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General Comments:

1. Many students used bad logic, especially in proffered solutions to Questions 2 and 3.

2. A simpler solution (than mine) to Question 3, part (c) was supplied: note that

F : [1/4, 3] −→ [−2, 1/4] and F : [−2, 1/4] −→ [1/4, 3].

Then for any odd value q,

F q(x) = x ⇒ x =
1

4
,

which is the fixed point of F. So the cycle has prime period q = 1.

3. In Question 5, if you want to describe the action of A1 and A2 geometrically, you have
to find the fixed point of each transformation; only one of them has fixed point (0, 0).

4. Questions 2 and 5 were the least popular questions.

Breakdown of Results: 65 students wrote this exam. The marks ranged from 35% to
98%, and the average was 63.3%. Some statistics on grade distributions are in the table on
the left, and a histogram of the marks (by decade) is on the right.

Grade % Decade %
90-100% 7.7%

A 16.9% 80-89% 9.2%
B 16.9% 70-79% 16.9%
C 24.6% 60-69% 24.6%
D 15.4% 50-59% 15.4%
F 26.2% 40-49% 18.5%

30-39% 7.7%
20-29% 0.0%
10-19% 0.0%

0-9% 0.0%



1. [20 marks] Let V : [−2, 2] −→ [−2, 2] by V (x) = 2|x| − 2.

(a) [5 marks] Plot the graphs of V and V 2.

Solution: with the line y = x also drawn in.

graph of V graph of V 2

(b) [5 marks] Find all the fixed points and 2-cycles of V and determine if they are
attracting or repelling.

Solution: For fixed points, V (x) = x:

x ≤ 0 ⇒ −2x− 2 = x ⇒ x = −2/3 and x > 0 ⇒ 2x− 2 = x ⇔ x = 2

Both fixed points are repelling since |V ′(−2/3)| = |V ′(2)| = 2 > 1.

For 2-cycles, V 2(x) = x but V (x) 6= x:

−2 < x < −1 ⇒ −4x− 6 = x ⇒ x = −6/5

and
0 < x < 1 ⇒ −4x + 2 = x ⇒ x = 2/5

So the only 2-cycle is −6/5 and 2/5, which is repelling since

|V ′(−6/5)| |V ′(2/5)| = 22 = 4 > 1.



(c) [10 marks] Let T : [0, 1] −→ [0, 1] by

T (x) =


2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2

< x ≤ 1
;

let h : [0, 1] −→ [−2, 2] by h(x) = −4x + 2. Prove that h is a conjugacy between
T and V.

Solution: You have to check that h is 1-1, onto, continuous, with continuous
inverse—which are all obvious since h is linear—and that

h ◦ T = V ◦ h.

This last equation should be verified:

h(T (x)) = −4T (x) + 2

=

{
−4(2x) + 2, if 0 ≤ x ≤ 1/2

−4(2− 2x) + 2, if 1/2 < x ≤ 1

=

{
−8x + 2, if 0 ≤ x ≤ 1/2

8x− 6, if 1/2 < x ≤ 1

V (h(x)) = V (−4x + 2) = 2| − 4x + 2| − 2 =

{
2(−4x + 2)− 2, if − 4x + 2 ≥ 0

2(4x− 2)− 2, if − 4x + 2 < 0

=

{
−8x + 2, if x ≤ 1/2

8x− 6, if x > 1/2

Thus V ◦ h = h ◦ T.

2. [20 marks] This question has five parts.

(a) [3 marks] Define: the subset D is dense in X.

Solution: the definition on page 114 of Devaney is

D is dense in X if for any point x ∈ X there is a point d ∈ D arbitrarily
close to x.

I would also accept any of these two equivalent conditions:

D is dense in X if for any point x ∈ X there is a sequence {dn}, consisting
of points in D, that converges to x.

D is dense in X if for every open subset A of X, D ∩ A 6= φ.



(b) [7 marks] Prove that the periodic points of σ are dense in Σ.

Solution: Let s = (s0s1 . . . snsn+1 . . . ) be an arbitrary sequence in Σ, let ε > 0.
Pick n such that 1/2n < ε; let t = (s0s1 . . . sn). Then t is a periodic point of σ
and, by the Proximity Theorem,

d[s, t] ≤ 1/2n < ε.

(c) [6 marks] Define the Cantor middle-thirds set, K. What is its fractal dimension?

Solution: here’s a recursive definition for K.

