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Net Distance and Total Distance Travelled

Suppose s is the position of a particle at time t for t ∈ [a, b]. Then∫ b

a
v dt =

∫ b

a
s ′(t) dt = s(b)− s(a).

s(b)− s(a) is called the displacement, or net distance travelled, by
the particle over the time interval [a, b]. This is in contrast to the
total distance travelled, which is given by the integral of speed.
That is, the total distance travelled by the particle for t ∈ [a, b], is∫ b

a
|v | dt.
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Derivation of Total Distance

If v∗i is the velocity of the particle at some time t∗i in the time
interval [ti−1, ti ], then the speed |v∗i | is approximately constant on
the time interval. So on this time interval the distance travelled is
approximately |v∗i | ×∆t, since

distance = speed × time .

So the total distance travelled is

lim
n→∞

n∑
i=1

|v∗i | ×∆t =

∫ b

a
|v | dt.
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Example 1

Suppose v = t2 − 11t + 24 for t ∈ [0, 8]. Then

∫ 8

0
v dt =

∫ 8

0

(
t2 − 11t + 24

)
dt

=

[
t3

3
− 11

2
t2 + 24t

]8

0

=
32

3

This means that after 8 seconds the particle is 32/3 units to the
right of where it started from.
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The total distance is a much more complicated calculation because
v > 0 for t < 3; but v < 0 for t > 3. Thus the total distance
travelled is∫ 8

0
|v | dt =

∫ 3

0
v dt −

∫ 8

3
v dt

=

[
t3

3
− 11

2
t2 + 24t

]3

0

−
[
t3

3
− 11

2
t2 + 24t

]8

3

=
63

2
−

(
−125

6

)
=

157

3
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Integral Formulas

I Often to find a formula to describe something – be it
geometrical or physical – we use a Riemann sum to first set
things up in a simple, approximate way.

I These approximations usually start with a regular partition.

I Then as the limit of the norm of the partition goes to zero,
the Riemann sum approaches an integral.

I In Chapter 6, formulas for area, volumes, length, surface area,
work – to name a few – will be derived this way.
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Area Between Two Curves: The Basic Formula

If f (x) ≥ g(x) for x ∈ [a, b], then∫ b

a
(f (x)− g(x)) dx

is the area of the region below f ,
above g , for a ≤ x ≤ b. Proof:

y

xa b

f (x)

g(x)

∆x

r
r

rx∗i
Ai

Ai = (f (x∗i )− g(x∗i ))∆x ⇒ A '
∑

Ai =
∑

(f (x∗i )− g(x∗i ))∆x ;

A = lim
∆x→0

∑
Ai = lim

∆x→0

∑
(f (x∗i )− g(x∗i ))∆x =

∫ b

a
(f (x)− g(x)) dx .
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Example 1

Find the area of the region bounded by y = x and y = 6− x2.
Solution: find intersection points:
6− x2 = x ⇔ 0 = x2 + x − 6 ⇔ x = −3 or x = 2.

A =

∫ 2

−3

(
6− x2 − x

)
dx

=

[
6x − 1

3
x3 − 1

2
x2

]2

−3

=
125

6
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Example 2

Find the area between the x-axis and the curve y = sin(2x) + sin x
on [0, π]. Solution: 2 sin x cos x + sin x = 0 ⇒ x = 0, π, 2π/3.
Then A = A1 + A2 where

A1 =

∫ 2π/3

0
(sin(2x) + sin x) dx =

[
−1

2
cos(2x)− cos x

]2π/3

0

=
9

4
,

A2 =

∫ π

2π/3
(− sin(2x)− sin x) dx

=

[
1

2
cos(2x) + cos x

]π

2π/3

=
1

4
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Example 3: Integrating with Respect to y

Find area of region bounded by the curves with equation 2y = x
and y2 = 8− x . Solution: find intersection points:
y2 = 8− 2y ⇔ y2 + 2y − 8 = 0 ⇔ y = −4 or y = 2.

