |c| < 2.5, |z| < 2.5.
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Classify each node in this diagram as a tangent (or saddle-node) bifurcation, a
period-doubling bifurcation, or neither.

Solution: the fixed point x = 0 is attracting < —1 < ¢ < 1. The nodes on the
c-axis are (£1,0). The four other nodes are (£a, £b) such that a > 0,b > 0 and



F, (b)) = b - asinb = b N tanb = —b
F!(b) = -1 acosh = -1 a> = v+17
whence a ~ 2.26,b ~ 2.03. But you don’t really need these values.

node (1,0): neither, since x = 0 is attracting for ¢ < 1, repelling for ¢ > 1; and
for ¢ > 1 two new attracting fixed points appear. See the graph below, on the
left:
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node (—1,0): period-doubling, since x = 0 is attracting for ¢ > —1, repelling for
¢ < —1; and for ¢ < —1 an attracting 2-cycle appears, namely the two solutions
to csinz = —x. See the graph above, on the right.
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nodes (a,=+b): period-doubling, since F!(+b) = —1

nodes (—a, £b): neither, since the attracting 2-cycle for —a < ¢ < —1 becomes
repelling; but for ¢ < —a two new attracting 2-cycles show up. To see this,

calculate orbits of critical points x = £7/2 under F,, using ¢ = —1.5and ¢ = —2.4:
c X orbit is attracted to the 2-cycle
—1.5 | £7/2 | 1.495781568 ..., —1.495781568 . ..

—2.4 | 7w/2 | —2.396065934...,1.628061364 . ..

—2.4 | —m/2 | 2.396065934 ..., —1.628061364 . ..




5. [20 marks] The following iterated function system
a(*) 2 1 [ cos45® —sin4db° x
"Ny ) 2\ sinds®  cosd5 y

A x _L cos 135° —sin 135° T n 1
*\y ) 2\ sinl35°  cos135° y 0

generates the following fractal, known as the dragon curve:

(a) [10 marks] Here is one way to generate the dragon curve:
Step 0: Draw the line segment I which joins the points (0,0) and (1,0).
Step 1: Replace I by the two line segments A; (/) and Ay(7).
Step 2: Replace the two line segments of Step 1 by the four line segments

AyoAi(I), A1 0 Ay(I), Az 0 Ai(I) and As o Ay(1).

Step k: Replace each line segment of Step k£ — 1 by its images under A; and As,.
Draw Steps 0 through 3 of this process.

Solution: direct computational approach. In simplified form

a(y)=s(iiy) a(h)=3(020)

To calculate A; or A, of a line segment you only need to calculate A; and Ay of
the end points. For Step 1:

an a(3)-(2)4(3)-(2)
e a(3)-(2)+(3)-(2)



Here are the four graphs:
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Here are the rest of the calulations. For Step 2:
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(b) [5> marks| Calculate the fractal dimension of the dragon curve.

Solution: at each step you double the number of line segments and the magnifi-
cation factor is \/5, so the fractal dimension of the dragon curve is

log 2 log 2

]og\/§ N %logQ -

It is actually a space filling curve.

[5 marks] Describe another algorithm that generates the dragon curve.

Solution: I'll accept almost any alternative description as long as it is mathemat-
ically concrete, not exactly the same as part (a), and describes clearly a recursive
procedure. Here are some possibilities:

Algorithm 1: Play the chaos game. That is, start with a point p, in the plane.
Pick A; or As and apply it to pg to obtain p;. Now pick A; or As and apply it to
p1 to obtain ps. Continue recursively in this way: to obtain pg.; randomly pick
either A; or A, and apply it to pg. The orbit of py, namely pg, p1,p2, ..., Pk, - -
as k — oo, is attracted to the dragon curve.

Algorithm 2: Interpret each function A;, As geometrically.

1. A, is a rotation or 45° around its fixed point (0,0) followed by a contraction
of 8 = 1/+/2 towards the fixed point (0,0).

2. A, is rotation of 135° around its fixed point (3/5,1/5) followed by a contrac-
tion of 3 = 1/4/2 towards the fixed point (3/5,1/5).

Then proceed as in part (a), performing the above two operations on each line
segment of the previous stage.

Algorithm 3: Alternating triangles. Start with the line segment I and on it
construct the two sides of an isosceles right triangle with I as its hypotenuse. At
each subsequent step construct an isosceles right triangle on each segment of the
previous stage, alternating the side on which the triangle appears, as you go: that
is, starting at (0,0), first triangle is on the left, next triangle is on the right, and
SO on.



6. [20 marks] Let Q. : C — C by Q.(z) = 2* + c.
(a) [4 marks] Define the Mandelbrot set, M.
Solution: the actual definition on page 249 of Devaney is

M consists of all c-values for which the filled Julia set K. is connected.

I would also accept this equivalent statement:

M = {c € Z | the orbit of 0 under Q. is bounded}

(b) [4 marks] Show that the orbit of 0 under @)_, is eventually fixed. Is this fixed
point attracting or repelling? Is —2 € M?

Solution: Q_2(0) = —2; Q_2(—2) = 2; Q_2(2) = 2; so 0 is eventually fixed.
z = 2 is a repelling fixed point since

Q5(2)] =4>1.

And —2 € M, since the orbit of 0 under )_» is bounded.

(c) [6 marks] Show that the orbit of 0 under @; is eventually periodic. Is this cycle
attracting or repelling? Is i € M?

Solution:
Qi(0) =45 Qi(i) = —1+4; Qi(—=1+1) = —15 Qi(—i) = -1+
so 0 is eventually attracted to a 2-cycle. This 2-cycle is repelling since
|Qa(—1+)]|Q (=) =2v2-2 > 1.

So 1 € M, since the orbit of 0 under (); is bounded.



(d) [2 marks] With respect to the following image of the Mandelbrot set, locate both
—2 and 1.

Solution:

) Im[c]

Note: neither —2 nor ¢ can be in a bulb of the Mandelbrot set, for then their orbits
would eventually end up on an attracting cycle; nor on the boundary of a bulb of
the Mandelbrot set, for then they would both be neutral periodic points. So by
elimination the two points —2 and ¢ must be on the antennae of the Mandelbrot
set.

(e) [4 marks; 2 marks each] Let K. be the filled Julia set of Q.; let J. be the Julia
set of ).. Indicate whether the following statements are True or False, and give
a brief justification for your choice.

[. K 5 is totally disconnected.

Solution: False. See the definition of M above. Since —2 € M, K_, is
connected.

II. K s =J,
Solution: True. We did this one in class. K_5 is the line segment along the

real axis joining —2 to 2. That is, K_5 has no interior (in the complex plane)
so its boundary, J_», is equal to itself.



