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Vector Operations in R3: the Dot and Cross Products

There are two important operations on vectors in R3: the dot
product and the cross product. Note that in Briggs, vectors are
written as row vectors. For

u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉

we define
u · v = u1v1 + u2v2 + u3v3

and
u× v = 〈u2v3 − v2u3, u3v1 − v3u1, u1v2 − v1u2〉.

The length of a vector, in Briggs, is represented by absolute value
signs:

|u| =
√

u2
1 + u2

2 + u2
3 .
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Geometric Properties of u · v and u× v
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Let θ ∈ [0, π] be the
angle between the
two vectors u, v.

1. |u|2 = u · u and |u| = 0 ⇔ u = 0.

2. u · v = v · u but u× v = −v × u.

3. u · v = |u||v| cos θ.

4. |u× v| = |u||v| sin θ.

5. u ⊥ v ⇔ u · v = 0.

6. u× v ⊥ u and u× v ⊥ v.

7. The area of the parallelogram
spanned by the non-parallel vectors
u and v is

A = |u× v|.
Chapter 12 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 12: Vector-Valued Functions

12.3 and 12.4 Review: Vectors in R3

12.5 Introduction to Vector-Valued Functions
12.6 Calculus of Vector-Valued Functions
12.7 Motion Along a Curve
12.8 Length of Curves
12.9 Curvature and Normal Vectors

Lines and Planes in R3.

1. If d 6= 0, x = t d is the vector equation of a line parallel to the
direction vector d and passing through the origin.

2. If d 6= 0, x = x0 + t d is the vector equation of a line parallel
to the direction vector d and passing through the point x0.

3. If u, v are independent vectors then x = s u + t v is the vector
equation of the plane parallel to both direction vectors u, v
and passing through the origin.

4. If u, v are independent vectors then x = x0 + s u + t v is the
vector equation of the plane parallel to both direction vectors
u, v and passing through the point x0. If n = u× v, then the
point-normal equation of this plane is n · (x− x0) = 0.
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Example 1

Find the point-normal equation of the plane with vector equation

〈x , y , z〉 = 〈1,−2, 0〉+ s〈1, 0,−2〉+ t〈0, 2, 1〉.

Solution: the normal vector n to the plane is

n = 〈1, 0,−2〉 × 〈0, 2, 1〉 = 〈4,−1, 2〉.

So the equation of the plane is

〈4,−1, 2〉 · 〈x − 1, y + 2, z〉 = 0 ⇔ 4x − y + 2z = 6.
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Curves in Space

If x , y and z are all functions of t, then r(t) = 〈x , y , z〉 is called a
vector-valued function and the graph of r(t) will be a curve in
3-dimensional space. Here are two examples:

Example 2:

r(t) = 〈cos(t), sin(t), t〉

describes a helix. The parametric
equations of the helix are

x = cos t, y = sin t, z = t.

Chapter 12 Lecture Notes MAT187H1F Lec0101 Burbulla

Chapter 12: Vector-Valued Functions

12.3 and 12.4 Review: Vectors in R3

12.5 Introduction to Vector-Valued Functions
12.6 Calculus of Vector-Valued Functions
12.7 Motion Along a Curve
12.8 Length of Curves
12.9 Curvature and Normal Vectors

Example 3: a Knot

r(t) = 〈(2 + cos(3t/2)) cos(t), (2 + cos(3t/2)) sin(t), sin(3t/2)〉
is the vector equation of a knot. Its parametric equations are

x = (2 + cos(3t/2)) cos(t),

y = (2 + cos(3t/2)) sin(t),

z = sin(3t/2).
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Different Descriptions of Curves in Space

Let
i =< 1, 0, 0 >, j =< 0, 1, 0 >, k =< 0, 0, 1 >

be the standard basis of unit vectors in R3. If x , y and z are
functions of t, then

r(t) = x i + y j + z k =< x , y , z >

is called a vector-valued function, or the position vector of a
parametric curve in space. If z = 0, then

r(t) = x i + y j =< x , y >

is the position vector of a parametric curve in the plane. With
vectors we can include both cases in the same formula.
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Orientation of Curves

A curve in space described by

r(t) = x i + y j + z k =< x , y , z >

for a ≤ t ≤ b is more than just a set of points; the curve also
includes an orientation. The positive or forward direction along the
curve is the direction in which the curve is generated as the
parameter increases from t = a to t = b. The opposite orientation
is called the negative or backward direction. The same definitions
apply to curves in two dimensions. So for example, the positive
direction along the circle

r(t) =< cos t, sin t >, for 0 ≤ t ≤ 2π

is counterclockwise.
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Limits and Continuity for Vector-Valued Functions

The limit of a vector-valued function is defined componentwise:

lim
t→t0

r(t) =

(
lim
t→t0

)
x i +

(
lim
t→t0

y

)
j +

(
lim
t→t0

z

)
k.

