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What Is A Parametric Curve?

x

y

rP(x , y)

1. Let a point P on a curve have
Cartesian coordinates (x , y)

2. We can think of the curve as
being traced out as the point
P moves along it.

3. In this way we can think of
both x and y as functions of t.

4. x = f (t) and y = g(t) are
called parametric equations of
the curve; t is called a
parameter.
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Example 1

Figure: The circle x2 + y2 = 1

Let {
x = cos t
y = sin t

with 0 ≤ t ≤ 2π. These are
parametric equations of a cir-
cle:

x2 + y2 = cos2 t + sin2 t = 1.

In terms of t, the circle is being
traced out counter clockwise.
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Example 2

Figure: The curve y3 = x2

Let {
x = t3

y = t2

with t ∈ R. We can eliminate
the parameter:

t = x1/3 ⇒ y =
(
x1/3

)2
= x2/3.

We could also say

y3 = t6 = x2 ⇒ y3 = x2.

Observe: t = 1⇒ x = 1, y = 1; t = 2⇒ x = 8, y = 4; etc.
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Example 3

Let {
x = t2

y = t3 − 3t

with t ∈ R. For this example,
you could eliminate the param-
eter, but it would be messy.
For instance, you would have
to consider two cases:

t = ±
√

x .

Generally, parametric curves are most suitable for relations in
which no single function can easily describe the curve.
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Most General Form of a Curve

Parametric curves are the most general type of curve. The function
y = f (x) can be described parametrically by{

x = t
y = f (t)

, t a parameter

In essence, x is the parameter of a curve described by the function
y = f (x). All curves we shall look at later, polar curves and curves
in 3 dimensions, can be described parametrically.
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Derivatives of Parametric Curves

To do calculus with parametric curves we will need formulas for
derivatives in terms of the parameter. Suppose x and y are
functions of a parameter t. Then

dy

dt
=

dy

dx

dx

dt
⇒ dy

dx
=

dy

dt
dx

dt

As always, the derivative will be the slope of the curve at the
point (x , y); the difference is that everything will be calculated in
terms of the parameter t.
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Example 4; Example 2 Revisited

We have x = t3, y = t2; so

dy

dx
=

dy

dt
dx

dt

=
2t

3t2
=

2

3t
, t 6= 0.

This is the same answer you get if you eliminate the parameter:

t = x1/3 ⇒ y = x2/3 ⇒ dy

dx
=

2

3
x−1/3.
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Example 5; Example 3 Revisited

We have x = t2, y = t3 − 3t; so

dy

dx
=

dy

dt
dx

dt

=
3t2 − 3

2t
.

The critical points are at

t = ±1; t = 0.

The coordinates of the critical points are (0, 0), (1,±2).
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The Second Derivative in Parametric Form

d2y

dx2
=

d

dx

(
dy

dx

)
=

dy ′

dx
=

dy ′

dt
dx

dt

, with y ′ =
dy

dx
=

dy

dt
dx

dt

.

From Examples 4 and 2: x = t3, y = t2;
dy

dx
=

2

3t
. So

d2y

dx2
=

dy ′

dt
dx

dt

=

d

dt

(
2

3t

)
dt3

dt

=
− 2

3t2

3t2
= − 2

9t4
.

Or, since t = x1/3 and y = x2/3 :
dy

dx
=

2

3x1/3
⇒ d2y

dx2
= − 2

9x4/3
.
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Example 6; Examples 3 and 5 Revisited

In Examples 3 and 5 we had: x = t2, y = t3 − 3t, and

dy

dx
=

3t2 − 3

2t
=

3t

2
− 3

2t
.

Hence

d2y

dx2
=

d

dt

(
dy

dx

)
dx

dt

=

d

dt

(
3t

2
− 3

2t

)
dt2

dt

=

(
3

2
+

3

2t2

)
2t

=
3

4

t2 + 1

t3
.

Thus
d2y

dx2
> 0⇔ t > 0 and

d2y

dx2
< 0⇔ t < 0.

