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Second Order Linear Homogeneous Differential Equation

DE: A(x)
d2y

dx2
+ B(x)

dy

dx
+ C (x)y = 0

This equation is called second order because it includes the second
derivative of y ; it is called homogenous because the right side of
the equation is zero; it is called linear because the set of all
solutions to this DE forms a subspace of functions in the sense
that if

1. if both y1 and y2 satisfy DE, then so does y1 + y2

2. if k is a scalar and y satisfies DE, then so does ky

In other words, the set of solutions to DE is closed under addition
and scalar multiplication. This is only one connection of many
between differential equations and linear algebra.
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Superposition Principle

The fact that the set of solutions to DE is closed under addition
and scalar multiplication can be combined into the single
statement:

If k1 and k2 are scalars, and if y1 and y2 are both
solutions to DE, then

k1y1 + k2y2

is also a solution to DE.

This statement is known as the superposition principle. Its proof is
a simple computation:
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A(x)(k1y1 + k2y2)
′′ + B(x)(k1y1 + k2y2)

′ + C (x)(k1y1 + k2y2)

= A(x)(k1y
′′
1 + k2y

′′
2 ) + B(x)(k1y

′
1 + k2y

′
2) + C (x)(k1y1 + k2y2)

= k1(A(x)y ′′1 + B(x)y ′1 + C (x)y1) + k2(A(x)y ′′2 + B(x)y ′2 + C (x)y2)

= k1 · 0 + k2 · 0, since both y1 and y2 satisfy DE

= 0 + 0 = 0

One thing we can’t prove at the moment is that the dimension of
the subspace of all solutions to DE is two. But it makes sense,
since to isolate y in DE, you would expect to integrate twice, and
so obtain two arbitrary constants of integration in the general
solution to DE. Solving DE in general, though, is quite hard. I’ll
just give one example, which is essentially based on trial and error.
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Example 1: x2y ′′ + 2x y ′ − 6y = 0

Try y = xm. Then y ′ = mxm−1, y ′′ = m(m − 1)xm−2, and

x2y ′′ + 2x y ′ − 6y = x2
(
m(m − 1)xm−2

)
+ 2x

(
mxm−1

)
− 6xm

= m(m − 1)xm + 2m xm − 6xm

=
(
m2 −m + 2m − 6

)
xm

=
(
m2 + m − 6

)
xm = 0, for all x

⇔ m2 + m − 6 = 0 ⇔ m1 = 2 or m2 = −3. Thus:

y1 = xm1 = x2 and y2 = xm2 =
1

x3

are two independent solutions to Example 1, and the general
solution is

y = k1y1 + k2y2 = k1x
2 +

k2

x3
.
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Example 2: x2y ′′ + 2x y ′ − 6y = 8x − 6

This is a non-homogeneous DE related to Example 1. As in linear
algebra, all the solutions to the non-homogeneous equation can be
found by adding all the solutions to the homogeneous equation to
a single particular solution of the non-homogeneous equation. You
can check that

yp = −2x + 1

is a particular solution to Example 2. Then

y = k1x
2 +

k2

x3
+ yp = k1x

2 +
k2

x3
− 2x + 1

is the general solution to Example 2.
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Constant Coefficients

The second order, linear homogeneous differential equation with
constant coefficients is

ay ′′ + by ′ + cy = 0.

We can solve this equation completely. Again, we start with an
inspired guess: let y = erx . Then y ′ = rerx , y ′′ = r2erx , and

ay ′′ + by ′ + cy = 0 ⇔ ar2erx + brerx + cerx = 0

⇔ (ar2 + br + c)erx = 0

⇔ ar2 + br + c = 0, since erx 6= 0

ar2 + br + c = 0 is called the auxiliary quadratic to the second
order, linear homogeneous differential equation with constant
coefficients.
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The roots of the auxiliary quadratic, ar2 + br + c = 0, are

r =
−b ±

√
b2 − 4ac

2a
,

as you know. The different types of solutions to

DE: ay ′′ + by ′ + cy = 0

depend on the discriminant

∆ = b2 − 4ac

of the auxiliary quadratic. Analysis and examples of the three cases
follow.
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Case 1: ∆ > 0