Thus calculating the limit of a vector-valued functions is “three
limits in one.” And, as you may expect, the vector valued function
is continuous at t = t0 if

lim
t→t0

r(t) = r(t0).

This means that the vector-valued function r(t) is continuous at
t = t0 if and only if its component functions, x , y and z , are all
continuous at t = t0.
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Example 4

Let

r(t) =
sin(2t)

t
i +

t + 1

t2 − 1
j + ln |t + 2| k.

Find all the discontinuities of r. Which are removable?

Solution: the discontinuities of r are at t = 0, t = ±1 and
t = −2. The discontinuities at t = 1 and t = −2 are not
removable, but the ones at t = 0 and t = −1 are. Why? To make
r continuous at these two points define

r(0) = 2 i− j + ln 2 k and r(−1) = sin 2 i− 1

2
j.
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Derivatives and Integrals of Vector Valued Functions

Suppose
r(t) = x i + y j + z k

is a vector-valued function. Just as with limits, we define
derivatives and integrals of r(t) componentwise:

1.
dr(t)

dt
=

dx

dt
i +

dy

dt
j +

dz

dt
k

2. ∫
r(t) dt =

∫
x dt i +

∫
y dt j +

∫
z dt k
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Example 1

Let
r(t) = et i +

√
t j + ln t k.

Then

dr(t)

dt
=

det

dt
i +

d
√

t

dt
j +

d ln t

dt
k = et i +

1

2
√

t
j +

1

t
k.

Similarly,∫
r(t) dt =

∫
et dt i +

∫ √
t dt j +

∫
ln t dt k

= et i +
2

3
t3/2 j + (t ln t − t) k + C.
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Linearity of Differentiation and Integration

Let r and s be two vector-valued functions of t; let k be a scalar.

1.
d(r ± s)

dt
=

dr

dt
± ds

dt

2.
d(kr)

dt
= k

dr

dt

3. ∫
(r ± s) dt =

∫
r dt ±

∫
s dt

4. ∫
(kr) dt = k

∫
r dt
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Three Product Rules

Let r and s be two vector-valued functions of t in R3; let f (t) be a
scalar-valued function. There are three possible products with
three corresponding product rules:

1.
d(f (t) r)

dt
= f (t)

dr

dt
+ r

df (t)

dt

2.
d(r · s)

dt
= s · dr

dt
+ r · ds

dt

3.
d(r × s)

dt
=

dr

dt
× s + r × ds

dt

Note: rules 1. and 2. apply as well if r and s are vectors in R2.
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Tangent Vectors; Unit Tangent Vectors

Let r be a position vector. Then

dr

dt
= r′(t)

is a tangent vector to the curve,
as illustrated by a geometric inter-
pretation of the vector calculation

dr

dt
= lim

h→0

r(t + h)− r(t)

h
.

The vector T (t) =
r′(t)

|r′(t)|
is called the unit tangent vector.
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Example 2

If r is the position vector of a circle with radius a in the plane, then
r · r = a2. Consequently:

d(r · r)
dt

= 0

⇒ 2r · dr

dt
= 0

⇒ r ⊥ dr

dt

That is: the tangent vector is always perpendicular to the position
vector. Note: we didn’t even use the components of r.
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Example 3

For t > 0 let
r(t) = t2 i + 4t j + 4 ln t k.

Find the unit tangent vector to r at t.

Solution:

r′(t) =
dt2

dt
i +

d(4t)

dt
j +

d(4 ln t)

dt
k

= 2t i + 4 j +
4

t
k;

|r′(t)| =

√
(2t)2 + 42 +

(
4

t

)2
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=

√
4t2 + 16 +

16

t2

= 2

√
t2 + 4 +

4

t2

= 2

√(
t +

2

t

)2

= 2

(
t +

2

t

)
, since t > 0.

Thus the unit tangent vector at t is

T (t) =
r′(t)

|r′(t)|
=

t i + 2 j + 2
t k

t + 2/t
=

t2 i + 2t j + 2 k

t2 + 2
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Motion in Space

If r is the position vector of a particle at time t, then

1. the velocity of the particle at time t is

v =
dr

dt
=

dx

dt
i +

dy

dt
j +

dz

dt
k.

2. the speed of the particle at time t is

|v| =

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

.