So (0, 0) is an inflection point. (Check the graph!)
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Example 7: The Cycloid

Consider the parametric curve with x = t − sin t; y = 1− cos t. We
shall do a typical analysis of the first two derivatives to figure out
how the graph of this curve, which is called a cycloid, looks:

dy

dx
=

sin t

1− cos t
and

d2y

dx2
=

cos t − cos2 t − sin2 t

(1− cos t)3
= − 1

(1− cos t)2
,

as you may check. Since the second derivative is non-positive, the
graph will always be concave down. There are two types of critical
points:

1. vertical tangents, when cos t = 1 : namely at
t = 0,±2π,±4π, . . . . So (x , y) = (2kπ, 0), k ∈ Z.

2. horizontal tangents, when sin t = 0 but cos t 6= 1; namely at
t = ±π,±3π, . . . . So (x , y) = ((2k + 1)π, 2), k ∈ Z.
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Graph of the Cycloid, for 0 ≤ t ≤ 4π

1. The graph is increasing if

dy

dx
> 0

⇔ sin t > 0

⇔ 0 < t < π, 2π < t < 3π

2. The graph is decreasing if

dy

dx
< 0

⇔ sin t < 0

⇔ π < t < 2π, 3π < t < 4π Figure: A cycloid.
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Integral Formulas in Parametric Form

Every integral formula that you are familiar with from Chapter 6:

1. area, eg. A =
∫ b
a y dx

2. volume, eg. V =
∫ b
a πy2 dx or V =

∫ b
a 2πx y dx

3. length, eg. L =
∫ b
a

√
1 +

(
dy
dx

)2
dx

4. surface area, eg. SA =
∫ b
a 2πx

√
1 +

(
dy
dx

)2
dx ;

can be applied to parametric curves by substituting for x and y in
terms of the parameter t, and then simplifying. In other words,
these problems are just fancy change of variable problems. But,
you must be careful in changing the limits of integration as you
make the substitutions. Your new integral will be in terms of t,
and so should the limits of integration.
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Example 8: Area of a Circle

Circle of radius a has parametric equations x = a cos t, y = a sin t.

A = 4

∫ a

0
y dx

= 4

∫ 0

π/2
a sin t · (−a sin t) dt

= 4a2

∫ π/2

0
sin2 t dt

= 4a2

∫ π/2

0

(
1− cos(2t)

2

)
dt

= 2a2

[
t − sin(2t)

2

]π/2

0

= πa2
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Example 9: Volume of a Sphere

Rotate the quarter circle around the x-axis, and multiply by two.

V = 2

∫ a

0
πy2 dx

= 2π

∫ 0

π/2
a2 sin2 t · (−a sin t) dt

= 2πa3

∫ 0

π/2
(1− cos2 t)(− sin t) dt

= 2πa3

∫ 1

0
(1− u2) du, with u = cos t

= 2πa3

[
u − 1

3
u3

]1

0

=
4

3
πa3
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Example 10: Area of the Ellipse x2

a2 + y2

b2 = 1

Parametric equations of an ellipse: x = a cos t, y = b sin t.

A = 4

∫ a

0
y dx

= 4

∫ 0

π/2
b sin t · (−a sin t) dt

= 4ab

∫ π/2

0
sin2 t dt

= 4ab

∫ π/2

0

(
1− cos(2t)

2

)
dt

= 2ab

[
t − sin(2t)

2

]π/2

0

= πab
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Example 11: Volume of a Torus

A torus is obtained by rotating a circle, x = b + a cos t, y = a sin t,
for a < b, around the y -axis.

V = 2

∫ b+a

b−a
2πx y dx

= 4π

∫ 0

π
(b + a cos t) · a sin t (−a sin t) dt

= 4πa2

∫ π

0
(b sin2 t + a cos t sin2 t) dt

= 4πa2b

∫ π

0

(
1− cos(2t)

2

)
dt + 0

= 2πa2b

[
t − sin(2t)

2

]π

0

= 2π2a2b
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Example 12

Find the area within the loop of the curve x = t2, y = t3 − 3t.