A =

∫ 2

−4

(
8− y2 − 2y

)
dy

=

[
8y − 1

3
y3 − y2

]2

−4

= 16− 8

3
− 4 + 32− 64

3
+ 16

= 36
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Example 3, Integrating with Respect to x ; the Hard Way

A =

∫ 4

−8

(x

2
− (−

√
8− x)

)
dx +

∫ 8

4

(√
8− x − (−

√
8− x)

)
dx

=

∫ 4

−8

(x

2
+
√

8− x
)

dx +

∫ 8

4
2
√

8− x dx

=

[
x2

4
− 2(8− x)3/2

3

]4

−8

+

[
−4(8− x)3/2

3

]8

4

= 4− 16

3
− 16 +

128

3
− 0 +

32

3
= 36, as before.

Chapter 6 Lecture Notes Review and Two New Sections MAT187H1F Lec0101 Burbulla



Chapter 6: Applications of Integration

6.1 Velocity and Net Change
6.2 Regions Between Curves
6.3 Volume by Slicing
6.4 Volume by Shells
6.5 Length of Curves
6.6 Surface Area
6.7 Physical Applications
6.9 Exponential Models
6.10 Hyperbolic Functions: An Overview

The Method of Slicing

Let x∗i be any point in a subinterval of length ∆x ; let the area of a
cross-sectional slice perpendicular to the x-axis with base ∆x be
A(x∗i ). Add up the volumes of all the slices:

y

x��
��

��
��

��
��

��
��

∆xx = a x = b

A(x∗i )

q(x∗i , f (x∗i ))
V '

∑
∆V =

∑
A(x∗i ) ∆x

⇒ V = lim
∆x→0

∑
A(x∗i ) ∆x

=

∫ b

a
A(x) dx
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Example 1: Volume of a Pyramid, V = 1
3a

2h

Let l be the length of the side of a cross-section of the pyramid at

height y above the base. By similar triangles,
l

h − y
=

a

h
.

y

�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A

(−l/2, y) q
a

l

q(0, h)

The cross section is a square: A(y) = l2.

V =

∫ h

0
A(y) dy =

∫ h

0
a2

(
1− y

h

)2
dy

= a2

∫ h

0

(
1− 2y

h
+

y2

h2

)
dy

= a2

[
y − y2

h
+

y3

3h2

]h

0

=
1

3
a2h
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Solids of Revolution: Method of Disks

y

xa b

q
qy = f (x)

∆x

q(x∗i , f (x∗i ))
Let x∗i be any point in a subinterval
of length ∆x . The volume of the disc
obtained by revolving about the x-
axis the rectangle with base ∆x and
radius f (x∗i ) is ∆V = πf (x∗i )2 ∆x .

V '
∑

∆V =
∑

πf (x∗i )2 ∆x

⇒ V = lim
∆x→0

∑
πf (x∗i )2 ∆x

=

∫ b

a
πf (x)2 dx
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Example 2: Volume of a Sphere

Figure: x2 + y2 = r2

V = 2

∫ r

0
πy2 dx

= 2π

∫ r

0
(r2 − x2) dx

= 2π

[
r2x − x3

3

]r

0

= 2π

(
r3 − r3

3

)
=

4

3
πr3
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Example 3

Find the volume of the solid obtained by revolving around the line
y = −2 the curve y =

√
x for x ∈ [0, 1].

V =

∫ 1

0
π(
√

x + 2)2 dx

= π

∫ 1

0
(x + 4

√
x + 4) dx

= π

[
x2

2
+

8

3
x3/2 + 4x

]1

0

=
43

6
π
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Example 4

Find the volume of the solid obtained by revolving about the x-axis
the region bounded by the curves y =

√
x and y = x for x ∈ [0, 1].

V =

∫ 1

0
π(r2

o − r2
i ) dx

= π

∫ 1

0
(x − x2) dx

= π

[
x2

2
− x3

3

]1

0

=
1

6
π
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Suppose y = f (x) on [a, b] is Revolved Around the y -axis

y

xa b

q
qy = f (x)

∆x

q(x∗i , f (x∗i ))

Let x∗i be
any point in
a subinterval
of length ∆x .