3. the acceleration of the particle at time t is

a =
dv

dt
=

d2r

dt2
=

d2x

dt2
i +

d2y

dt2
j +

d2z

dt2
k.
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Example 1

Find the velocity and position of a particle at time t if

a = 2 i + 6t k; v0 = i− j; r0 = j− k.

Solution: v =
∫

a dt = 2t i + 3t2 k + C. Use initial velocity at
t = 0 to find that C = i− j. Then

r =

∫
v dt =

∫ (
(2t + 1) i− j + 3t2 k

)
dt

= (t2 + t) i− t j + t3 k + D

Use the initial position at t = 0 to find that D = j− k. Thus

r = (t2 + t) i + (1− t) j + (t3 − 1) k.
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Motion Due to Gravity, Without Air Resistance

x

y

�
�7r rP(x , y)v0

α

O
r�����r0

1. Let a = −g j, where g is the
acceleration due to gravity.

2. Let the initial position be
r0 = x0 i + y0 j.

3. Let the initial velocity be

v0 = v0 cos α i + v0 sin α j.

4. Then v = −gt j + v0 and

−→
OP = r = −1

2
gt2 j + v0 t + r0.

Parametrically: x = (v0 cos α)t + x0; y = −1
2gt2 + (v0 sin α)t + y0.
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Example 2: x = (v0 cos α)t; y = −1
2gt2 + (v0 sin α)t

Find the angle, α, at which a cannon must be aimed to hit a target
3 km down range, if the cannon’s muzzle speed is 200 m/sec.

x = 3000

y

�
�7 rv0

α

x0 = 0, y0 = 0, v0 = 200

y = 0 ⇒ t = 0 or t =
2v0 sin α

g

x = 3000 ⇒ 3000 =
2v2

0 cos α sin α

g

⇒ sin(2α) =
3000g

v2
0

= 0.735

⇒ 2α ' 47.3◦ or 132.7◦

⇒ α ' 23.65◦ or 66.35◦
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Example 3: Units in Feet

A ball is thrown into the air with initial velocity v0 = 80 j + 80 k.
Due to the spin of the ball, its acceleration is a = 2 i− 32 k.
Determine where and with what speed the ball lands.

x���
���

���
���

y

z

r r

Take

g = 32 ft/sec2.

Ground level is taken to be

z = 0.

Distances are measured in feet.
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Solution to Example 3

We have r0 = 0 i + 0 j + 0 k and v0 = 80 j + 80 k. Then

v =

∫
a dt =

∫
(2 i− 32 k) dt

= 2t i− 32t k + v0

= 2t i + 80 j + (80− 32t) k

and

r =

∫
v dt =

∫
(2t i + 80 j + (80− 32t) k) dt

= t2 i + 80t j + (80t − 16t2) k.

z = 0 ⇒ 80t − 16t2 = 0 ⇒ t = 0 or t = 5. At t = 5 : x = 25,
y = 400, and v = 10 i + 80 j− 80 k. So speed is |v| ' 113.6.
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Length of a Parametric Curve in R2; Alternate Derivation

If r(t) = 〈x(t), y(t)〉 for α < β, the length of the curve is given by

L =

∫ β

α

√
(x ′(t))2 + (y ′(t))2 dt.

Proof: from Section 6.5,

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx .

ds =

√
1 +

(
dy

dx

)2

dx =

√
1 +

(
y ′(t)

x ′(t)

)2

dx =

√
(x ′(t))2 + (y ′(t))2

(x ′(t))2
dx

=

√
(x ′(t))2 + (y ′(t))2

(x ′(t))2
x ′(t) dt =

√
(x ′(t))2 + (y ′(t))2 · x ′(t)

|x ′(t)|
dt
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x

y

r r
r r

a b

t = α
t = β

x ′(t) > 0

x is going from left to right, and

ds =
√

(x ′(t))2 + (y ′(t))2 dt,

L =

∫ β

α

√
(x ′(t))2 + (y ′(t))2 dt.

x

y

r r
r r

a b

t = α
t = β

x ′(t) < 0

x is going from right to left, and

ds = −
√

(x ′(t))2 + (y ′(t))2 dt,

L = −
∫ α

β

√
(x ′(t))2 + (y ′(t))2 dt.

