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General Comments:

1. The least popular questions were numbers 1 and 4.

2. Very few people realized the connection between the Mandelbrot set and parts (c), (d)
and (e) of question 5.

3. Questions 1, 3, 4 and 6 were basically taken right out of the book and/or homework.

Breakdown of Results: 108 students wrote this exam. The marks ranged from 25% to
95%, and the average was 62.0%. Some statistics on grade distributions are in the table on
the left, and a histogram of the marks (by decade) is on the right.

Grade % Decade %
90-100% 3.7%

A 16.7% 80-89% 13.0%
B 16.7% 70-79% 16.7%
C 23.1% 60-69% 23.1%
D 18.5% 50-59% 18.5%
F 25.0% 40-49% 15.7%

30-39% 7.4%
20-29% 1.9%
10-19% 0.0%

0-9% 0.0%



1. [20 marks] Let Ai for i = 0, 1, 2, 3 be linear contractions with contraction factor β = 1/3
and fixed points

p0 =

(
0
0

)
, p1 =

(
1
0

)
, p2 =

(
0
1

)
, p3 =

(
1
1

)
,

respectively. LetA be the attractor generated by the iterated function system A0, A1, A2, A3.

(a) [10 marks] Show that A = K ×K, where K is the Cantor middle-thirds set.

Solution: Let S be the square with vertices p0, p1, p2, p3 and consider the image
of S under Ai, Ai ◦ Aj, . . .

S

A0(S)

A2(S)

A1(S)

A3(S)

Ai ◦ Aj(S)

Since we are removing middle thirds along the x and y-axes, the attractor is
K ×K, where K is the Cantor set.

(b) [5 marks] What is the fractal dimension of A?

Solution: at each step we obtain k = 4 congruent pieces similar to each piece of
the previous step, and the magnification factor is M = 3, so the fractal dimension
is

D =
log k

log M
=

log 4

log 3
= 1.261859507 . . . .

(c) [5 marks] Describe in your own words how the chaos game can be played to
generate the fractal A.

Solution: Start with a point x0 in the plane. Pick one of A1, A2, A3 or A4 and
apply it to x0 to obtain x1. Now pick one of A1, A2, A3 or A4 and apply it to x1 to
obtain x2. Continue recursively in this way: to obtain xk+1 randomly pick either
A1, A2, A3 or A4 and apply it to xk. The orbit of x0, namely x0, x1, x2, . . . , xk, . . .
as k →∞, is attracted to A.



2. [20 marks] This question has four parts.

(a) [4 marks] Define the Mandelbrot Set, M.

Solution: the actual definition on page 249 of Devaney is

M consists of all c-values for which the filled Julia set Kc is connected.

I would also accept this equivalent statement:

M = {c ∈ Z | the orbit of 0 under Qc is bounded}

(b) [6 marks] Define the Sierpinski triangle. What is its fractal dimension?

Solution: here’s a recursive definition:

1. Start with an equilateral triangle.

2. Remove the equilateral triangle that joins the midpoints of the three sides of
the triangle.

3. Remove the equilateral triangle that joins the midpoints of the three sides in
the remaining three triangles.

4. Repeat this process: remove the equilateral triangle that joins the midpoints
of the three sides in each of the remaining triangles from the previous step.

5. The Sierpinski triangle is the set of points remaining in the limit as this
process is repeated over and over without end.

The fractal dimension of the Sierpinski triangle
is

log 3

log 2
= 1.584962501 . . .

(c) [5 marks] Define what it means, according to Devaney, for F : X −→ X to be
chaotic.

Solution: Devaney’s definition has three properties.

I. The periodic points of F are dense in X: for any point x in X and any ε > 0
there is a periodic point of F within ε of x.

II. F is transitive: for any pair of points x and y in X and any ε > 0 there is
a third point z in X such that z is within ε of x and the orbit of z under F
comes within ε of y.

III. F depends sensitively on initial conditions: there is a β > 0 such that for
any x in X and any ε > 0 there is a y in X such that y is within ε of x and
for some k the distance between F k(x) and F k(y) is at least β.



(d) [5 marks] Prove that if s ∈ Σ then there is a sequence t ∈ Σ arbitrarily close to s
for which d[σn(s), σn(t)] = 2, for all sufficiently large n.