The approximate volume of the above cylindrical shell is
∆V ' C · h · w = 2πx∗i · f (x∗i ) ·∆x .
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Volumes By Cylindrical Shells

Then

V '
∑

∆V

=
∑

2πx∗i · f (x∗i ) ·∆x

⇒ V = lim
∆x→0

∑
2πx∗i · f (x∗i ) ·∆x

=

∫ b

a
2πx · f (x) dx

Chapter 6 Lecture Notes Review and Two New Sections MAT187H1F Lec0101 Burbulla



Chapter 6: Applications of Integration

6.1 Velocity and Net Change
6.2 Regions Between Curves
6.3 Volume by Slicing
6.4 Volume by Shells
6.5 Length of Curves
6.6 Surface Area
6.7 Physical Applications
6.9 Exponential Models
6.10 Hyperbolic Functions: An Overview

Example 1: Volume of a Cone

Figure:
x

r
+

y

h
= 1

V =

∫ r

0
2πx h

(
1− x

r

)
dx

= 2πh

∫ r

0

(
x − x2

r

)
dx

= 2πh

[
x2

2
− x3

3r

]r

0

= 2πh

(
r2

2
− r2

3

)
=

1

3
πhr2
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Example 2: Volume of a Sphere

Figure: x2 + y2 = r2

V = 2

∫ r

0
2πx · y dx

= 2π

∫ r

0
2x

√
r2 − x2 dx

= 2π

∫ 0

r2

√
u (−du) = 2π

∫ r2

0

√
u du

= 2π

[
2

3
u3/2

]r2

0

=
4

3
πr3
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Example 3

Find the volume of the solid obtained by revolving around the
y -axis the region bounded by y =

√
x and y = x , for x ∈ [0, 1].

V =

∫ 1

0
2πx (

√
x − x) dx

= 2π

∫ 1

0
(x3/2 − x2) dx

= 2π

[
2

5
x5/2 − x3

3

]1

0

=
2

15
π
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Example 4

Find the volume of the solid obtained by revolving around the line
x = −2 the region bounded by y =

√
x and y = x , for x ∈ [0, 1].

V =

∫ 1

0
2π(x + 2) (

√
x − x) dx

= 2π

∫ 1

0
(x3/2 + 2

√
x − x2 − 2x) dx

= 2π

[
2

5
x5/2 +

4

3
x3/2 − x3

3
− x2

]1

0

=
4

5
π
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Summary

Consider y = f (x) on [a, b], assume f is invertible, with f −1 = g ,
and that c = f (a) and d = f (b). What do these four integrals
represent?

1.

∫ b

a
π (f (x))2 dx

2.

∫ b

a
2π x f (x) dx

3.

∫ d

c
π (g(y))2 dy

4.

∫ d

c
2π y g(y) dy
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y

xa b

c

d

q
q

R1

R2

∫ b

a
π (f (x))2 dx is the volume of the

region R1 revolved about the x-axis.∫ b

a
2π x f (x) dx is the volume of the

region R1 revolved about the y -axis.∫ d

c
π (g(y))2 dy is the volume of the region R2 revolved about the

y -axis.∫ d

c
2π y g(y) dy is the volume of the region R2 revolved about the

x-axis.

Chapter 6 Lecture Notes Review and Two New Sections MAT187H1F Lec0101 Burbulla



Chapter 6: Applications of Integration

6.1 Velocity and Net Change
6.2 Regions Between Curves
6.3 Volume by Slicing
6.4 Volume by Shells
6.5 Length of Curves
6.6 Surface Area
6.7 Physical Applications
6.9 Exponential Models
6.10 Hyperbolic Functions: An Overview

The Length of a Curve

y

x

∆y

∆xa b

q
qy = f (x) If ∆s is the length of a small part

of the curve, then

∆s2 ' ∆x2 + ∆y2

⇒ ∆s '

√
1 +

(
∆y

∆x

)2

∆x

Now let ∆x → 0: S = lim
∆x→0

∑
∆s =

∫ b

a

√
1 +

(
dy

dx

)2

dx . S is

called the arc length, or simply length, of the curve.
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Example 1

