University of Toronto SOLUTIONS to MAT335H1F TERM TEST Monday, October 17, 2011 Duration: 50 minutes

Only aids permitted: Scientific calculator, to be supplied by student.

General Comments about the Test:

- The point in Question 1(e) is to show that for $x_0 \notin [0,3]$, the orbit of x_0 under T eventually ends up in [0,3]; but you don't know if it is attracted to x = 9/4, or to the cycles of parts (b) and (c), as some of you said.
- A fair number of students had difficulty working with natural logs. For example, many couldn't simplify $\ln(e^{-1}) = -1$.
- Not to mention that some students couldn't solve the equations for the fixed points or the 2-cycle in Questions 2(b) and 2(c), or couldn't simplify the derivatives of F_c at the fixed points.
- When it comes to determining if a fixed point (or a cycle) is attracting, repelling or neutral you have to include *all* the cases , that is

$$-1 < F'_c(x) < 1, F'_c(x) = \pm 1, \text{ and } F'_c(x) < -1 \text{ or } F'_c(x) > 1.$$

Many students simply ignored the cases involving -1.

Breakdown of Results: 74 students wrote this test. The marks ranged from 38% to 98%, and the average was 73.7%. Some statistics on grade distributions are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	18.9%
А	44.6%	80-89%	25.7%
В	16.2%	70-79%	16.2%
\mathbf{C}	18.9%	60-69%	18.9%
D	14.9%	50-59%	14.9%
F	5.4%	40-49%	4.1%
		30 - 39%	1.3%
		20-29%	0.0%
		10-19%	0.0%
		0-9%	0.0%

- 1. [25 marks; each part is worth 5 marks.] Let $T(x) = \begin{cases} x+1, & \text{if } x \leq 2\\ 9-3x, & \text{if } x > 2 \end{cases}$
 - (a) Find the fixed point of T and determine if it is attracting, repelling or neutral.

Solution:
$$x \le 2 \Rightarrow T(x) = x + 1 > x$$
, so $T(x) = x$ only if $x > 2$
 $T(x) = x \Leftrightarrow 9 - 3x = x \Leftrightarrow 9 = 4x \Leftrightarrow x = \frac{9}{4}$ or 2.25.

This fixed point is repelling since

$$T'(2.25) = -3$$
 and $|-3| > 1$.

(b) Confirm that the orbit of $x_0 = 3/4$ under T is periodic. What is its prime period?

Solution:

$$T(3/4) = \frac{7}{4}; \ T(7/4) = \frac{11}{4}; \ T(11/4) = 9 - \frac{33}{4} = \frac{3}{4}.$$

The prime period is 3.

(c) Confirm that the orbit of $x_0 = -1$ under T is eventually periodic.

Solution: T(-1) = 0; T(0) = 1; T(1) = 2; T(2) = 3; T(3) = 0. So the orbit of $x_0 = -1$ under T is attracted to a 4-cycle.

(d) Confirm that $T: [0,3] \longrightarrow [0,3]$

Solution: If $0 \le x \le 2$, then $1 \le x + 1 \le 3$, so $T(x) \in [0,3]$: if $2 < x \le 3$, then $-6 > -3x \ge -9 \Rightarrow 3 > 9 - 3x \ge 0 \Rightarrow T(x) \in [0,3]$. Or show the graph of T is contained in the square $[0,3] \times [0,3]$; see 1(e). (e) Using the graph below explain why $\{x_0 \mid T^n(x_0) \to \pm \infty\}$ is empty.

Solution: Need only show that if $x_0 < 0$ or $x_0 > 3$ the orbits under T always end up in [0,3]. So $T^n(x_0) \to \pm \infty$ is not possible.

The orbit of $x_0 = 4.4$ under T ends up in [0, 3].

The orbit of $x_0 = -4.4$ under T goes to [0, 3].

- 2. [25 marks] Consider the family of functions $F_c(x) = x \ln(x^2 + c)$, for c > 0.
 - (a) [2 marks] Show that

$$F'_c(x) = \ln(x^2 + c) + \frac{2x^2}{x^2 + c}$$

Solution: use product rule.

$$F'_{c}(x) = 1 \cdot \ln(x^{2} + c) + x \cdot \frac{2x}{x^{2} + c} = \ln(x^{2} + c) + \frac{2x^{2}}{x^{2} + c}$$

(b) [10 marks] Find the fixed points of F_c and determine for which values of c they are attracting, neutral or repelling.

Solution:
$$F_c(x) = x \Rightarrow x \ln(x^2 + c) = x \Rightarrow x = 0$$
, or
 $\ln(x^2 + c) = 1 \Leftrightarrow x^2 + c = e \Leftrightarrow x = \pm \sqrt{e - c}$, for $0 < c \le e$

- 1. $F'_c(0) = \ln c$ and $|\ln c| < 1 \Leftrightarrow -1 < \ln c < 1 \Leftrightarrow 1/e < c < e$. So the fixed point x = 0 is attracting if 1/e < c < e, is neutral if c = 1/e or e, and is repelling if 0 < c < 1/e or c > e.
- 2. The fixed points $x = \pm \sqrt{e-c}$ are real only if $c \le e$, and so $F'_c(\pm \sqrt{e-c}) = 1 + 2(e-c)/e \ge 1$. Hence these fixed points are neutral if c = e and repelling if 0 < c < e.
- (c) [8 marks] Solve $F_c(x) = -x$ for x. (The solutions will give you a 2-cycle for F_c .) Determine for which values of c this 2-cycle is attracting.

Solution: $F_c(x) = -x \Rightarrow x \ln(x^2 + c) = -x \Rightarrow x = 0$, which is a fixed point, or

$$\ln(x^2 + c) = -1 \Leftrightarrow x^2 + c = e^{-1} \Leftrightarrow x = \pm \sqrt{e^{-1} - c}, \text{ for } 0 < c < 1/e.$$

Note: the 2-cycle becomes a single point, x = 0, if c = 1/e. Now

$$F'_{c}(\pm\sqrt{e^{-1}-c}) = -1 + 2(e^{-1}-c)/e^{-1} = 1 - 2ce.$$

So the 2-cycle $x = \pm \sqrt{e^{-1} - c}$ is attracting if and only if

$$\begin{split} |F_c'(\sqrt{e^{-1}-c})F_c'(-\sqrt{e^{-1}-c})| < 1 &\Leftrightarrow (1-2ce)^2 < 1 \\ &\Leftrightarrow -1 < 1-2ce < 1 \\ &\Leftrightarrow -2 < -2ce < 0 \\ &\Leftrightarrow e^{-1} > c > 0 \end{split}$$

(d) [5 marks] Based on your results in parts (b) and (c) sketch the bifurcation diagram for $F_c(x)$ for $0 < c \le 3$. Label the nodes and indicate if each node is a tangent (or saddle-node) bifurcation, a period-doubling bifurcation, or neither.

Bifurcation Diagram:

Legend:

Yellow: the fixed point x = 0Red: the fixed point $x = \sqrt{e-c}$ Green: the fixed point $x = -\sqrt{e-c}$ Blue and violet: the 2-cycle $x = \pm \sqrt{e^{-1} - c}$ The node (c, x) = (1/e, 0) is a period-doubling bifurcation. The node (c, x) = (e, 0) is neither.