A = 2

∫ 3

0
y dx , if y > 0

= 2

∫ −
√

3

0
(t3 − 3t) 2t dt

= 2

∫ 0

−
√

3
(6t2 − 2t4) dt

= 2

[
2t3 − 2

5
t5

]0

−
√

3

=
24

5

√
3
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What Are Polar Coordinates?

x

y

r
O

rP(x , y)

�
�

�r

θ

1. Let the point P have
Cartesian coordinates (x , y)

2. Let r be the length of OP.

3. Let θ be the angle the line OP
makes with the positive x-axis.

4. Then r and θ are called the
polar coordinates of P.

We have
x = r cos θ and y = r sin θ.

Equivalently,

r =
√

x2 + y2 and tan θ =
y

x
.

The value of θ depends on which quadrant (x , y) is in.
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Example 1

Find the polar coordinates of the following points. Warning: polar
coordinates are not unique because θ is not unique.

(x , y) (r , θ) with angles chosen from [−2π, 2π]

(2, 0) r = 2, θ = 0 or θ = 2π

(1, 1) r =
√

2, θ = π/4
(0, 1) r = 1, θ = π/2

(0,−3) r = 3, θ = −π/2 or θ = 3π/2
(−2, 0) r = 2, θ = π or θ = −π

(−1,−
√

3) r = 2, θ = 4π/3 or θ = −2π/3
(3,−4) r =

√
9 + 16 = 5, θ = tan−1

(
−4

3

)
' −0.927 radians

(0, 0) r = 0, θ can be anything.
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Negative Values of r

According to the definition of polar coordinates, r should be
positive. However, we can extend the definition to include negative
values of r . Suppose r < 0.

x

y

r
r

P(−x ,−y)

rQ(x , y)

�
�

�−r

θO

1. Let Q have coordinates (x , y)
and polar coordinates (−r , θ).

2. Then the point P with polar
coordinates (r , θ) is defined to be
the point with polar coordinates
(−r , θ ± π).

3. That is,
−→
OP = −

−→
OQ.
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Example 2

The point with polar coordinates

(r , θ) =
(
−3,

π

2

)
is the same as the point with polar
coordinates(

3,
π

2
− π

)
=
(
3,−π

2

)
.

Its Cartesian coordinates are

(x , y) = (0,−3).

x

y
(0, 3)

r

b

(0,−3)

π/2

−π/2
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Polar Curves

If r = f (θ), the polar curve of f is the set of all points whose polar
coordinates (r , θ) satisfy the equation

r = f (θ).

There is a difference between the graph of r = f (θ) and the polar
curve of the equation r = f (θ). The former is the set of points
(x , y) such that

x = θ and y = f (θ).

These graphs are nothing new; exactly like all the previous
examples you’ve done in Chapters 3 and 4. The polar curve is
something new. On the polar curve, the coordinates are
(x , y) = (f (θ) cos θ, f (θ) sin θ).
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Example 3: r = 1

Figure: Graph of r = 1 Figure: Polar curve: r = 1
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Example 4: r = 2 sin θ

Figure: Graph of r = 2 sin θ Figure: Polar curve: r = 2 sin θ
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Example 4, Continued

You can convince yourself that the polar curve is a circle by
changing the polar equation into a Cartesian equation:

r = 2 sin θ ⇒ r2 = 2r sin θ

⇒ x2 + y2 = 2y

⇒ x2 + y2 − 2y = 0

⇒ x2 + y2 − 2y + 1 = 1

⇒ x2 + (y − 1)2 = 1

This last equation is the equation of a circle with centre (0, 1) and
radius 1. Warning: it won’t always be this easy to switch from the
equation of a polar curve to its Cartesian equation! In fact, we will
rarely do it.
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Exampl 5: r = 1 + cos θ

Figure: Graph of the function
r = 1 + cos θ

Figure: Cardioid with polar
equation: r = 1 + cos θ
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Example 6: r = 2 + cos θ

Figure: Graph of the function
r = 2 + cos θ

Figure: Curve with polar
equation: r = 2 + cos θ
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Example 7: r = 1− 2 cos θ

Figure: Graph of the function
r = 1− 2 cos θ

Figure: Limaçon with polar
equation: r = 1− 2 cos θ
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Example 7, Continued

The limaçon has an interesting feature: a loop within a loop. For
which angles does the curve of r = 1− 2 cos θ trace out the outer
loop? the inner loop? The two loops have only one point in
common, the origin (0, 0), at which r = 0. The boundary angles of
the loops are found by solving

r = 0⇔ cos θ =
1

2
⇒ θ =

π

3
or

5π

3
.