In this case, the simplest case, the auxiliary quadratic has two
distinct real roots, say r1 and r2. Then the general solution to

ay ′′ + by ′ + cy = 0

is
y = k1e

r1x + k2e
r2x ,

where constants k1 and k2 can be determined by initial conditions.
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Example 3: y ′′ + 2y ′ − 15y = 0; y = 2, y ′ = −2, if x = 0

The auxiliary quadratic is r2 + 2r − 15 = 0 ⇔ r1 = 3, r2 = −5. So
the general solution is

y = k1e
3x + k2e

−5x ;

and
y ′ = 3k1e

3x − 5k2e
−5x .

To find k1 and k2, we substitute the initial conditions into the
equations for y and y ′ to obtain:{

k1 + k2 = 2
3k1 − 5k2 = −2

⇔ (k1, k2) = (1, 1),

as you may check. Thus the solution to Example 3 is:

y = e3x + e−5x .
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Graph of Solution for Example 3

Chapter 16 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 16: Second-Order Linear Homogeneous Differential Equations

Case 2: ∆ = 0

In this case, there is a single, repeated solution to the auxiliary

quadratic: r = − b

2a
. So y1 = erx is one solution to DE. We claim

y2 = xerx is another solution to DE:

ay ′′2 + by ′2 + cy2

= a
(
2rerx + r2xerx

)
+ b (erx + rxerx) + cxerx

= (ar2 + br + c)xerx + (2ar + b)erx

= 0 (why?) + 0, since r = − b

2a
= 0

The general solution is y = k1y1 + k2y2 = k1e
rx + k2xe

rx .
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Example 4: 9y ′′ + 12y ′ + 4y = 0; y = 2, y ′ = −2, if x = 0

9r2 + 12r + 4 = (3r + 2)2 = 0 ⇔ r = −2/3; so the general
solution is

y = k1e
−2x/3 + k2xe

−2x/3;

and

y ′ =

(
k2 −

2

3
k1

)
e−2x/3 − 2

3
k2xe

−2x/3.

To find k1 and k2, we substitute the initial conditions into the
equations for y and y ′ to obtain:{

k1 = 2
−2

3k1 + k2 = −2
⇔ (k1, k2) =

(
2,−2

3

)
,

as you may check. So the solution is y = 2e−2x/3 − 2
3xe−2x/3.
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Graph of Solution for Example 4
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Case 3: ∆ < 0

In this case the auxiliary quadratic has two complex roots, say
r = p ± qi , with i2 = −1. Naively we could say,

y = k1e
r1x + k2e

r2x = k1e
(p+iq)x + k2e

(p−iq)x

= k1e
pxe iqx + k2e

pxe−iqx .

But what meaning are we to give to e±iqx? We can use Euler’s
Formula,

e iθ = cos θ + i sin θ,

which we derived in Chapter 10.

Chapter 16 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 16: Second-Order Linear Homogeneous Differential Equations

y = k1e
pxe iqx + k2e

pxe−iqx

= k1e
px (cos(qx) + i sin(qx)) + k2e

px (cos(qx)− i sin(qx))

= (k1 + k2)e
px cos(qx) + (k1 − k2)i epx sin(qx)

= c1e
px cos(qx) + c2e

px sin(qx), c1 = k1 + k2, c2 = (k1 − k2)i ,

where constants c1 and c2 can be determined by initial conditions.
Case 3 is by far the most interesting mathematically. Surprisingly,
even though we have used the so-called imaginary number i , we
will find that Case 3 is also the most interesting physically, and is
used in a major application, namely mechanical vibrations.
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Example 5: 9y ′′ + 6y ′ + 145y = 0; y = 2, y ′ = −2 if x = 0.