1. Start with the interval [0, 1].

2. Remove the middle third (1/3, 2/3), leaving two closed intervals left, [0, 1/3]
and [2/3, 1], each of length 1/3.

3. Repeat this process: remove the open middle third from each of the previous
closed intervals.

4. K is the set of points remaining in [0, 1] in the limit as this process is repeated
over and over without end.

The fractal dimension of K is

log 2

log 3
= 0.630929753 . . .

(d) [2 marks] Show that K is not dense in [0, 1].

Solution: by definition of the Cantor middle-thirds set, (1/3, 2/3) ∩K = φ; so
there is an open interval that does not intersect K.

(e) [2 marks] Show that the complement of K is dense in [0, 1].

Solution: since the Cantor middle-thirds set is totally disconnected, it contains
no open interval. Thus every open interval (a, b) ⊂ [0, 1] must intersect the
complement of K. That is

(a, b) 6⊂ K ⇒ (a, b) ∩ ([0, 1]−K) 6= φ.



3. [20 marks] The graph of F : [−2, 3] −→ [−2, 3] is shown below, along with the line y = x.
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(a) [5 marks] Show that −2 is on a 6-cycle for F.

Solution: the 6-cycle for F is

−2 → 2 → −1 → 3 → 0 → 1 → −2

(b) [5 marks] Explain why F has cycles with prime period p for any even number p.

Solution: by Sarkovskii’s Theorem F will have cycles of prime period p for any
number p after 6 in the Sarkovskii ordering. But these numbers comprise all the
even numbers.

(c) [10 marks] Prove that F has no cycles of any odd prime period q > 1.

Solution: Observe that F : [−2, 0] −→ [1, 3] and F : [1, 3] −→ [−2, 0]. So for any
odd value q > 1

F q([−2, 0]) = [1, 3] and F q([1, 3]) = [−2, 0].

If F q has a fixed point it must be in the interval (0, 1). Suppose the fixed point is
x; then the q-cycle for F must be

x, H(x), H2(x), . . . , Hq−1(x),

for H = F, restricted to the interval (0, 1), with each point

x, H(x), H2(x), . . . , Hq−1(x) ∈ (0, 1).

Since H is 1-1, the only solution to Hq(x) = x is the fixed point of H in (0, 1),
and so the cycle has prime period 1.



4. [20 marks] For c 6= 0, let Fc : R −→ R by Fc(x) = c sin x.

(a) [4 marks] Show that for |c| < 1, x = 0 is the only fixed point of Fc and its basin
of attraction is R = (−∞,∞).

Solution: for 0 < |c| < 1 the amplitude of Fc(x) = c sin x is |c| < 1, so the graph
of Fc(x) will never intersect the line y = x for x 6= 0. Then use graphical analysis
to show that for x0 ∈ R, xn → 0.

orbit of 5 under c sin x, 0 < c < 1 orbit of −4 under c sin x, 0 < c < 1

orbit of −5 under c sin x,−1 < c < 0 orbit of 5 under c sin x,−1 < c < 0

(b) [4 marks] Calculate the Schwarzian derivative of Fc and show it is negative.

Solution: for cos x 6= 0, S(Fc)(x) =

F ′′′
c (x)

F ′
c(x)

− 3

2

(
F ′′

c (x)

F ′
c(x)

)2

=
−c cos x

c cos x
− 3

2

(
−c sin x

c cos x

)2

= −1− 3

2
tan2 x < 0.



(c) [4 marks] Give a graphical example of a fixed point of Fc for which the immediate
basin of attraction does not extend to infinity.

Solution: pick c > 1 such that y = Fc(x) intersects the line y = x with slope
between −1 and 0. For the following graphs, c = 2.

orbit of 3 under 2 sin x orbit of 4 under 2 sin x

The immediate basin of attraction of the fixed point of 2 sin x close to 2, is (0, π).

Note: if you take c = π/2, then the fixed points of Fπ/2 are exactly p = ±π/2,
which are also critical points of Fc. The immediate basin of attraction of the fixed
point p = π/2 is also (0, π):

(d) [8 marks] Below is the bifurcation diagram for Fc, for |c| < 2.5, |x| < 2.5.

Classify each node in this diagram as a tangent (or saddle-node) bifurcation, a
period-doubling bifurcation, or neither.