The expression ds =

√
1 +

(
dy
dx

)2
dx is called the arc length

differential. Then S =

∫ b

a
ds. Example: let f (x) = x2/3 on [0, 1].

ds =

√
1 +

(
dy

dx

)2

dx =

√
1 +

(
2

3
x−1/3

)2

dx =

√
9x2/3 + 4

3x1/3
dx

⇒ S =

∫ 1

0
ds =

∫ 1

0

√
9x2/3 + 4

3x1/3
dx =

1

18

∫ 13

4

√
u du

(u = 9x2/3 + 4) =
1

18

[
2

3
u3/2

]13

4

=
1

27
(133/2 − 8)
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Example 2: Circumference of a Circle

Figure: x2 + y2 = r2

C = 4

∫ r

0

√
1 +

(
dy

dx

)2

dx

= 4

∫ r

0

√
1 +

(
−x√

r2 − x2

)2

dx

= 4

∫ r

0

√
r2 − x2 + x2

r2 − x2
dx

= 4

∫ r

0

r√
r2 − x2

dx , since r > 0
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Example 2, Continued

To evaluate this integral, we shall use inverse trigonometric
functions. In particular:∫

dx√
r2 − x2

= sin−1
(x

r

)
+ C ,

as you may check. Then

C = 4

∫ r

0

r√
r2 − x2

dx = 4r
[
sin−1

(x

r

)]r

0

= 4r(sin−1(1)− sin−1(0)) = 2πr , as you may check.

Chapter 6 Lecture Notes Review and Two New Sections MAT187H1F Lec0101 Burbulla



Chapter 6: Applications of Integration

6.1 Velocity and Net Change
6.2 Regions Between Curves
6.3 Volume by Slicing
6.4 Volume by Shells
6.5 Length of Curves
6.6 Surface Area
6.7 Physical Applications
6.9 Exponential Models
6.10 Hyperbolic Functions: An Overview

Surface Area

y

x

∆s

a b

q
q

q
q

y = f (x) Partition the interval [a, b] into n
subintervals of equal length ∆x .
In each subinterval pick a value x∗i
and consider the strip of surface
obtained by revolving the curve
y = f (x) on the interval [xi−, x1]
around the x-axis. It’s approxi-
mate radius is ri = f (x∗i ), and its
approximate width is ∆s. So the
approximate area of the strip is

∆A = 2πf (x∗i )∆s.
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Surface Area Formulas

Then the surface area of the solid of revolution obtained by
revolving the curve y = f (x) on the interval [a, b] around the
x-axis is given by

SA = lim
∆x→0

∑
∆A =

∫ b

a
2πf (x) ds =

∫ b

a
2πf (x)

√
1 +

(
dy

dx

)2

dx .

If you revolve the curve around the y -axis, then the approximate
radius of the strip becomes x∗i and the formula for the surface area
is

SA =

∫ b

a
2πx ds =

∫ b

a
2πx

√
1 +

(
dy

dx

)2

dx .
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Example 1: Surface Area of a Sphere is 4πr 2

Figure: x2 + y2 = r2

SA = 2

∫ r

0
2πy ds

= 4π

∫ r

0

√
r2 − x2

√
1 +

(
−x√

r2 − x2

)2

dx

= 4π

∫ r

0

√
r2 − x2 + x2 dx

= 4π

∫ r

0
r dx , since r > 0

= 4πr [x ]r0 = 4πr2
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Example 2: Surface Area of a Cone is πr
√

r 2 + h2

Figure:
x

r
+

y

h
= 1

SA =

∫ r

0
2πx ds

= 2π

∫ r

0
x

√
1 +

(
−h

r

)2

dx

= 2π

∫ r

0
x

√
r2 + h2

r
dx

= 2π

√
r2 + h2

r

[
x2

2

]r

0

= πr
√

r2 + h2
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Work in Physics

The work required to move an object through a distance d by
applying a constant force F is given by W = F d . Suppose an
object is moved from x = a to x = b by applying a non-constant
force F (x). You can approximate the work on a small subinterval
of length ∆x , by picking a point x∗i in the subinterval and taking
the force to be constant, F (x∗i ), over that subinterval. Then on
each subinterval the work done is ∆W ' F (x∗i )∆x . The total work
done is

W = lim
∆x→0

∑
∆W =

∫ b

a
F (x) dx .
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Two Formulas from Physics

To use the formula W =
∫ b
a F (x) dx you have to know the force in

terms of x . Here are two examples in which such a force is known:

1. Hooke’s Law. If you stretch a mass on a spring the force
required is proportional to the displacement: F (x) = kx ,
where x = 0 is the equilibrium position of the spring.

