University of Toronto
SOLUTIONS to MAT335H1F TERM TEST
Monday, October 18, 2010
Duration: 50 minutes

Only aids permitted: Scientific calculator, to be supplied by student.

General Comments about the Test:
e The average was good and nobody failed.
e For 1(d), many students missed the connection between I' and K entirely.
e There were substantial difficulties with the algebra in Question 2.

e Remember: when solving
the expression

must be a factor!

Breakdown of Results: 36 students wrote this test. The marks ranged from 54%
to 98%, and the average was 76%. Some statistics on grade distributions are in the
table on the left, and a histogram of the marks (by decade) is on the right.
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3z, if x <1/2

1. [25 marks] Let T'(x) = { 3—3z, ifx>1/2

(a) [5 marks| Find the fixed points of T" and determine if they are attracting
or repelling.

Solution: If x < 1/2, then
Tx)=r<3rx=x<z=0.

If 2 > 1/2, then

T(m):x<:>3—3x:x<:>3:4x<:>x:z..

Both fixed points are repelling since

T'0)=3>1and 7T"(3/4) = -3 < —1.



(b) [10 marks] 3/13 is on a 3-cycle for 7. What is the 3-cycle? Is it repelling
or attracting?

Solution:

9 27 12 36 3

The 3-cycle is repelling since

T'(3/13)T'(9/13)T(12/13) = (3)(=3)(=3) = 27 > 1.



(c) [5 marks] On the two graphs below, use graphical analysis to show that
the orbits of both z = 0.4 and y = 0.8 under 7" go to —o0.

0
-1.0 -0.5

The orbit of y = 0.8 under 7" goes to —oo



(d) [5> marks| Explain briefly and clearly why
I'={z€l0,1] | T"(z) € [0, 1] for all n}

is equal to the Cantor middle-thirds set. (You do not have to prove your
statements, and you do not need to do anything with ternary expansions!)

Solution: List the key connections:

1. The orbit of z under T goes to —oo if and only if z is in one of the
middle-thirds,

(1/2,2/3), (1/9,2/9), (7/9,8/9). ...

I = {xel0,1]|T™(x) € [0,1] for all n}
0,1] — {x € [0,1] | T"(z) — —o0}

3. So I' = K, the Cantor middle-thirds set, by definition.



2. [25 marks] Consider the family of functions F,(z) = 2 + cx, with parameter c.

(a) [8 marks| Find the fixed points of F, and determine for which values of ¢
they are attracting.

Solution:

F(r)=zer*ta=cvezrtc—1)=0z=00rr=1—c

Fl(z) =2z +c.

[

So
F'(0)=c¢

and x = 0 is attracting if and only if —1 < ¢ < 1. Also:
Fl(l—¢)=2—-2c+c=2—g¢
so x = 1 — ¢ is attracting if and only if

2—¢<le-1<2-c<le -3<——c<-1&3>c>1.



(b) [6 marks| Find the points of prime period 2 for F..

Solution:
FPx)=2 & (@®+cx)’+c(@*+cx)=2x
o 42t + e+ Pfr—1r=0
& '+ 2+ (E+ )"+ (P -1z =0
& @+ (c—Da)2*+(1+c)r+1+c¢)=0
—(1 + /(1 2 —4(1
& r=0r=1—c¢c orz= (1+0c) \/(;—C) (1+0)
—1l—ctVc?—2c—-3
& rv=0zrz=1—c orz= 5
So the points of prime period 2 for F. are
—1—c—\/c2—2c—3ad —1—c++Vc2—2c—3
b= na g = )
2 2

which only exist if

A=2c-3>0&(c—3)(c+1)>0&c< —lore>3.



(¢) [4 marks] Describe the bifurcation at ¢ = 1.

Three possible ways to present your solution:
Analytically: For —1 < ¢ < 3 and —2 < x < 3 we have:
1. for —1 < ¢ < 1 the fixed point z = 0 is attracting but the fixed point
x =1 — c is repelling;
2. for ¢ =1 there is only one fixed point, x = 0, which is neutral;
3. for 1 < ¢ < 3 the fixed point z = 0 is repelling but the fixed point
r =1 — cis attracting.
So there is no tangent bifurcation or period doubling bifurcation at ¢ = 1.
Graphically: F/(0) =1 < ¢ = 1; so there is tangency for ¢ = 1.
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c<1 c=1 c>1
But for both ¢ < 1 and ¢ > 1 there are two fixed points, one attracting
and one repelling. So there is no tangent bifurcation at ¢ = 1.
Bifurcation Diagram: For —1 < ¢ < 3 and —2 < z < 3 the two fixed
points x = 0 and x = 1 — ¢ swap attracting and repelling roles at ¢ = 1:
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(d) [7 marks] Describe the bifurcation at ¢ = 3.

Again, at least three approaches are possible:
Analytically:

[Fe(p)Fo(q)] = [(=1 =V =2c=3)(=1+ V> —2¢c—3)|
= |1—=(c—=3)(c+1)]
= |c® —2c—4
= [(c—17 -5
Hence the 2-cycle p, g is attracting, for ¢ > 3, if
1< (e=1)P2-5<lad<(c—1)?<6o2<c—1<V6<3<c<1+V6,

where we have used the fact that ¢ > 3 to set |[c — 1| =¢— 1. So
1. for 2 < ¢ < 3 the fixed point x = 1 — ¢ is attracting, and there is no
2-cycle;
2. for ¢ = 3 the fixed point, x = —2 is neutral; and p = ¢ = —2;
3. for 3 < ¢ < 1+ /6 the fixed point z = 1 — ¢ is repelling and the
2-cycle p, q is attracting.

There is a period doubling bifurcation at ¢ = 3.

Bifurcation Diagram:
Graphically: x = 1 — ¢ is the yellow line;
F/(l—¢)=-1<2—-c=—-1<c=3.||the blue (p) and green (q)
curves are the 2-cycle
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So F3(z) is normal to the line y = = at =
x = —2, and F,(x) has a period doubling
bifurcation at ¢ = 3. (See Note 3 on page| | An attracting 2-cycle appears
62 of Devaney.) as the attracting fixed point
becomes repelling.