Solution: the fixed point x = 0 is attracting ⇔ −1 < c < 1. The nodes on the
c-axis are (±1, 0). The four other nodes are (±a,±b) such that a > 0, b > 0 and



{
Fa(b) = b
F ′

a(b) = −1
⇔

{
a sin b = b
a cos b = −1

⇔
{

tan b = −b
a2 = b2 + 1

;

whence a ' 2.26, b ' 2.03. But you don’t really need these values.

node (1, 0): neither, since x = 0 is attracting for c < 1, repelling for c > 1; and
for c > 1 two new attracting fixed points appear. See the graph below, on the
left:

node (−1, 0): period-doubling, since x = 0 is attracting for c > −1, repelling for
c < −1; and for c < −1 an attracting 2-cycle appears, namely the two solutions
to c sin x = −x. See the graph above, on the right.

nodes (a,±b): period-doubling, since F ′
a(±b) = −1

nodes (−a,±b): neither, since the attracting 2-cycle for −a < c < −1 becomes
repelling; but for c < −a two new attracting 2-cycles show up. To see this,
calculate orbits of critical points x = ±π/2 under Fc, using c = −1.5 and c = −2.4:

c x0 orbit is attracted to the 2-cycle

−1.5 ±π/2 1.495781568 . . . ,−1.495781568 . . .

−2.4 π/2 −2.396065934 . . . , 1.628061364 . . .

−2.4 −π/2 2.396065934 . . . ,−1.628061364 . . .



5. [20 marks] The following iterated function system

A1

(
x
y

)
=

1√
2

(
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

) (
x
y

)

A2

(
x
y

)
=

1√
2

(
cos 135◦ − sin 135◦

sin 135◦ cos 135◦

) (
x
y

)
+

(
1
0

)
generates the following fractal, known as the dragon curve:

(a) [10 marks] Here is one way to generate the dragon curve:

Step 0: Draw the line segment I which joins the points (0, 0) and (1, 0).

Step 1: Replace I by the two line segments A1(I) and A2(I).

Step 2: Replace the two line segments of Step 1 by the four line segments

A1 ◦ A1(I), A1 ◦ A2(I), A2 ◦ A1(I) and A2 ◦ A2(I).

Step k: Replace each line segment of Step k− 1 by its images under A1 and A2.

Draw Steps 0 through 3 of this process.

Solution: direct computational approach. In simplified form

A1

(
x
y

)
=

1

2

(
x− y
x + y

)
, A2

(
x
y

)
=

1

2

(
2− x− y

x− y

)
.

To calculate A1 or A2 of a line segment you only need to calculate A1 and A2 of
the end points. For Step 1:

A1(I) : A1

(
0
0

)
=

(
0
0

)
, A1

(
1
0

)
=

(
1/2
1/2

)

A2(I) : A2

(
0
0

)
=

(
1
0

)
, A2

(
1
0

)
=

(
1/2
1/2

)



Here are the four graphs:

Step 0 Step 1 Step 2 Step 3

Here are the rest of the calulations. For Step 2:

A1 ◦ A1(I) : A1

(
0
0

)
=

(
0
0

)
, A1

(
1/2
1/2

)
=

(
0

1/2

)

A2 ◦ A1(I) : A2

(
0
0

)
=

(
1
0

)
, A2

(
1/2
1/2

)
=

(
1/2
0

)
A1 ◦ A2(I) : A1

(
1
0

)
=

(
1/2
1/2

)
, A1

(
1/2
1/2

)
=

(
0

1/2

)
A2 ◦ A2(I) : A2

(
1
0

)
=

(
1/2
1/2

)
, A2

(
1/2
1/2

)
=

(
1/2
0

)
For Step 3:

A1 ◦ A1 ◦ A1(I) : A1

(
0
0

)
=

(
0
0

)
, A1

(
0

1/2

)
=

(
−1/4
1/4

)

A2 ◦ A1 ◦ A1(I) : A2

(
0
0

)
=

(
1
0

)
, A2

(
0

1/2

)
=

(
3/4
−1/4

)
A1 ◦ A2 ◦ A1(I) : A1

(
1
0

)
=

(
1/2
1/2

)
, A1

(
1/2
0

)
=

(
1/4
1/4

)
A2 ◦ A2 ◦ A1(I) : A2

(
1
0

)
=

(
1/2
1/2

)
, A2

(
1/2
0

)
=

(
3/4
1/4

)
A1 ◦ A1 ◦ A2(I) : A1

(
1/2
1/2

)
=

(
0

1/2

)
, A1

(
0

1/2

)
=

(
−1/4
1/4

)
A2 ◦ A1 ◦ A2(I) : A2

(
1/2
1/2

)
=

(
1/2
0

)
, A2

(
0

1/2

)
=

(
3/4
−1/4

)
A1 ◦ A2 ◦ A2(I) : A1

(
1/2
1/2

)
=

(
0

1/2

)
, A1

(
1/2
0

)
=

(
1/4
1/4

)
A2 ◦ A2 ◦ A2(I) : A2

(
1/2
1/2

)
=

(
1/2
0

)
, A2

(
1/2
0

)
=

(
3/4
1/4

)



(b) [5 marks] Calculate the fractal dimension of the dragon curve.