2. Newton’s Law of Gravity. If m1 and m2 are separated by a
distance x then the gravitational force of attraction between
the two masses is given by

F =
Gm1m2

x2
,

where G is the gravitational constant.
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Example 1

1. The work done to stretch a spring from x = a to x = b is

W =

∫ b

a
kx dx = k

[
x2

2

]b

a

=
k

2
(b2 − a2).

2. If R is the radius of the earth, and m2 its mass, then the work
required to put a satellite of mass m1 into an orbit of height h
above the earth’s surface is

W =

∫ R+h

R

Gm1m2

x2
dx =

[
−Gm1m2

x

]R+h

R

=
Gm1m2h

R(R + h)
.
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Work Done in Filling a Tank

y = b

y = a

∆yA(y)

y

x

Suppose a fluid of density ρ is
pumped from ground level y = 0 up
into a tank, with base at y = a and
top at y = b. Suppose the cross-
sectional area of the tank at height
y is A(y). Consider a thin shell of
the fluid of thickness ∆y . The volume
of this shell is approximately ∆V =
A(y) ∆y . Its mass is approximately
ρ∆V and the work required to pump
this thin shell of liquid up to height y
is approximately ∆W = ρ∆V g y .
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Formulas for Work Done in Filling or Emptying a Tank

1. Thus the work required to pump the tank full of fluid is

W = lim
∆y→0

∑
∆W = lim

∆y→0

∑
ρA(y)∆y g y

= lim
∆y→0

∑
ρg A(y) y ∆y

=

∫ b

a
ρg A(y) y dy

2. If the tank is emptied by pumping all the liquid up to a pipe
or conduit above the tank at height y = h then the work done

in emptying the tank is W =

∫ b

a
ρg A(y) (h − y) dy .
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Example 2

Find the work done in pumping fluid of density ρ from ground level
into a conical tank with radius at the top 2 m and height 8 m.

�
�
�
�
�
�
�
�

C
C
C
C
C
C
C
C

y q(2, 8)

q(x , y)

By similar triangles,
x

y
=

2

8
⇔ x =

1

4
y .

A(y) = πx2 =
π

16
y2

⇒ W =

∫ 8

0
ρg

π

16
y2 y dy =

πρg

16

∫ 8

0
y3 dy

=
πρg

16

[
y4

4

]8

0

= 64πρg (Joules)
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Example 3

A hemispherical tank of radius 2 m is full of liquid with density ρ.
How much work is required to empty the tank by pumping all the
liquid up to a pipe 1 m above the top of the tank?

x

y

&%q
x2 + (y − 2)2 = 4

(x , y)

h = 3 q A(y) = πx2

= π
(
4− (y − 2)2

)
= π(4− y2 + 4y − 4)

= π(4y − y2)
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Example 3, Concluded

W =

∫ b

a
ρg A(y) (h − y) dy

=

∫ 2

0
ρg π(4y − y2) (3− y) dy

=

∫ 2

0
ρgπ(y3 − 7y2 + 12y) dy

= ρgπ

[
y4

4
− 7

3
y3 + 6y2

]2

0

=
28

3
ρgπ
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The Work-Energy Relationship

Recall: F = ma = m dv
dt . Suppose an object of mass m is moved by

a force F from x = a at time t = ti to x = b at time t = tf . Then

W =

∫ b

a
F dx =

∫ b

a
m

dv

dt
dx

=

∫ tf

ti

m
dv

dt

dx

dt
dt =

∫ tf

ti

m v
dv

dt
dt

(by substitution) =

∫ vf

vi

m v dv =

[
mv2

2

]vf

vi

=
mv2

f

2
−

mv2
i

2
, the change in kinetic energy
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Example 4

A mass of 10 kg is moving along the x-axis with speed 5 m/sec. At
position x = 0 a force F (x) = 3x2 N begins to push the object.
What is the speed of the object when it reaches x = 10? Assume
position along the x-axis is measured in meters.
Solution:

W =

∫ 10

0
F (x) dx =

∫ 10

0
3x2 dx =

[
x3

]10

0
= 1000.