These are both the same, since
∫ β
α f (t) dt = −

∫ α
β f (t) dt.
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Example 1: Circumference of Circle x = a cos t, y = a sin t

dx

dt
= −a sin t,

dy

dt
= a cos t

⇒ ds =
√

(−a sin t)2 + (a cos t)2 dt

C =

∫ 2π

0

√
a2 sin2 t + a2 cos2 t dt

=

∫ 2π

0
a dt, if a > 0

= 2πa
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Example 2: Length of One Arch of a Cylcoid

x = a(t − sin t), y = a(1− cos t), for 0 ≤ t ≤ 2π.

ds =

√
a2(1− cos t)2 + a2 sin2 t dt

= a
√

2− 2 cos t dt

= a

√
4 sin2(t/2) dt

= 2a sin(t/2) dt

So

L =

∫ 2π

0
2a sin(t/2) dt

= 4a [− cos(t/2)]2π
0 = 8a
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Length of a Curve in R3

So if a parametric curve in R2 has position vector

r(t) = x(t) i + y(t) j,

then its length, for α < t < β, is given by

L =

∫ β

α

√
(x ′(t))2 + (y ′(t))2 dt.

This formula can easily be extended to a parametric curve in R3 :

L =

∫ β

α

√
(x ′(t))2 + (y ′(t))2 + (z ′(t))2 dt.
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Vector Interpretation of the Length Formula

The tangent vector to the curve with position vector r is given by

dr

dt
=

dx

dt
i +

dy

dt
j +

dz

dt
k,

and its length is given by∣∣∣∣dr

dt

∣∣∣∣ =
√(

dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

.

Thus

L =

∫ β

α

∣∣∣∣dr

dt

∣∣∣∣ dt.

Chapter 12 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 12: Vector-Valued Functions

12.3 and 12.4 Review: Vectors in R3

12.5 Introduction to Vector-Valued Functions
12.6 Calculus of Vector-Valued Functions
12.7 Motion Along a Curve
12.8 Length of Curves
12.9 Curvature and Normal Vectors

Example 3

Find the length of the helix

x = cos(t), y = sin(t), z = t

for 0 ≤ t ≤ 2π. Solution:

L =

∫ 2π

0

√
(x ′(t))2 + (y ′(t))2 + (z ′(t))2 dt

=

∫ 2π

0

√
(− sin t)2 + (cos t)2 + 12 dt

=

∫ 2π

0

√
2 dt

= 2π
√

2
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Example 4

Find the length of the curve with parametric equations

x = 2et , y = e−t , z = 2t, for 0 ≤ t ≤ 1.

Solution:

L =

∫ 1

0

√
(x ′(t))2 + (y ′(t))2 + (z ′(t))2 dt

=

∫ 1

0

√
(2et)2 + (−e−t)2 + 22 dt

=

∫ 1

0

√
4e2t + e−2t + 4 dt =

∫ 1

0

√
(2et + e−t)2 dt

=

∫ 1

0

(
2et + e−t

)
dt =

[
2et − e−t

]1
0

= 2e − e−1 − 1

Chapter 12 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 12: Vector-Valued Functions

12.3 and 12.4 Review: Vectors in R3

12.5 Introduction to Vector-Valued Functions
12.6 Calculus of Vector-Valued Functions
12.7 Motion Along a Curve
12.8 Length of Curves
12.9 Curvature and Normal Vectors

Displacement and Distance Travelled

Suppose the position of a particle at time t for a ≤ t ≤ b is given
by the position vector r. Then:

1.
∫ b
a v dt = r(b)− r(a). That is, integrating the velocity of the

particle over the time interval [a, b] gives the displacement, or
net change in position, of the particle.

2.
∫ b
a |v| dt gives the total distance travelled by the particle

along its trajectory over the time interval [a, b]. That is, since

|v| =
∣∣∣∣dr

dt

∣∣∣∣ ,
integrating the speed of the particle over the time inteval
[a, b] gives the total length of the particle’s trajectory, which
is the same as the total distance travelled.
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Example 5

Suppose that the velocity at time t of a particle is given by

v = −5 sin t i + 5 cos t j + 2
√

6 k

for 0 ≤ t ≤ 2π. Then its net displacement is∫ 2π

0
v dt =

[
5 cos t i + 5 sin t j + 2

√
6t k

]2π

0
= 4

√
6 π k.

The total distance travelled is given by∫ 2π

0
|v| dt =

∫ 2π

0

√
(−5 sin t)2 + (5 cos t)2 + (2

√
6)2 dt

=

∫ 2π

0

√
25 + 24 dt = [7t]2π

0 = 14π.
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Length of a Polar Curve

x = r cos θ, y = r sin θ are the parametric equations of a polar
curve. So

dx

dθ
=

dr

dθ
cos θ − r sin θ,

dy

dθ
=

dr

dθ
sin θ + r cos θ

and

ds =

√(
dr

dθ
cos θ − r sin θ

)2

+

(
dr

dθ
sin θ + r cos θ

)2

dθ

=

√(
dr

dθ

)2

+ r2 dθ, as you may check.