Solution: at each step you double the number of line segments and the magnifi-
cation factor is

√
2, so the fractal dimension of the dragon curve is

log 2

log
√

2
=

log 2
1
2
log 2

= 2.

It is actually a space filling curve.

(c) [5 marks] Describe another algorithm that generates the dragon curve.

Solution: I’ll accept almost any alternative description as long as it is mathemat-
ically concrete, not exactly the same as part (a), and describes clearly a recursive
procedure. Here are some possibilities:

Algorithm 1: Play the chaos game. That is, start with a point p0 in the plane.
Pick A1 or A2 and apply it to p0 to obtain p1. Now pick A1 or A2 and apply it to
p1 to obtain p2. Continue recursively in this way: to obtain pk+1 randomly pick
either A1 or A2 and apply it to pk. The orbit of p0, namely p0, p1, p2, . . . , pk, . . .
as k →∞, is attracted to the dragon curve.

Algorithm 2: Interpret each function A1, A2 geometrically.

1. A1 is a rotation or 45◦ around its fixed point (0, 0) followed by a contraction
of β = 1/

√
2 towards the fixed point (0, 0).

2. A2 is rotation of 135◦ around its fixed point (3/5, 1/5) followed by a contrac-
tion of β = 1/

√
2 towards the fixed point (3/5, 1/5).

Then proceed as in part (a), performing the above two operations on each line
segment of the previous stage.

Algorithm 3: Alternating triangles. Start with the line segment I and on it
construct the two sides of an isosceles right triangle with I as its hypotenuse. At
each subsequent step construct an isosceles right triangle on each segment of the
previous stage, alternating the side on which the triangle appears, as you go: that
is, starting at (0, 0), first triangle is on the left, next triangle is on the right, and
so on.



6. [20 marks] Let Qc : C −→ C by Qc(z) = z2 + c.

(a) [4 marks] Define the Mandelbrot set, M.

Solution: the actual definition on page 249 of Devaney is

M consists of all c-values for which the filled Julia set Kc is connected.

I would also accept this equivalent statement:

M = {c ∈ Z | the orbit of 0 under Qc is bounded}

(b) [4 marks] Show that the orbit of 0 under Q−2 is eventually fixed. Is this fixed
point attracting or repelling? Is −2 ∈M?

Solution: Q−2(0) = −2; Q−2(−2) = 2; Q−2(2) = 2; so 0 is eventually fixed.
z = 2 is a repelling fixed point since

|Q′
−2(2)| = 4 > 1.

And −2 ∈M, since the orbit of 0 under Q−2 is bounded.

(c) [6 marks] Show that the orbit of 0 under Qi is eventually periodic. Is this cycle
attracting or repelling? Is i ∈M?

Solution:

Qi(0) = i; Qi(i) = −1 + i; Qi(−1 + i) = −i; Qi(−i) = −1 + i;

so 0 is eventually attracted to a 2-cycle. This 2-cycle is repelling since

|Q′
−2(−1 + i)||Q′

−2(−i)| = 2
√

2 · 2 > 1.

So i ∈M, since the orbit of 0 under Qi is bounded.



(d) [2 marks] With respect to the following image of the Mandelbrot set, locate both
−2 and i.

Solution:

Note: neither −2 nor i can be in a bulb of the Mandelbrot set, for then their orbits
would eventually end up on an attracting cycle; nor on the boundary of a bulb of
the Mandelbrot set, for then they would both be neutral periodic points. So by
elimination the two points −2 and i must be on the antennae of the Mandelbrot
set.

(e) [4 marks; 2 marks each] Let Kc be the filled Julia set of Qc; let Jc be the Julia
set of Qc. Indicate whether the following statements are True or False, and give
a brief justification for your choice.

I. K−2 is totally disconnected.

Solution: False. See the definition of M above. Since −2 ∈ M, K−2 is
connected.

II. K−2 = J−2

Solution: True. We did this one in class. K−2 is the line segment along the
real axis joining −2 to 2. That is, K−2 has no interior (in the complex plane)
so its boundary, J−2, is equal to itself.