The outer loop, when r > 0, is traced for

π

3
< θ <

5π

3
.

For −π

3
< θ <

π

3
, r < 0 and the curve traces out the inner loop.
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Example 8: r = 2 sin(2θ)

Figure: Graph of the function
r = 2 sin(2θ)

Figure: Four leaved rose with
polar equation: r = 2 sin(2θ)
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Example 9: r = 2 sin(3θ)

Figure: Graph of the function
r = 2 sin(3θ)

Figure: Three leaved rose with
polar equation: r = 2 sin(3θ)
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Example 10: r = sin θ + cos θ

Figure: Graph of the function
r = sin θ + cos θ

Figure: Circle with polar
equation: r = sin θ + cos θ
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Example 10, Continued

We can confirm that the polar curve of r = sin θ + cos θ is a circle,
by finding its Cartesian equation.

r = sin θ + cos θ ⇒ r2 = r sin θ + r cos θ

⇒ x2 + y2 = y + x

⇒ x2 − x +
1

4
+ y2 − y +

1

4
=

1

4
+

1

4

⇒
(

x − 1

2

)2

+

(
y − 1

2

)2

=
1

2

So the circle has centre (
1

2
,
1

2

)
and radius 1/

√
2.
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Example 11: r = θ/25

Figure: Graph of the function
r = θ/25, θ ≥ 0

Figure: Archimedean spiral with
polar equation: r = θ/25, θ ≥ 0
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Example 12: r = eθ/25

Figure: Graph of the function
r = eθ/25

Figure: Logarithmic spiral with
polar equation: r = eθ/25
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Derivatives for Polar Curves

Since the parametric equations for a polar curve are

x = r cos θ, y = r sin θ,

the first derivative of a polar curve is

dy

dx
=

dy

dθ
dx

dθ

=
sin θ

dr

dθ
+ r cos θ

cos θ
dr

dθ
− r sin θ

.

The formula for the second derivative is so messy we won’t even
try to write it down!
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Example 1

Find the slope of the tangent line to the circle with polar equation
r = 4 cos θ at the point with θ = π/6.

dy

dx
=

sin θ
dr

dθ
+ r cos θ

cos θ
dr

dθ
− r sin θ

=
−4 sin2 θ + 4 cos2 θ

−4 cos θ sin θ − 4 cos θ sin θ

=
sin2 θ − cos2 θ

2 sin θ cos θ
= − cot(2θ)

So at θ = π/6 the slope is − cot(π/3) = −1/
√

3.
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Example 2: Tangent Lines to Polar Curves at the Origin

If r = 0 for θ = α, and dr/dθ 6= 0 at
θ = α, then

dy

dx

∣∣∣∣
θ=α

=

sin α
dr

dθ

∣∣∣∣
θ=α

+ 0

cos α
dr

dθ

∣∣∣∣
θ=α

− 0

= tanα.

That is, the line θ = α is tangent to the
curve at the origin.

The figure to the right illustrates the example r = sin 3θ for which
the tangent lines at the origin have equations θ = 0, π/3 or 2π/3.
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Example 3: Critical Points of a Cardioid

Looking at the graph of the cardioid r = 1 + cos θ, we expect to
find six critical points: namely where the graph has its three
vertical tangents and its three horizontal tangents.

The parametric equations of the
cardioid are

x = r cos θ; y = r sin θ

so {
x = (1 + cos θ) cos θ
y = (1 + cos θ) sin θ
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Horizontal Tangents to the Cardioid r = 1 + cos θ

dy

dθ
= 0 ⇔ d

dθ
((1 + cos θ) sin θ) = 0

⇔ − sin2 θ + cos θ + cos2 θ = 0

⇔ cos2 θ + cos θ − (1− cos2 θ) = 0

⇔ 2 cos2 θ + cos θ − 1 = 0

⇔ (2 cos θ − 1)(cos θ + 1) = 0

⇔ cos θ =
1

2
or cos θ = −1

Find the critical points: cos θ = −1⇒ r = 0⇒ (x , y) = (0, 0).