So the length of a polar curve is given by

∫ β

α

√(
dr

dθ

)2

+ r2 dθ.
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Example 6: Circumference of the Cardioid r = 1 + cos θ

C =

∫ π

−π

√
(− sin θ)2 + (1 + cos θ)2 dθ

=

∫ π

−π

√
2 + 2 cos θ dθ

=

∫ π

−π

√
4 cos2(θ/2) dθ

=

∫ π

−π
2 cos(θ/2) dθ

= [4 sin(θ/2)]π−π

= 8

Note:
∫ 2π
0 2 cos(θ/2) dθ = [4 sin(θ/2)]2π

0 = 0. Why is this wrong?
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Arc Length as a Parameter

r

r

r
r

r
C

s = 0

s = 2

s = −2

s = 1

s = −1

1. Pick an arbitrary reference point on
the graph of C . This point will
correspond to s = 0.

2. Starting from the reference point,
pick one direction along the curve
to be the positive direction.

3. If P is on the curve, let s be the
‘signed’ length along the curve
from the reference point to P :
s > 0 if P is in the positive
direction from the reference point;
s < 0 if P is in the negative
direction from the reference point.
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Example 7; Helix of Ex. 3 with Arc Length as Parameter

Let s be the length of the helix measured along the curve from the
point (1, 0, 0) to the point (x , y , z) = (cos(t), sin(t), t), with
positive direction chosen as up. Then

s =

∫ t

0

√
(x ′(u))2 + (y ′(u))2 + (z ′(u))2 du

=

∫ t

0

√
(− sin u)2 + (cos u)2 + 12 du

=

∫ t

0

√
2 du = t

√
2

So t = s/
√

2, and in terms of its arc length s, the helix is given by

x = cos(s/
√

2), y = sin(s/
√

2), z = s/
√

2.
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Change of Parameter

Suppose a curve in space is parametrized by two different
parameters, t and τ. Then

dr

dτ
=

〈
dx

dτ
,
dy

dτ
,
dz

dτ

〉
=

〈
dx

dt

dt

dτ
,
dy

dt

dt

dτ
,
dz

dt

dt

dτ

〉
, by the chain rule

=

〈
dx

dt
,
dy

dt
,
dz

dt

〉
dt

dτ

=
dr

dt

dt

dτ

⇒
∣∣∣∣ dr

dτ

∣∣∣∣ =

∣∣∣∣ dt

dτ

∣∣∣∣ ∣∣∣∣dr

dt

∣∣∣∣
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Example 8

Consider the two parametrizations of the helix:

r = cos(t) i + sin(t) j + t k

and

r = cos

(
s√
2

)
i + sin

(
s√
2

)
j +

s√
2

k.

Then ∣∣∣∣dr

dt

∣∣∣∣ =√(− sin t)2 + (cos t)2 + 12 =
√

2,

∣∣∣∣dr

ds

∣∣∣∣ =
√(

− 1√
2

sin

(
s√
2

))2

+

(
1√
2

cos

(
s√
2

))2

+

(
1√
2

)2

= 1.
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Finding Arc Length Parametrizations

Let C be the graph of a smooth curve in R3 (or in R2) defined by
the vector r(t) = x i + y j + z k. Then the formula

s =

∫ t

t0

∣∣∣∣dr

du

∣∣∣∣ du

defines a positive change of parameter from t to s, where s is the
arc length parameter with r(t0) as its reference point. That is,

ds

dt
> 0.

Why is this derivative positive? By the Fundamental Theorem of
Calculus,

ds

dt
=

∣∣∣∣dr

dt

∣∣∣∣ > 0.
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Example 9; Example 4 Revisited

Find a positive change of parameter from t to s, where s is the arc
length parameter with (2, 1, 0) as its reference point, for the curve
with parametric equations

x = 2et , y = e−t , z = 2t.

Solution:

s =

∫ t

0

∣∣∣∣dr

du

∣∣∣∣ du =

∫ t

0

√
(2eu)2 + (−e−u)2 + 22 du

=

∫ t

0

√
(2eu + e−u)2 du =

∫ t

0

(
2eu + e−u

)
du

=
[
2eu − e−u

]t
0

= 2et − e−t − 1
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Arc Length Parametrization for Example 4

We can solve for t in terms of s by using the quadratic formula:

s = 2et − e−t − 1 ⇔ set = 2e2t − 1− et

⇔ 2e2t−(1+s)et−1 = 0 ⇔ et =
1 + s +

√
s2 + 2s + 9

4
, since et > 0.