Solution: pick k large enough so that 1/2k < ε. Let

tm =


sm, if m ≤ k,
1, if m > k and sm = 0,
0, if m > k and sm = 1

By the Proximity Theorem d[s, t] < 1/2k < ε; but if n > k then

d[σn(s), σn(t)] =
∞∑
i=0

1

2i
= 2.

3. [20 marks] The graph of F : [1, 7] −→ [1, 7] is shown below, along with the line y = x.
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(a) [5 marks] Show that 1 is on a 7-cycle for F.

Solution: the 7-cycle for F is

1 → 4 → 5 → 3 → 6 → 2 → 7 → 1

(b) [5 marks] Explain why F has cycles with prime period p for any even number p
and for any odd number p ≥ 7.

Solution: by Sarkovskii’s Theorem F will have additional cycles of prime period
p for any number p after 7 in the Sarkovskii ordering. But these numbers are all
the odd numbers bigger than 7, all the even numbers, and 1.



(c) [10 marks] Prove that F has no cycle of prime period p = 3 or 5.

Solution: By Sarkovskii’s Theorem we need only show that F has no 5-cycle.
To this end, consider F on each of the six intervals [1, 2], [2, 3], . . . , [6, 7] and show
that F cannot have a point of period 5 in any of them.

[1,2]: under F,

[1, 2] −→ [4, 7] −→ [1, 5] −→ [3, 7] −→ [1, 6] −→ [2, 7],

so if x ∈ [1, 2] and F 5(x) = x we must have x = 2. But this contradicts the
fact that 2 is on a 7-cycle.

[2,3]: under F,

[2, 3] −→ [6, 7] −→ [1, 2] −→ [4, 7] −→ [1, 5] −→ [3, 7],

so if x ∈ [2, 3] and F 5(x) = x we must have x = 3. But this contradicts the
fact that 3 is on a 7-cycle.

[3,4]: under F,

[3, 4] −→ [5, 6] −→ [2, 3] −→ [6, 7] −→ [1, 2] −→ [4, 7],

so if x ∈ [3, 4] and F 5(x) = x we must have x = 4. But this contradicts the
fact that 4 is on a 7-cycle.

[4,5]: under F,

[4, 5] −→ [3, 5] −→ [3, 6] −→ [2, 6] −→ [2, 7] −→ [1, 7] ⊃ [4, 5].

So we need a different argument. Let H be F restricted to [4, 5]; calculate
H(x) = −2x + 13, with fixed point x = 13/3. As H5 is one-to-one, the
fixed point of H will be the only solution to H5(x) = x. (Could compute:
H5(x) = −32x + 143 and H5(x) = x ⇔ x = 13/3 ⇔ H(x) = x.)

[5,6]: under F,

[5, 6] −→ [2, 3] −→ [6, 7] −→ [1, 2] −→ [4, 7] −→ [1, 5],

so if x ∈ [5, 6] and F 5(x) = x we must have x = 5. But this contradicts the
fact that 5 is on a 7-cycle.

[6,7]: under F,

[6, 7] −→ [1, 2] −→ [4, 7] −→ [1, 5] −→ [3, 7] −→ [1, 6],

so if x ∈ [6, 7] and F 5(x) = x we must have x = 6. But this contradicts the
fact that 6 is on a 7-cycle.



4. [20 marks] For c 6= 0, let Fc : R −→ R by Fc(x) = c cos x.

(a) [5 marks] Show that for |c| < 1, Fc has one fixed point and its basin of attraction
is R = (−∞,∞).

Solution: for |c| < 1 the graph of Fc(x) intersects the line y = x at one single
fixed point p in the interval (−π/2, π/2) and |F ′

c(p)| = |−c sin p| ≤ |c| < 1, so this
fixed point is attracting. Use graphical analysis to show that for x0 ∈ R, xn → p.

orbit of 5 under c cos x, 0 < c < 1 orbit of −5 under c cos x, 0 < c < 1

orbit of −5 under c cos x,−1 < c < 0 orbit of 5 under c cos x,−1 < c < 0

(b) [4 marks] Calculate the Schwarzian derivative of Fc and show it is negative.