9r2 + 6r + 145 = 0 ⇔ r =
−6±

√
36− 36 · 145

18
= −1

3
± 4i . So

the general solution is

y = c1e
−x/3 cos(4x) + c2e

−x/3 sin(4x);

from which y ′ =

e−x/3

(
−c1

3
cos(4x)− 4c1 sin(4x)− 1

3
c2 sin(4x) + 4c2 cos(4x)

)
.

Use the initial conditions to find c1 and c2 :{
c1 = 2

−1
3c1 + 4c2 = −2

⇔ (c1, c2) =

(
2,−1

3

)
.

So the solution is y = 2e−x/3 cos(4x)− 1
3e−x/3 sin(4x).
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Graph of Solution for Example 5
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Special Case: b = 0 and ay ′′ + cy = 0

In this case, the auxiliary quadratic is ar2 + c = 0. The roots will be

r = ±
√
−c

a
.

If the roots are real, then we are back to Case 1. But if −c/a < 0,
then the roots will be purely imaginary:

r = ±
√

c

a
i ,

and the solutions will be a special case of Case 3:

y = c1 cos

√
c

a
x + c2 sin

√
c

a
x .
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Example 6: y ′′ + 4y = 0; y = 2, y ′ = −2, if x = 0

r2 + 4 = 0 ⇔ r = ±2 i

⇒ y = c1 cos(2x) + c2 sin(2x)

⇒ y ′ = −2c1 sin(2x) + 2c2 cos(2x)

Using the initial values we find c1 = 2 and c2 = −1, as you can
check. So the solution is

y = 2 cos(2x)− sin(2x).
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Graph of Solution for Example 6
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Mass On A Spring
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Suppose

1. x is the position of a mass on a spring at time t.

2. x is measured as displacement from the equilibrium position,
x = 0.

3. m is the mass of the object on the spring.

4. c depends on the friction of the surrounding medium.

5. k is the spring constant, from Hooke’s Law.
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Differential Equation for a Mass on a Spring

Then x must satisfy

mx ′′(t) + cx ′(t) + kx(t) = 0.

This differential equation is second order, linear, homogenous, with
constant coefficients.
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Derivation of DE

We do a force analysis, considering the resisting force of the
surrounding medium, with c representing the coefficient of friction;
and the restoring force of the spring, with k representing the spring
constant.

F = ma = Fresisting + Frestoring
= −cv − kx

⇔ m
d2x

dt2
= −c

dx

dt
− kx

⇔ m
d2x

dt2
+ c

dx

dt
+ kx = 0, or mx ′′(t) + cx ′(t) + kx(t) = 0
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The Solution to This Differential Equation

The solution for x depends on the associated quadratic equation

mr2 + cr + k = 0,

which has solutions

r =
−c ±

√
c2 − 4km

2m
.

There are three cases:
Case 1: c2 − 4km > 0, in which case the quadratic has two real
roots.
Case 2: c2 − 4km = 0, in which case the quadratic has one
distinct real root, which is repeated.
Case 3: c2 − 4km < 0, in which case the quadratic has two
complex roots.
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Case 1: Overdamped Vibrations: c2 > 4km

In this case, the associated quadratic has two distinct real
solutions, say r1 and r2. Then the solution is

x = c1e
r1t + c2e

r2t ,

where c1 and c2 are constants that depend on initial conditions.
Since both r1 < 0 and r2 < 0,

lim
t→∞

x = 0.

In this case the friction is so strong, that the motion dies very
quickly.
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Example 7: m = 1; c = 4; k = 3; x(0) = 0; x ′(0) = 2

r2 + 4r + 3 = 0 ⇔ r = −3 or r = −1. Then the solution is

x = −e−3t + e−t .

The graph of displacement, x versus time, t, is:
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Case 2: Critically Damped Vibrations: c2 = 4km

In this case, the associated quadratic has only one distinct real
solution, say r . Then the solution is

x = c1e
rt + c2te

rt ,

where c1 and c2 are constants that depend on initial conditions.
Since r < 0 it is still true that

lim
t→∞

x = 0.