Thus:

x =
1 + s +

√
s2 + 2s + 9

2
, y =

4

1 + s +
√

s2 + 2s + 9
,

z = 2 ln

(
1 + s +

√
s2 + 2s + 9

4

)
.
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This point is s units along the curve from the point (2, 1, 0), for
which s = 0. For example:

s = −7 ⇒ (x , y , z) =

(
−3 +

√
11,

2

−3 +
√

11
,−2 ln

(
−3 +

√
11

2

))
is 7 units before the point (2, 1, 0);

s = −2 ⇒ (x , y , z) = (1, 2,−2 ln 2)

is 2 units before the point (2, 1, 0); and

s = 5 ⇒ (x , y , z) =

(
3 +

√
11,

2

3 +
√

11
, 2 ln

(
3 +

√
11

2

))
is 5 units after the point (2, 1, 0) — as measured along the curve.
See the graph on the next page.
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Graph for Examples 4 and 9
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Summary: Properties of Arc Length Parametrizations

Let C be the graph of a smooth vector-valued function r(t) in R3

or R2. Then

I

∣∣∣∣dr

dt

∣∣∣∣ = ds

dt
if s =

∫ t

t0

∣∣∣∣dr

du

∣∣∣∣ du

I

∣∣∣∣dr

ds

∣∣∣∣ = 1

I If

∣∣∣∣dr

dt

∣∣∣∣ = 1, for all values of t, then for any value t0

s = t − t0

is an arc length parameter that has its reference point at a
point on C where t = t0.
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Curvature

Let r(t) = 〈x , y , z〉, where x , y , z are functions of t. Recall that the
unit tangent vector T(t) is defined by

T(t) =
r′(t)

|r′(t)|
=

v(t)

|v(t)|
,

if we agree to consider the parameter t as time, and v(t) = r′(t)
as the velocity of a particle moving along the curve defined by the
position vector r(t). The curvature at a point is the magnitude of
the rate of change of the unit tangent vector T with respect to the
length of the curve s; it is symbolized by the Greek letter κ:

κ(s) =

∣∣∣∣d T

ds

∣∣∣∣ .
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A Curvature Formula

Even though κ is defined in terms of the arc length s it is possible
to find a formula for κ that does not require the curve to be
parameterized in terms of its arc length. We use the chain rule:

d T

dt
=

d T

ds
· ds

dt
⇒ κ =

∣∣∣∣d T

ds

∣∣∣∣ =
|d T/dt|
|ds/dt|

=
1

|v|

∣∣∣∣d T

dt

∣∣∣∣ ,
since ds/dt, the rate of change of length along the curve with
respect to time t, is the speed of the particle. Alternatively, one
can also write κ as

κ(t) =
|T′(t)|
|r′(t)|

.
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Example 1

Lines have zero curvature. Proof: let

r(t) = 〈x0 + a t, y0 + b t, z0 + c t〉,

for parameter t. Then r′(t) = 〈a, b, c〉, so |r′(t)| =
√

a2 + b2 + c2,
and

T(t) =
r′(t)

|r′(t)|
=

〈a, b, c〉√
a2 + b2 + c2

.

Since this is constant, with derivative 0, the curvature of the line is

κ = 0.
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Example 2

Circles have constant curvature. Proof: let

r(t) = 〈R cos t,R sin t〉,

for parameter 0 ≤ t ≤ 2π. Then r′(t) = 〈−R sin t,R cos t〉, so

T(t) =
r′(t)

|r′(t)|
=
〈−R sin t,R cos t〉

R
= 〈− sin t, cos t〉.

Thus

κ =
|T′(t)|
|r′(t)|

=
|〈− cos t,− sin t〉|

R
=

1

R
;

the curvature of a circle is constant, it is the reciprocal of its radius.
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Alternative Curvature Formula

Let r(t) be the position of an object moving along a smooth curve;
let v(t) = r′(t) and a(t) = v′(t) = r′′(t) be its velocity and
acceleration, respectively. Then

κ(t) =
|v(t)× a(t)|
|v(t)|3

, or more briefly, κ =
|v × a|
|v|3

.

Proof: v = |v|T, by definition of T. Differentiate both sides wrt t:

a =
d v

dt
=

d(|v|T)

dt
= T

d |v|
dt

+ |v|d T

dt
.

Then

v × a = |v|T×
(

T
d |v|
dt

+ |v|d T

dt

)
= 0 + |v|2 T× d T

dt
.
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So

|v × a| =

∣∣∣∣|v|2 T× d T

dt

∣∣∣∣
= |v|2 |T|

∣∣∣∣d T

dt

∣∣∣∣ , since1 T ⊥ d T

dt

= |v|2
∣∣∣∣d T

dt

∣∣∣∣ , since |T| = 1

= |v|2 κ |v|, using our first formula for κ

Thus

κ =
|v × a|
|v|3

.