10v2
f

2
−

10v2
i

2
= 1000 ⇔ 5v2

f = 1000+125 ⇔ v2
f = 225 ⇔ vf = 15
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Natural Growth Equation

Let x be the amount of some substance present at time t. The
following differential equation

dx

dt
= kx , k 6= 0

has many important applications. It can be interpreted as

dx

dt︸︷︷︸
the rate of change

= k︸︷︷︸
is proportional to

x︸︷︷︸
the amount present

.

In this case, the substance is said to be growing naturally.
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Solution to the Natural Growth Equation

It is easy to verify that x = x0e
kt is a solution to the natural

growth equation, where the initial value of x is x0 at t = 0:

x = x0e
kt ⇒ dx

dt
= k x0e

kt = kx ,

and
t = 0 ⇒ x = x0e

0 = x0.

The solutions to the natural growth equation are called exponential
models.
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Exponential Growth: k > 0, x0 > 0

In this case the value of x is always increasing. Two key features:

1. Doubling time:

x = 2x0 ⇔ x0e
kt = 2x0

⇔ ekt = 2

⇔ kt = ln 2

⇔ t =
ln 2

k

2. lim
t→∞

x = ∞

Examples: exponential population growth; compound interest.
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Example 1

The population of a town is growing exponentially so that its
population doubles every 10 years. The population of the town was
10,000 in 1995; what will its population be in the year 2020?
Solution: Let x be the population of the town at time t, where
time is measured in years since 1995. So t = 0 corresponds to
1995, and x0 = 10 000. Use the doubling time to find k :

10 =
ln 2

k
⇔ k =

ln 2

10
' 0.0693.

So x = x0e
kt = 10 000e

ln 2
10

t = 10 000 · 2
t
10 , or x ' 10 000e0.0693t .

Now let t = 25 : x = 10 000 · 2
25
10 = 10 000 · 22.5 ' 56 569.
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Exponential Decay: k < 0, x0 > 0

In this case the value of x is always decreasing, and lim
t→∞

x = 0.

Half Life:

x =
1

2
x0 ⇔ x0e

kt =
1

2
x0

⇔ ekt = 2−1

⇔ kt = − ln 2

⇔ t = − ln 2

k

Example: radioactive decay.
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Example 2: Carbon-14 Dating

The half life of carbon-14 is 5,700 years. If a specimen of charcoal
found in Stonehenge contains only 63% of its original carbon-14,
how old is Stonehenge? Solution: Let x be the amount of
carbon-14 present in the charcoal at time t, with t in years since
the charcoal was created. Use the half life to find k :

5 700 = − ln 2

k
⇔ k = − ln 2

5 700
' −0.0001216.

Then x = x0e
kt = x0e

−0.0001216t . Let x = 0.63x0, and solve for t :

0.63x0 = x0e
−0.0001216t ⇔ 0.63 = e−0.0001216t ⇔ ln 0.63 = −0.0001216t

⇔ t ' 3 800. So the age of Stonehenge is approximately 3,800 yrs.
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Two Different Trigonometries

As opposed to the six regular trigonometric functions,

sin θ, cos θ, tan θ, csc θ, sec θ and cot θ,

which can be defined in terms of the circle x2 + y2 = 1, the six
hyperbolic trigonometric functions are defined in terms of the
hyperbola x2 − y2 = 1. However, this is not apparent from their
definitions:

sinh θ =
eθ − e−θ

2
, cosh θ =

eθ + e−θ

2
,

tanh θ =
sinh θ

cosh θ
, csch θ =

1

sinh θ
, sech θ =

1

cosh θ
, coth θ =

cosh θ

sinh θ
.
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Basic Hyperbolic Trigonometric Identity

cosh2 θ − sinh2 θ =

(
eθ + e−θ

2

)2

−
(

eθ − e−θ

2

)2

=
e2θ + 2 + e−2θ

4
− e2θ − 2 + e−2θ

4

=
4

4
= 1.