This case is very similar to the previous case.
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Example 8: m = 1/2; c = 4; k = 8; x(0) = 2; x ′(0) = −4

1

2
r2 + 4r + 8 = 0 ⇔ r2 + 8r + 16 = 0 ⇔ r = −4. The solution is

x = 2e−4t + 4te−4t .

The graph is:
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Case 3: Underdamped Vibrations: c2 < 4km

In this case the quadratic has two complex roots, say α± β i . Then
the solution is

x = c1e
αt cos(βt) + c2e

αt sin(βt),

where c1 and c2 are constants that depend on initial conditions.
This case is much more interesting, both mathematically and
physically. Since α < 0, x → 0 still, as t →∞; but the presence of
the two trigonometric terms means that the vibrations will oscillate
with period 2π/|β|, with ever decreasing amplitudes. In this case
the friction is not strong enough to completely stop the vibrations.
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Example 9: m = 9; c = 6; k = 145; x(0) = 2; x ′(0) = −2

9r2 + 6r + 145 = 0 ⇔ r =
−6±

√
36− 36 · 145

18
= −1

3
± 4i . The

solution is

x = 2e−t/3 cos(4t)− 1

3
e−t/3 sin(4t).

The graph is to the left. We say its

pseudo period is
2π

4
=

π

2
and its time

varying amplitude is

√
37

3
e−t/3.

Where do these values come from?

Chapter 16 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 16: Second-Order Linear Homogeneous Differential Equations

In General, for x = Aeαt cos(βt) + Beαt sin(βt)

The pseudo period is T =
2π

|β|
, and the time varying amplitude is

√
A2 + B2eαt .

This is calculated by using some trigonometry:

A cos(βt) + B sin(βt) =
√

A2 + B2

(
A cos(βt) + B sin(βt)√

A2 + B2

)
=

√
A2 + B2 (cos φ cos(βt) + sin φ sin(βt))

=
√

A2 + B2 cos(βt − φ), with tanφ =
B

A

Thus x =
√

A2 + B2eαt cos(βt − φ), for some phase angle φ.
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Pseudo Period and Time Varying Amplitude of Example 9

Our solution was

x = 2e−t/3 cos(4t)− 1

3
e−t/3 sin(4t)

=

√
37

3
e−t/3

(
6√
37

cos(4t)− 1√
37

sin(4t)

)
=

√
37

3
e−t/3 (cos φ cos(4t) + sin φ sin(4t)) , for tanφ = −1

6

=

√
37

3
e−t/3 cos(4t − φ), for phase angle φ = tan−1

(
−1

6

)
.

The pseudo period of the vibration 2π
4 = π

2 ; and
√

37
3 e−t/3 is the

time-varying amplitude of the vibration.
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True Periodic Vibrations: c = 0

In the absence of friction, if c = 0, then mx ′′(t) + kx(t) = 0, and
the auxiliary quadratic is mr2 + k = 0, which has roots

r = ±
√

k

m
i = ±ω0i , if we set ω0 =

√
k

m
.

Then
x = c1 cos(ω0t) + c2 sin(ω0t),

where c1 and c2 are constants that depend on initial conditions.
This is true periodic motion, with period

T =
2π

ω0
, and amplitude A =

√
c2
1 + c2

2 .
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Example 10: m = 9; c = 0; k = 145; x(0) = 2; x ′(0) = −2

Then ω0 =

√
145

3
and x = 2 cos(ω0t)−

2

ω0
sin(ω0t), as you can

check.

The graph is to the left. The period
of the vibration is

T =
2π

ω0
=

6π√
145

and the amplitude is√
22 +

22

ω2
0

= 2

√
154

145
.
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Comparison of Examples 9 and 10

Examples 9 and 10 differ only in the value of c .

I In Example 10, c = 0, and

T =
6π√
145

' 1.565370417 sec; ν =
1

T
' 0.6388264331 Hz..

I For Example 9, c = 6, and we found

T =
π

2
' 1.570796327 sec; so ν =

1

T
' 0.6366197723 Hz.

In this comparison, the friction is so small it barely slows down the
vibration. Greater friction would have greater effect.
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Graphs for Examples 9 and 10
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