Solution: for sin x 6= 0, S(Fc)(x) =

F ′′′
c (x)

F ′
c(x)

− 3

2

(
F ′′

c (x)

F ′
c(x)

)2

=
c sin x

−c sin x
− 3

2

(
−c cos x

−c sin x

)2

= −1− 3

2
cot2 x < 0.



(c) [5 marks] Give a graphical example of a fixed point of Fc for which the immediate
basin of attraction does not extend to infinity.

Solution: Let c = π, then p = −π is a strongly attracting fixed point of Fπ since

Fπ(−π) = π cos π = −π

and
F ′

π(π) = −π sin π = 0.

(This is Devaney’s example in Sec 12.2.)
The immediate basin of attraction of the
fixed point −π is indicated in blue on the
graph to the left. It is the finite interval
(a, b) where b is the repelling fixed point
of Fπ, close to −2.5, and a is the pre-
image of b, close to −3.8, that satisfies
Fπ(a) = Fπ(b); namely a = −2π − b.

(d) [6 marks] Below is part of the bifurcation diagram for Fc, for |c| < 3.2, |x| < 3.2.

Classify each node in this diagram as a tangent (or saddle-node) bifurcation, a
period-doubling bifurcation, or neither.

Solution: If p is a fixed point of Fc(x) then

F−c(−p) = −c cos(−p) = −c cos p = −Fc(p) = −p.

Thus (c, p) is a node on the bifurcation diagram if and only if (−c,−p) is as well,
and they both will be the same type of node. So we only need to classify the two
nodes for which c > 0.



nodes ±(c, p), c close to 3: these are both saddle nodes, or tangent bifurcations.
Graphically, compare graphs of Fc(x) and y = x for c close to 3:

c = 2.6 c = 2.9 . . . c = 3.2

You can see that the left half of the cosine graph approaches the line y = x, is
tangent to it, and then dips below it, producing two fixed points, one attracting
and one repelling. (Aside: this was a question in Problem Set 3.)

nodes ±(c, p), c close to 1.3: these are both period doubling bifurcations.

c = 1 c = 1.32 . . . c = 2

The above graphs illustrate how the attracting fixed point of Fc for 0 < c < 1
becomes neutral, around c = 1.32, and then becomes repelling for c > 1.32. We
claim an attracting 2-cycle appears for c > 1.32. For example consider Fπ/2:

Fπ/2(0) =
π

2
cos 0 =

π

2
; Fπ/2(π/2) =

π

2
cos(π/2) = 0.

This 2-cycle is actually strongly attracting since (F 2
π/2)

′(0) = 0. For interest here

are the graphs of F 2
c (x) for c = 1, c = 1.32, c = π/2 on the interval [0, π/2].

c = 1 c = 1.32 . . . c = π/2



5. [20 marks] Determine the fate of the orbits of the following seeds z0 under the following
functions F. If the orbit is periodic, or eventually periodic, determine if the periodic
cycle is attracting, repelling or neutral.

(a) [4 marks] z0 =
3

10
and F (x) =

{
2x if 0 ≤ x < 1

2

2x− 1 if 1
2
≤ x < 1.

Solution: this is the doubling function.

3

10
−→ 3

5
−→ 1

5
−→ 2

5
−→ 4

5
−→ 3

5
,

so the orbit of 3/10 is attracted to a 4-cycle. This 4-cycle is repelling, since

|F ′(3/15)F ′(1/5)F ′(2/5)F ′(4/5)| = 24 = 16 > 1.

(b) [4 marks] z0 = 1 and F (z) =
iz

2
.

Solution: observe that F (0) = 0 and F ′(z) = i/2.

1 −→ i

2
−→ −1

4
−→ − i

8
−→ 1

16
−→ · · · −→ 0,

so the orbit of 1 is attracted to the fixed point 0, which is attracting since

|F ′(0)| = |i/2| = 1/2 < 1.

(c) [4 marks] z0 = 0 and F (z) = z2 + i.

Solution: observe that F ′(z) = 2z.

0 −→ i −→ −1 + i −→ −i −→ −1 + i −→ −i −→ · · · ,

so the orbit of 0 is attracted to the 2-cycle −i,−1 + i which is repelling since

|F ′(−i)F ′(−1 + i)| = |(−2i)(−2 + 2i)| = |4− 4i| = 4
√

2 > 1.