cos θ =
1

2
⇒ r =

3

2
and sin θ = ±

√
3

2
⇒ (x , y) =

(
3

4
,±3

√
3

4

)
.
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Vertical Tangents to the Cardioid r = 1 + cos θ

dx

dθ
= 0 ⇔ d

dθ
((1 + cos θ) cos θ) = 0

⇔ − sin θ cos θ − sin θ − sin θ cos θ = 0

⇔ sin θ(1 + 2 cos θ) = 0

⇔ cos θ = −1

2
or sin θ = 0

Find the critical points:

cos θ = −1

2
⇒ r =

1

2
and sin θ = ±

√
3

2
⇒ (x , y) =

(
−1

4
,±
√

3

4

)
.

sin θ = 0⇒ cos θ = ±1⇒ r = 0 or 2. Take (x , y) = (2, 0).

Chapter 11 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 11: Parametric and Polar Curves
11.1 Parametric Equations
11.2 Polar Coordinates
11.3 Calculus in Polar Coordinates

Example 4: Logarithmic Spiral r = eθ/25 Revisited

Note: for the following, the algebra is easier if r = eθ, but then the
curve spirals out so quickly that it is hard to get a suitable graph.

The parametric equations of this
spiral are

x = eθ/25 cos θ, y = eθ/25 sin θ;

dy

dx
=

1/25eθ/25 sin θ + eθ/25 cos θ

1/25eθ/25 cos θ − eθ/25 sin θ

=
sin θ + 25 cos θ

cos θ − 25 sin θ
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dy

dx
= m ⇔ sin θ + 25 cos θ

cos θ − 25 sin θ
= m

⇔ sin θ + 25 cos θ = m(cos θ − 25 sin θ)

⇔ (1 + 25m) sin θ = (m − 25) cos θ

⇔ tan θ =
m − 25

1 + 25m

1. m = 0⇒ tan θ = −25. This means that all the points on the
spiral with slope zero lineup along the line y = −25x .

2. m = ±∞⇒ tan θ = 1
25 . This means that all the points on the

spiral with undefined slope lineup along the line y = x/25.

3. m = 1⇒ tan θ = −12
13 . This means that all the points on the

spiral with slope 1 lineup along the line y = −12
13x .

4. m = −1⇒ tan θ = 13
12 . This means that all the points on the

spiral with slope -1 lineup along the line y = 13
12x .
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Area within a Polar Curve

x

y

�
�
�
�
�
�
�
�
�
��

θ = β

θ = α

r = f (θ)

����������

The area within the polar curve with
equation r = f (θ), between the rays
θ = α and θ = β, is given by

A =
1

2

∫ β

α
r2 dθ.

Proof: see the book. It’s not hard:
use partitions of the interval [α, β]
and Riemann sums to approximate
the area.

You need to know that the area of a circle sector is given by
1

2
r2θ.
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Example 5: Area In A Cardioid

Figure: Cardioid with polar
equation: r = 1 + cos θ

By symmetry, we can double the area
of the top half. So A

= 2

(
1

2

∫ π

0
r2 dθ

)
=

∫ π

0
(1 + cos θ)2 dθ

=

∫ π

0
(1 + 2 cos θ + cos2 θ) dθ

=

∫ π

0

(
3

2
+ 2 cos θ +

1

2
cos(2θ)

)
dθ

=

[
3

2
θ + 2 sin θ +

sin(2θ)

4

]π

0

=
3π

2
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Example 6

Fiind the area of one petal of the three-leaved rose r = 2 sin(3θ).

Figure: r = 2 sin(3θ)

r = 0 ⇒ 3θ = 0 or π

⇒ θ = 0 or
π

3
.

A =
1

2

∫ π/3

0
4 sin2(3θ) dθ

=

∫ π/3

0
(1− cos(6θ)) dθ

=

[
θ − 1

6
sin(6θ)

]π/3

0

=
π

3
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Example 7

Find the area inside the circle with polar equation r = sin θ + cos θ.

