University of Toronto SOLUTIONS to MAT335H1F TERM TEST Friday, October 19, 2012 Duration: 50 minutes

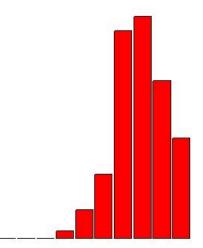
Only aids permitted: Scientific calculator, to be supplied by student.

General Comments about the Test:

- Question 1 was done perfectly many times, but Question 2 was done perfectly only once or twice.
- You have to give the restrictions on c for both 2(a) and 2(b) to get full points.
- In 2(d), $F'_1(0) = 1$ and $F'_{-1}(0) = -1$, which are necessary conditions for a tangent node and a period-doubling bifurcation, respectively, but they are not sufficient conditions. So you still have to check what is happening to either side of the node.

Breakdown of Results: 110 students wrote this test. The marks ranged from 34% to 98%, and the average was 73.1%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	12.7%
А	32.7%	80-89%	20.0%
В	28.2%	70-79%	28.2%
С	26.4%	60-69%	26.4%
D	8.2%	50 - 59%	8.2%
F	4.5%	40-49%	3.6%
		30 - 39%	0.9%
		20-29%	0.0%
		10-19%	0.0%
		0-9%	0.0%



- 1. [25 marks; each part is worth 5 marks.] Let $T(x) = \begin{cases} 2x, & \text{if } x \leq 1/2 \\ 2-2x, & \text{if } x > 1/2 \end{cases}$
 - (a) Find the fixed points of T.

Solution: if x < 1/2, then

$$T(x) = x \Leftrightarrow 2x = x \Leftrightarrow x = 0;$$

if x > 1/2, then

$$T(x) = x \Leftrightarrow 2 - 2x = x \Leftrightarrow x = 2/3.$$

So the only fixed points of T are x = 0 and x = 2/3.

(b) Confirm that the orbit of $x_0 = 2/7$ under T is periodic. What is the prime period?

Solution:

$$T(2/7) = \frac{4}{7}; \ T(4/7) = 2 - \frac{8}{7} = \frac{6}{7}; \ T(6/7) = 2 - \frac{12}{7} = \frac{2}{7}.$$

The prime period is 3.

(c) Explain why any periodic cycle of T must be repelling.

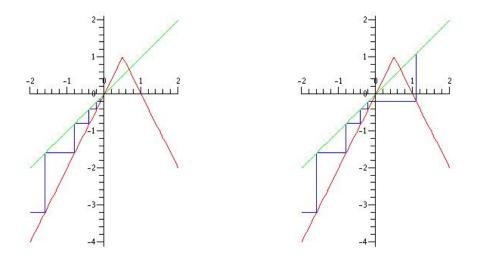
Solution: observe that for all $x \neq 1/2$, |T'(x)| = 2. (Since x = 1/2 is eventually fixed by T, you don't have to worry about x = 1/2 being on a periodic cycle of T.) Let x_1, x_2, \ldots, x_n be an *n*-cycle of T. Then

$$|T'(x_1)T'(x_2)\cdots T'(x_n)| = 2^n > 1,$$

so the *n*-cycle is repelling.

(d) What is the fate of the orbit of x_0 under T if $x_0 < 0$ or $x_0 > 1$?

Solution: if $x_0 < 0$ or $x_0 > 1$, then $\lim_{n \to \infty} T^n(x_0) = -\infty$, as illustrated on the graphs below:

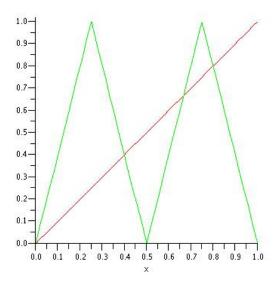


(e) Plot the graphs of $y = T^2(x)$ and y = x, for $0 \le x \le 1$. How many points of prime period 2 does T have?

Solution: from the graph of T^2 , shown to the right, you can see that it intersects the line

$$y = x$$

four times, but two of these intersection points are the fixed points of part (a). The other two points are the only period 2 points of T.



- 2. [25 marks] Consider the family of functions $F_c(x) = c x (1 x^2)$.
 - (a) [5 marks] Find the fixed points of F_c . Solution:

$$F_c(x) = x \Leftrightarrow cx(1-x^2) = x \Leftrightarrow x = 0 \text{ or } x^2 = 1 - \frac{1}{c}$$

So the fixed points are x = 0, and

$$x = \sqrt{\frac{c-1}{c}}, \ x = -\sqrt{\frac{c-1}{c}}$$

for c < 0 or $c \ge 1$.

(b) [5 marks] Solve the equation $F_c(x) = -x$ for x. What is a 2-cycle for F_c ?

Solution: since F_c is odd, solutions to $F_c(x) = -x$ will include period 2 points, as pointed out in class.

$$F_c(x) = -x \Leftrightarrow cx(1-x^2) = -x \Leftrightarrow x = 0 \text{ or } x^2 = 1 + \frac{1}{c}.$$

Since x = 0 is a fixed point of F_c , the period 2 points are

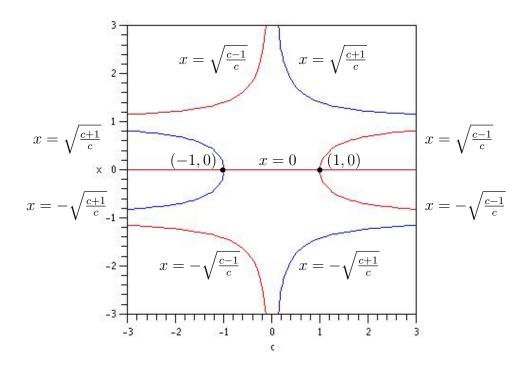
$$x = \sqrt{\frac{c+1}{c}}, \ x = -\sqrt{\frac{c+1}{c}}$$

for c > 0 or $c \leq -1$.

(c) [5 marks] Indicate your solutions from parts (a) and (b) on this diagram which represents (part of) the bifurcation diagram for $F_c(x)$, with

$$-3 \le c \le 3, -3 \le x \le 3.$$

Solution: the fixed points are in red, and the period 2 points are in blue.



(d) [10 marks] Classify the two nodes (c, x) = (1, 0) and (-1, 0) in the above diagram. That is, determine if each node is a saddle-node (or tangent bifurcation), a period-doubling bifurcation, or neither.

Solution: the node (c, x) = (1, 0) is neither a saddle-node nor a perioddoubling node, since all the lines on the bifurcation diagram connected to the node are fixed points.

The node (c, x) = (-1, 0) is a period-doubling bifurcation since

- 1. the fixed point x = 0 is attracting for c > -1, neutral for c = -1and repelling for c < -1, because $F'_c(0) = c$.
- 2. the 2-cycle

$$\sqrt{\frac{c+1}{c}}, -\sqrt{\frac{c+1}{c}}$$

exists for $c \leq -1$, not for c > -1, and is attracting for -2 < c < -1, since

$$F'_c\left(\sqrt{\frac{c+1}{c}}\right)F'_c\left(-\sqrt{\frac{c+1}{c}}\right) = (c-3(c+1))^2 = (-3-2c)^2,$$

so $F'_c\left(\sqrt{\frac{c+1}{c}}\right)F'_c\left(-\sqrt{\frac{c+1}{c}}\right) < 1 \Leftrightarrow -1 < 3+2c < 1 \Leftrightarrow -2 < c < -1.$