(d) [4 marks] z0 = 0 and F (z) = z2 + 2i− 1.

Solution: observe that F = Q2i−1 and that |2i − 1| =
√

5 > 2. By the escape
criterion, the orbit of 0 under Q2i−1 will be unbounded. That is, the orbit goes
to infinity.

(e) [4 marks] z0 = 0 and F (z) = z2 +
i

8
− 1.

Solution: observe that F = Qi/8−1 and that |i/8 − 1 + 1| = |i/8| = 1/8 < 1/4.
So c = i/8− 1 is in the period-2 bulb, {c ∈ C | |c + 1| < 1/4}, of the Mandelbrot
set. Hence the orbit of 0 under Qi/8−1 will be attracted to an attracting 2-cycle.



6. [20 marks] Let Qc : C −→ C by Qc(z) = z2 + c. Let Kc be the filled Julia set of Qc; let
Jc be the Julia set of Qc.

(a) [5 marks] Plot K0 and J0 in the complex plane.

Solution: Q0(z) = z2 and K0 = {z ∈ C | orbit of z under Q0 is bounded}. If
z = reiθ, then

Qn
0 (z) = r2n

e2niθ and |Qn
0 (z)| = r2n

.

So the orbit of z under Q0 is unbounded if and only if r > 1. Hence

K0 is the unit disc, and J0 is its boundary,
the unit circle.

K0 = {z ∈ C | |z| ≤ 1};

J0 = {z ∈ C | |z| = 1}.

(b) [10 marks] Let R = {z ∈ C | |z| > 1}; let H : R −→ C− [−2, 2] by

H(z) = z +
1

z
.

Show that H is a conjugacy between Q0 on R and Q−2 on C− [−2, 2].

Solution: we need to show H is a homeomorphism and that Q−2 ◦H = H ◦Q0.
Checking the equality first:

Q−2(H(z)) = Q−2(z + z−1)

= (z + z−1)2 − 2

= z2 + 2 + z−2 − 2

= z2 + z−2

= H(z2)

= H(Q0(z))

R
Q0−−−→ R

H

y yH

C− [−2, 2] −−−→
Q−2

C− [−2, 2]

To show H is a homeomorphism, we need to show:

1. H is one-to-one,

2. H is onto,

3. H is continuous,

4. H−1 is also continuous.



H is one-to-one: suppose z, w ∈ R. Then

H(z) = H(w) ⇒ z +
1

z
= w +

1

w
⇒ z2w + zw = zw2 + zw

⇒ zw(z − w) = 0

⇒ z = w or z = w−1.

But if |w| > 1, then |w−1| < 1; so z = w.

H is onto: let w ∈ C− [−2, 2] and let H(z) = w. Then

z +
1

z
= w ⇒ z2 − wz + 1 = 0,

which is a quadratic equation with two solutions, z1 and z2 such that z1z2 = 1. If
z1 = eiθ, then z2 = z−1

1 = e−iθ and more importantly,

H(z1) = eiθ + e−iθ = 2 cos θ ∈ [−2, 2].

So |z1| 6= 1, which means one of z1 or z2 is in R.

H is continuous: since z 6= 0 for all z ∈ R and

H ′(z) = 1− 1

z2
.

It follows that H is differentiable for all z ∈ R, from which continuity follows.

H−1 is continuous: let G = H−1, which exists by 1, 2 above. Let w ∈ C− [−2, 2].
Then G(w) ∈ R ⇒ |G(w)| > 1 ⇒ H ′(G(w)) 6= 0. Then

G′(w) =
1

H ′(G(w))

exists for all w ∈ C− [−2, 2] and G is differentiable, hence continuous.

(c) [5 marks] Plot K−2 and J−2 in the complex plane.

Solution: we did this in class. K−2 = [−2, 2], which is its own boundary in C so
J−2 = K−2 as well. More formally, use the conjugacy of part (b) and the result of
part (a). By part (a), the orbit of z under Q0 tends to infinity for any z ∈ R; so by
conjugacy, the orbit of H(z) under Q−2 tends to infinity for all H(z) ∈ C−[−2, 2].
Thus the only bounded orbits under Q−2 will be orbits of w ∈ [−2, 2], whence

K−2 = [−2, 2].