1by Example 2, Section 12.6 and the fact that |T| = 1
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Example 3: Curvature of a Helix

Consider the helix with vector equation r(t) = 〈a cos t, a sin t, b t〉,
for a, b > 0. Then

v = 〈−a sin t, a cos t, b〉; a = 〈−a cos t,−a sin t, 0〉,

v × a = 〈ab sin t,−ab cos t, a2〉,

and

κ =
|v × a|
|v|3

=

√
a2b2 + a4

(
√

a2 + b2)3
=

a

a2 + b2
.
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Curvature of a Curve in the Plane

Parameterize the function y = f (x) by r = 〈t, f (t), 0〉. Then the
curvature of f is given by

κ =
|v × a|
|v|3

=
|〈1, f ′(t), 0〉 × 〈0, f ′′(t), 0〉|

|〈1, f ′(t), 0〉|3

=
|〈0, 0, f ′′(t)〉|(√
1 + (f ′(t))2

)3

=
|f ′′(t)|

(1 + (f ′(t))2)3/2
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Example 4

If f (x) = x2, then

κ =
2

(1 + 4x2)3/2
.

If f (x) = sin x , then

κ =
| sin x |

(1 + cos2 x)3/2
.
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Example 5

If f (x) = ln x , then

κ =
x

(1 + x2)3/2
.

If f (x) = arctan x , then

κ =
2|x |(1 + x2)

(1 + (1 + x2)2)3/2
.
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Principal Unit Normal Vector

The curvature at a point on a curve tells you how fast a curve is
turning. To describe the direction in which a curve is changing we
use the principal unit normal vector, N, which is defined at a point
P at which κ 6= 0, as follows:

N(s) =
d T/ds

|d T/ds|
=

1

κ

dT

ds
.

In terms of the parameter t, this can be written as

N(t) =
d T/dt

|d T/dt|
,

evaluated at the value of t corresponding to the point P.
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Properties of the Principal Unit Normal Vector

Let r(t) describe a smooth parameterized
curve with unit tangent vector T(t) and
principal unit normal vector N(t), Then

1. |T(t)| = 1 and |N(t)| = 1;

2. T(t) ·N(t) = 0, at all points where
N is defined;

3. N points to the inside of the curve,
ie. in the direction the curve is
turning.
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Example 6

Consider the helix with vector equation r(t) = 〈a cos t, a sin t, b t〉,
for a, b > 0. The unit tangent vector is

T(t) =
r′(t)

|r′(t)|
=

〈−a sin t, a cos t, b〉
|〈−a sin t, a cos t, b〉|

=
〈−a sin t, a cos t, b〉√

a2 + b2
.

To calculate N(t), we first calculate

d T(t)

dt
=
〈−a cos t,−a sin t, 0〉√

a2 + b2
,

and then ∣∣∣∣d T(t)

dt

∣∣∣∣ =

√
a2 + 02

√
a2 + b2

=
a√

a2 + b2
.
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Thus the principal unit normal for a helix is

N(t) =
d T/dt

|d T/dt|
= 〈− cos t,− sin t, 0〉.

The graph to the right shows a helix with
unit tangent vectors in red and principal unit
normal vectors in blue.
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Components of Acceleration in Terms of N and T

If a is the acceleration of a particle moving along a curve with
position vector r, at time t, then it turns out that a must be a
linear combination of T and N. That is, the vector a must be in
the plane spanned by the two vectors N and T. Why? Firstly,

T =
r′

|r′|
=

v

|v|
⇒ v = T |v| = T

ds

dt
.

Secondly, by the product rule and the chain rule,

a =
d v

dt
=

d

dt

(
T

ds

dt

)
=

d T

dt

ds

dt
+ T

d2s

dt2
=

d T

ds

ds

dt

ds

dt
+ T

d2s

dt2
.

Finally, use |v| = ds/dt and κN = dT/ds to rewrite a as
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a = κ |v|2 N +
d2s

dt2
T.

This establishes that a is indeed in the plane spanned by N and T.
We write

a = aN N + aT T,

where

I aT =
d2s

dt2
is called the tangential component of the

acceleration; it measures the particle’s change in speed.

I aN = κ |v|2 =
|v × a|
|v|

is called the normal component of the

acceleration; it measures the particle’s change in direction.
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Example 7: Circular Motion with Constant Speed

Let r = 〈R cos(ωt),R sin(ωt)〉, for positive constants R, ω. Then

v(t) = r′(t) = 〈−ω R sin(ωt), ω R cos(ωt)〉; ds

dt
= |v(t)| = R ω.

