University of Toronto SOLUTIONS to MAT335H1F TERM TEST Monday, October 18, 2010 Duration: 50 minutes

Only aids permitted: Scientific calculator, to be supplied by student.

General Comments about the Test:

- The average was good and nobody failed.
- For 1(d), many students missed the connection between Γ and K entirely.
- There were substantial difficulties with the algebra in Question 2.
- Remember: when solving

$$F^2(x) - x = 0$$

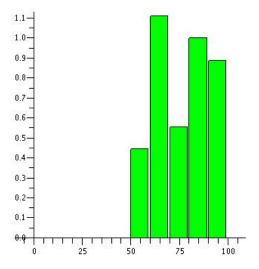
the expression

F(x) - x

must be a factor!

Breakdown of Results: 36 students wrote this test. The marks ranged from 54% to 98%, and the average was 76%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	22.2 %
А	47.2~%	80 - 89%	25.0~%
В	13.9~%	70-79%	13.9~%
\mathbf{C}	27.8~%	60-69%	27.8 %
D	11.1 $\%$	50-59%	11.1 %
F	0.0~%	40-49%	0.0 %
		30 - 39%	0.0~%
		20-29%	0.0~%
		10 -19%	0.0~%
		0-9%	0.0~%



- 1. [25 marks] Let $T(x) = \begin{cases} 3x, & \text{if } x \le 1/2 \\ 3 3x, & \text{if } x > 1/2 \end{cases}$
 - (a) [5 marks] Find the fixed points of T and determine if they are attracting or repelling.

Solution: If x < 1/2, then

$$T(x) = x \Leftrightarrow 3x = x \Leftrightarrow x = 0.$$

If x > 1/2, then

$$T(x) = x \Leftrightarrow 3 - 3x = x \Leftrightarrow 3 = 4x \Leftrightarrow x = \frac{3}{4}.$$

Both fixed points are repelling since

$$T'(0) = 3 > 1$$
 and $T'(3/4) = -3 < -1$.

(b) [10 marks] 3/13 is on a 3-cycle for T. What is the 3-cycle? Is it repelling or attracting?

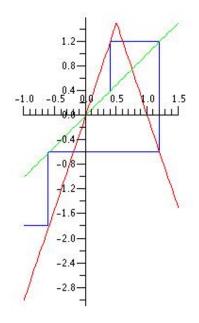
Solution:

$$T(3/13) = \frac{9}{13}; \ T(9/13) = 3 - \frac{27}{13} = \frac{12}{13}; \ T(12/13) = 3 - \frac{36}{13} = \frac{3}{13}.$$

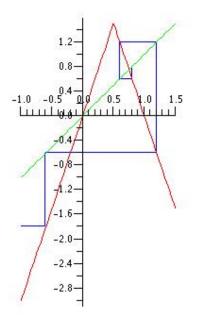
The 3-cycle is repelling since

$$T'(3/13)T'(9/13)T'(12/13) = (3)(-3)(-3) = 27 > 1.$$

(c) [5 marks] On the two graphs below, use graphical analysis to show that the orbits of both x = 0.4 and y = 0.8 under T go to $-\infty$.



The orbit of x = 0.4 under T goes to $-\infty$



The orbit of y = 0.8 under T goes to $-\infty$

(d) [5 marks] Explain briefly and clearly why

$$\Gamma = \{ x \in [0,1] \mid T^n(x) \in [0,1] \text{ for all } n \}$$

is equal to the Cantor middle-thirds set. (You do not have to prove your statements, and you do not need to do anything with ternary expansions!)

Solution: List the key connections:

1. The orbit of x under T goes to $-\infty$ if and only if x is in one of the middle-thirds,

 $(1/2, 2/3), (1/9, 2/9), (7/9, 8/9), \ldots$

2.

$$\Gamma = \{x \in [0,1] \mid T^n(x) \in [0,1] \text{ for all } n\} \\ = [0,1] - \{x \in [0,1] \mid T^n(x) \to -\infty\}$$

3. So $\Gamma = K$, the Cantor middle-thirds set, by definition.

- 2. [25 marks] Consider the family of functions $F_c(x) = x^2 + cx$, with parameter c.
 - (a) [8 marks] Find the fixed points of F_c and determine for which values of c they are attracting.