If x = cosh θ and y = sinh θ, then the basic hyperbolic trig identity
states that x2 − y2 = 1, which is the equation of an hyperbola.
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Graphs of sinh θ and cosh θ

Figure: hyperbolic sine Figure: hyperbolic cosine
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Hyperbolic Trigonometric Indentities

The following identities can all be proved by putting all hyperbolic
trig functions in terms of eθ and e−θ and simplifying:

1. 1− tanh2 θ = sech2 θ

2. coth2 θ − 1 = csch2 θ

3. sinh(α + β) = sinh α coshβ + coshα sinhβ

4. cosh(α + β) = coshα coshβ + sinhα sinhβ

5. sinh 2θ = 2 sinh θ cosh θ

6. cosh 2θ = cosh2 θ + sinh2 θ

7. cosh2 θ =
1

2
(cosh(2θ) + 1)

8. sinh2 θ =
1

2
(cosh(2θ)− 1)
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Derivatives of sinh θ and cosh θ

sinh′ θ =
d

dθ

(
eθ − e−θ

2

)
=

eθ + e−θ

2
= cosh θ

Similarly,

cosh′ θ =
d

dθ

(
eθ + e−θ

2

)
=

eθ − e−θ

2
= sinh θ
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Derivatives of the Other Hyperbolic Trig Functions

You can also prove that

1. tanh′ θ = sech2 θ

2. coth′ θ = −csch2 θ

3. sech′θ = −sech θ tanh θ

4. csch′θ = −csch θ coth θ

Observe that all the formulas from the last few slides are very
similar to the corresponding regular trig identities you are already
familiar with, except for the odd plus or minus sign. In fact, you
shouldn’t memorize any of these formulas; you should simply be
aware of what the hyperbolic trig functions are, just in case they
show up in the homework, or in your other courses.
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Inverse Hyperbolic Trig Functions

Since the hyperbolic trig functions are expressed in terms of
exponentials, it should come as no surprise that the inverse
hyperbolic trig functions can be expressed in terms of logarithms.
For example,

y = sinh−1 x ⇔ x = sinh y ⇔ x =
ey − e−y

2

⇔ 2x = ey − 1

ey

⇔ 2xey = e2y − 1

( using the quadratic formula ) ⇔ ey =
2x ±

√
4x2 + 4

2
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Formula for y = sinh−1 x

So far, we have:

ey =
2x ±

√
4x2 + 4

2
= x ±

√
x2 + 1.

Since ey > 0 for all y , we must take

ey = x +
√

x2 + 1,

from which we get

sinh−1 x = y = ln(x +
√

x2 + 1).

There are similar formulas for the other five inverse hyperbolic trig
functions.
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Derivatives of Inverse Hyperbolic Trig Functions

These can be calculated implicitly, or directly.

y = sinh−1 x ⇒ sinh y = x ⇒ cosh y
dy

dx
= 1

⇒ dy

dx
=

1

cosh y

⇒ d sinh−1 x

dx
=

1√
1 + x2

Alternately,

d sinh−1 x

dx
=

d

dx
ln(x +

√
x2 + 1) =

1 + x/
√

x2 + 1

x +
√

x2 + 1
=

1√
1 + x2

.
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Six New Integration Formulas

1.

∫
du√

u2 + 1
= sinh−1 u + C

2.

∫
du√

u2 − 1
= cosh−1 u + C , if |u| > 1

3.

∫
du

1− u2
= tanh−1 u + C , if |u| < 1

4.

∫
du

1− u2
= coth−1 u + C , if |u| > 1

5.

∫
du

u
√

1− u2
= −sech−1 |u|+ C , if |u| < 1

6.

∫
du

u
√

1 + u2
= −csch−1 |u|+ C
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