By Example 2 the curvature of a circle is κ = 1/R. So

aT =
d2s

dt2
= 0; aN = κ |v|2 =

1

R
(R ω)2 = R ω2.

Thus for circular motion with constant speed, the acceleration is
entirely in the normal direction, orthogonal to the tangent vectors.
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Example 8: Parabolic Motion

If r(t) = 〈t, t2〉, then v(t) = r′(t) = 〈1, 2t〉, a(t) = v′(t) = 〈0, 2〉
and

T(t) =
r′(t)

|r′(t)|
=

〈1, 2t〉√
1 + 4t2

; N(t) =
dT/dt

|dT/dt|
=

〈−2t, 1〉√
1 + 4t2

,

as you may check. Since N,T are othonormal we can find aN and
aT directly, as in MAT188:

aN = a ·N =
2√

1 + 4t2
; aT = a · T =

4t√
1 + 4t2

.

Note that at the origin, where curvature of the parabola is greatest
(see Example 4), the normal component of the acceleration is
greatest while the tangential component of the acceleration is zero.

Chapter 12 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 12: Vector-Valued Functions

12.3 and 12.4 Review: Vectors in R3

12.5 Introduction to Vector-Valued Functions
12.6 Calculus of Vector-Valued Functions
12.7 Motion Along a Curve
12.8 Length of Curves
12.9 Curvature and Normal Vectors

The Unit Binormal Vector B and the TNB Frame

Suppose r(t) = 〈x , y , z〉 is a vector-valued function in R3. The
vector B = T×N defines a third unit vector orthogonal to both N
and T. B is called the unit binormal vector.

The three vectors T,N,B define
an orthonormal basis, or frame,
at each point on the curve de-
termined by the parameter t. The
three vectors T,N,B form a right-
handed coordinate system that
changes its orientation as we move
along the curve; it is called the
TNB frame.
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Properties of the Unit Binormal Vector B

I dB/ds is orthogonal to both T and d N/ds:

d B

ds
=

d (T×N)

ds
=

d T

ds
×N + T× d N

ds
= T× d N

ds

I d B/ds is orthogonal to both B and T:

|B|2 = 1 ⇒ 2B · d B

ds
= 0

I Therefore d B/ds is parallel to N. We define the torsion of the
curve at a point to be the scalar τ such that

d B

ds
= −τ N ⇔ τ = −d B

ds
·N.
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The Osculating Plane and Torsion

The plane spanned by the two vectors T and N is called the
osculating plane. The rate at which the curve determined by r
twists in or out of the osculating plane is measured by d B/ds, the
rate at which B changes with respect to the curve’s length. From
the previous slide we know that

d B

ds
= −τ N.

Since N is a unit vector,∣∣∣∣d B

ds

∣∣∣∣ = | − τ | |N| = |τ |.

Thus the magnitude of the torsion is the magnitude of the rate at
which the curve twists in or out of the osculating plane.
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Example 9: Unit Binormal and Torsion of a Helix

Let r(t) = 〈a cos t, a sin t, b t〉, for a, b > 0. From Example 6 we
know that

T(t) =
〈−a sin t, a cos t, b〉√

a2 + b2
, N(t) = 〈− cos t,− sin t, 0〉.

Then

B = T×N =
〈b sin t,−b cos t, a〉√

a2 + b2
,

d B

ds
=

d B/dt

ds/dt
=

1

|v|
d B

dt
=
〈b cos t, b sin t, 0〉

a2 + b2
,

and

τ = −d B

ds
·N =

b

a2 + b2
.
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Summary: Formulas For Curves in Space

If r(t) is the position vector along a curve in terms of a parameter
t, and s is the arc length measured along the curve, then

I the velocity is v = r′(t).

I the speed is |v| = |r′(t)| = ds/dt.

I the acceleration is a = v′(t) = r′′(t).

I the unit tangent vector is T =
d r

ds
=

v

|v|
.

I the principal unit normal vector is N =
T′(t)

|T′(t)|
.

I the unit binormal vector is B = T×N =
v × a

|v × a|
.
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I the curvature is κ =

∣∣∣∣d T

ds

∣∣∣∣ = 1

|v|

∣∣∣∣d T

dt

∣∣∣∣ =
|v × a|
|v|3

.

I the torsion is τ = −d B

ds
·N =

(v × a) · a′

|v × a|2
=

(r′ × r′′) · r′′′

|r′ × r′′|2
.

I the tangential and normal components of acceleration are aT

and aN , respectively, with a = aN N + aT T, and

aN = κ |v|2 =
|v × a|
|v|

, aT =
d2s

dt2
=

v · a
|v|

.

Note we did not prove all of the above formulas! Some are left as
exercises for the student.
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