Figure: r = sin θ + cos θ

r = 0 ⇒ sin θ + cos θ = 0

⇒ tan θ = −1

⇒ θ = −π

4
or

3π

4

⇒ A =
1

2

∫ 3π/4

−π/4
(sin θ + cos θ)2 dθ

=
1

2

∫ 3π/4

−π/4
(1 + 2 sin θ cos θ) dθ

=
1

2

[
θ + sin2 θ

]3π/4

−π/4
=

π

2
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Example 8

Figure: r = 1− 2 cos θ

Find the area within each of
the inner and outer loops of the
limaçon: Recall, that the outer
loop, r > 0, is traced out for

θ ∈ [π/3, 5π/3],

and that inner loop, r < 0, is
traced out for

θ ∈ [−π/3, π/3].

Let Ai be the area of the inner
loop; let Ao be the area of the
outer loop.
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Example 8, Continued

A0 = 2

(
1

2

∫ π

π/3
(1− 2 cos θ)2 dθ

)
=

∫ π

π/3
(1− 4 cos θ + 4 cos2 θ) dθ

=

∫ π

π/3
(3− 4 cos θ + 2 cos(2θ)) dθ = [3θ − 4 sin θ + sin(2θ)]ππ/3

= 3π − 3(π/3) + 4 sin(π/3)− sin(2π/3) = 2π +
3

2

√
3

Ai = 2

(
1

2

∫ π/3

0
(1− 2 cos θ)2 dθ

)
= [3θ − 4 sin θ + sin(2θ)]

π/3
0

= 3(π/3)− 4 sin(π/3) + sin(2π/3) = π − 3

2

√
3
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Area Between Curves

x

y

�
�
�
�
�
�
�
�
�
��

θ = β

θ = α

r1

r2

����������

If the two polar curves r1 and r2 in-
tersect at θ = α and θ = β, then the
area between the curves is given by

A =
1

2

∫ β

α

(
r2
1 − r2

2

)
dθ.

This is simply the area within r1 mi-
nus the area within r2.

Chapter 11 Lecture Notes MAT187H1F Lec0101 Burbulla

Chapter 11: Parametric and Polar Curves
11.1 Parametric Equations
11.2 Polar Coordinates
11.3 Calculus in Polar Coordinates

Example 9

Find the area inside the limaçon r = 1 + 2 cos θ but outside the
circle r = 2. Have: 1 + 2 cos θ = 2⇒ cos θ = 1/2⇒ θ = ±π/3.

A = 2

(
1

2

∫ π/3

0

(
(1 + 2 cos θ)2 − 22

)
dθ

)

=

∫ π/3

0

(
−3 + 4 cos θ + 4 cos2 θ

)
dθ

=

∫ π/3

0
(−1 + 4 cos θ + 2 cos(2θ)) dθ

= [−θ + 4 sin θ + sin(2θ)]
π/3
0

= −π/3 + 4 sin(π/3) + sin(2π/3)

= 5
√

3/2− π/3
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Example 10: A Very Tricky Example

Find the area inside the circle r = 2
√

3 cos θ and inside the circle
r = 2 sin θ. Have: 2

√
3 cos θ = 2 sin θ ⇒ tan θ =

√
3⇒ θ = π/3.

There is another intersection point, at
the origin. However, the two circles
pass through the origin for different
values of θ. For the circle r = 2 sin θ,
r = 0 if θ = 0. But for the circle
r = 2

√
3 cos θ, r = 0 if θ = π/2. This

means that it will require two separate
integrals to find the total area of the
region common to these two circles.
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Example 10, Continued

Let A1 be the area inside r = 2 sin θ for θ ∈ [0, π/3]; let A2 be the
area inside r = 2

√
3 cos θ for θ ∈ [π/3, π/2]. A = A1 + A2.

A1 =
1

2

∫ π/3

0
4 sin2 θ dθ =

∫ π/3

0
(1− cos(2θ)) dθ

=

[
θ − sin(2θ)

2

]π/3

0

=
π

3
−
√

3

4

A2 =
1

2

∫ π/2

π/3
12 cos2 θ dθ = 3

∫ π/2

π/3
(1 + cos(2θ)) dθ

= 3

[
θ +

sin(2θ)

2

]π/2

π/3

=
π

2
− 3

4

√
3
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Example 11

Consider the two cardioids r = 1± sin θ.