Solution:

 $F_c(x) = x \Leftrightarrow x^2 + cx = x \Leftrightarrow x(x+c-1) = 0 \Leftrightarrow x = 0 \text{ or } x = 1-c.$

$$F_c'(x) = 2x + c.$$

 So

$$F'(0) = c$$

and x = 0 is attracting if and only if -1 < c < 1. Also:

$$F'(1-c) = 2 - 2c + c = 2 - c;$$

so x = 1 - c is attracting if and only if

 $|2-c| < 1 \Leftrightarrow -1 < 2-c < 1 \Leftrightarrow -3 < -c < -1 \Leftrightarrow 3 > c > 1.$

(b) [6 marks] Find the points of prime period 2 for ${\cal F}_c.$

Solution:

$$F_c^2(x) = x \iff (x^2 + cx)^2 + c(x^2 + cx) = x$$

$$\Leftrightarrow x^4 + 2cx^2 + c^2x^2 + cx^2 + c^2x - x = 0$$

$$\Leftrightarrow x^4 + 2cx^2 + (c^2 + c)x^2 + (c^2 - 1)x = 0$$

$$\Leftrightarrow (x^2 + (c - 1)x)(x^2 + (1 + c)x + 1 + c) = 0$$

$$\Leftrightarrow x = 0, x = 1 - c, \text{ or } x = \frac{-(1 + c) \pm \sqrt{(1 + c)^2 - 4(1 + c)}}{2}$$

$$\Leftrightarrow x = 0, x = 1 - c, \text{ or } x = \frac{-1 - c \pm \sqrt{c^2 - 2c - 3}}{2}$$

So the points of prime period 2 for F_c are

$$p = \frac{-1 - c - \sqrt{c^2 - 2c - 3}}{2}$$
 and $q = \frac{-1 - c + \sqrt{c^2 - 2c - 3}}{2}$,

which only exist if

$$c^2 - 2c - 3 \ge 0 \Leftrightarrow (c - 3)(c + 1) \ge 0 \Leftrightarrow c \le -1 \text{ or } c \ge 3.$$

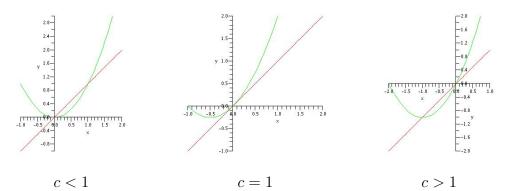
(c) [4 marks] Describe the bifurcation at c = 1.

Three possible ways to present your solution:

Analytically: For -1 < c < 3 and -2 < x < 3 we have:

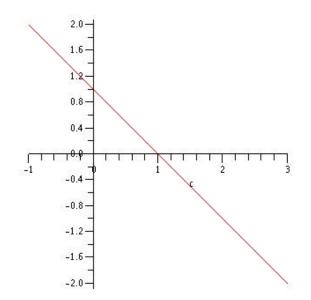
- 1. for -1 < c < 1 the fixed point x = 0 is attracting but the fixed point x = 1 c is repelling;
- 2. for c = 1 there is only one fixed point, x = 0, which is neutral;
- 3. for 1 < c < 3 the fixed point x = 0 is repelling but the fixed point x = 1 c is attracting.

So there is no tangent bifurcation or period doubling bifurcation at c = 1. Graphically: $F'_c(0) = 1 \Leftrightarrow c = 1$; so there is tangency for c = 1.



But for both c < 1 and c > 1 there are two fixed points, one attracting and one repelling. So there is no tangent bifurcation at c = 1.

Bifurcation Diagram: For -1 < c < 3 and -2 < x < 3 the two fixed points x = 0 and x = 1 - c swap attracting and repelling roles at c = 1:



(d) [7 marks] Describe the bifurcation at c = 3.

Again, at least three approaches are possible: Analytically:

$$\begin{aligned} |F_c'(p)F_c'(q)| &= |(-1-\sqrt{c^2-2c-3})(-1+\sqrt{c^2-2c-3})| \\ &= |1-(c-3)(c+1)| \\ &= |c^2-2c-4| \\ &= |(c-1)^2-5| \end{aligned}$$

Hence the 2-cycle p, q is attracting, for c > 3, if

$$-1 < (c-1)^2 - 5 < 1 \Leftrightarrow 4 < (c-1)^2 < 6 \Leftrightarrow 2 < c-1 < \sqrt{6} \Leftrightarrow 3 < c < 1 + \sqrt{6},$$

where we have used the fact that c > 3 to set |c - 1| = c - 1. So

- 1. for 2 < c < 3 the fixed point x = 1 c is attracting, and there is no 2-cycle;
- 2. for c = 3 the fixed point, x = -2 is neutral; and p = q = -2;
- 3. for $3 < c < 1 + \sqrt{6}$ the fixed point x = 1 c is repelling and the 2-cycle p, q is attracting.

There is a period doubling bifurcation at c = 3.