1 + sin θ = 1− sin θ ⇒ 2 sin θ = 0

⇒ θ = 0 or π

The third intersection point is the ori-
gin: r = 1 + sin θ = 0 if θ = −π/2;
r = 1 − sin θ = 0 if θ = π/2. So
again, finding areas of regions deter-
mined by these two cardioids can be
quite tricky.
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Example 11, Continued

The area inside r = 1 + sin θ but outside r = 1− sin θ is given by

1

2

∫ π

0

(
(1 + sin θ)2 − (1− sin θ)2

)
dθ =

1

2

∫ π

0
4 sin θ dθ

= [−2 cos θ]π0 = 4

The area of the region common to both cardioids is given by

4

(
1

2

∫ π/2

0
(1− sin θ)2 dθ

)
= 2

∫ π/2

0
(1− 2 sin θ + sin2 θ) dθ

=

∫ π/2

0
(3− 4 sin θ − cos(2θ)) dθ =

[
3θ + 4 cos θ − 1

2
sin(2θ)

]π/2

0

=
3π

2
− 4

Chapter 11 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 11: Parametric and Polar Curves
11.1 Parametric Equations
11.2 Polar Coordinates
11.3 Calculus in Polar Coordinates

Example 12: The Problem of Intersection Points

Consider the polar curves r = 1 + sin θ and r2 = 4 sin θ. The polar
curve r2 = 4 sin θ comes in two parts: r = ±2

√
sin θ, for θ ∈ [0, π].

From the graphs we expect four in-
tersection points. Substituting for r
from one equation into the other:

(1 + sin θ)2 = 4 sin θ

⇒ 1 + 2 sin θ + sin2 θ = 4 sin θ

⇒ 1− 2 sin θ + sin2 θ = 0

⇒ (1− sin θ)2 = 0

⇒ sin θ = 1

⇒ θ = π/2, at (x , y) = (0, 2).
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Example 12: What are the other three intersection points?

(0, 0) is one obvious other intersection point. For r = 1 + sin θ,
r = 0 if θ = 3π/2; for r2 = 4 sin θ, r = 0 if θ = 0 or π. But how to
get the other two intersection points? Recall that the point with
polar coordinates (r , θ) is the same as the point with polar
coordinates (−r , θ ± π). Rewrite the polar equation r2 = 4 sin θ as

(−r)2 = 4 sin(θ ± π)⇔ r2 = 4(− sin θ) = −4 sin θ,

for −π ≤ θ ≤ 0. Now substitute r = 1 + sin θ :

(1 + sin θ)2 = −4 sin θ ⇒ 1 + 2 sin θ + sin2 θ = −4 sin θ

⇒ sin2 θ + 6 sin θ + 1 = 0

⇒ sin θ = −3± 2
√

2⇒ sin θ = −3 + 2
√

2

⇒ θ ' −9.879 or − 170.121 in degrees.
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Example 12, Concluded

If sin θ = −3 + 2
√

2, then

cos θ = ±
√

1− (−3 + 2
√

2)2 = ±2

√
3
√

2− 4,

and r = 1 + (−3 + 2
√

2) = −2 + 2
√

2. The Cartesian coordinates
of the remaining two intersection points are:

(x , y) = (r cos θ, r sin θ)

=

(
±4(

√
2− 1)

√
3
√

2− 4, 14− 10
√

2

)
' (±0.8161427336,−0.14213562)
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Example 13: Let r = eθ/25, for 8π ≤ θ ≤ 12π.

What is the area within this spiral chamber? For θ ∈ [0, 2π], let
ro = e(10π+θ)/25, ri = e(8π+θ)/25. Then ro = ari , for a = e2π/25,
and r2

o − r2
i = a2r2

i − r2
i = (a2 − 1)r2

i = (a2 − 1) a8 e2θ/25. So

A =
a2 − 1

2

∫ 2π

0
a8 e2θ/25 dθ

=
(a2 − 1) a8

2

25

2

[
e2θ/25

]2π

0

=
(a2 − 1) a8

2

25

2

(
e4π/25 − 1

)
=

(a2 − 1) a8

2

25

2
(a2 − 1) ' 19.9
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