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What is a Differential Equation?

Any equation that involves variables and derivatives is called a
differential equation. Both

1.
dy

dx
= x2

2.
dy

dx
= y

are examples of differential equations – very simple ones. If in
addition some initial condition – extra information – is given, then
the differential equation becomes an initial value problem. For
example, the following are both initial value problems:

1.
dy

dx
= x2; y = 1 if x = −1

2.
dy

dx
= y ; y = −6 if x = 4
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What Is a Solution to a Differential Equation?

Any function – y in terms of x , for the previous examples – that
satisfies the differential equation is called a solution to the
differential equation. We distinguish between general solutions and
particular solutions.

1. a general solution does not need to satisfy any initial
condition, and includes one or more arbitrary constants;

2. a particular solution is a solution to the differential equation
which also satisfies the initial conditions.

The graph of a solution to a differential equation is called an
integral curve.
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Example 1

y =
1

3
x3 + C is the general solution to the differential equation

dy

dx
= x2;

y =
1

3
x3 +

4

3

is the particular solution to the initial
value problem

DE:
dy

dx
= x2; IC: y = 1 if x = −1.

To find the particular solution from the general solution substitute
the initial conditions and solve for C : 1 = 1

3(−1)3 + C ⇔ C = 4
3 .
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Example 2

Verify that
y = −6 ex−4

is the solution to the initial value problem:

DE:
dy

dx
= y ; IC: y = −6 if x = 4.

Solution: if x = 4 then y = −6 e0 = −6; so the given function
satisfies the initial condition. Also

y = −6 ex−4 ⇒ dy

dx
= −6 ex−4

⇒ dy

dx
= y
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Motion In A Gravitational Field

As Galileo established, the acceleration due to gravity, neglecting
air resistance, is constant. Its value is

g = −9.8 m/sec2 or g = −32 ft/sec2.

If s is the position of a free-falling body at time t, then

d2s

dt2
= g .

This is known as a second order differential equation, since it
involves the second derivative of a function. To solve it, we
integrate twice:

ds

dt
=

∫
g dt = gt + v0, s =

∫
(gt + v0) dt =

1

2
gt2 + v0t + s0,

where v0 and s0 are initial velocity and position at time t = 0.
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Example 3

If a penny is dropped from the top of a 40-m tall building, how
long will it take to hit the ground? With what speed will it hit the
ground? Neglect air resistance.
Solution: Take v0 = 0, s0 = 40, g = −9.8. Then s = −4.9t2 + 40.
The penny hits the ground when

s = 0 ⇔ t ≈ ±2.86.

Take t ≈ 2.86 sec. Then

v ≈ −9.8(2.86) ≈ −28.03

So the penny hits the ground with a speed of 28.03m/sec, or
about 101 km per hr.
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A Harvesting Model

A simple model to describe the harvesting of a natural resource,
such as timber or fish, is given by

p′(t) = r p(t)− H,

where

I p(t) is the population of the resource at time t ≥ 0,

I r > 0 is the natural growth rate of the resource,

I H > 0 is the harvesting rate,

I and p0 = p(0) is the initial amount of the resource.

Verify that

p(t) =

(
p0 −

H

r

)
ert +

H

r

is a solution to this initial value problem.
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d
((

p0 − H
r

)
ert + H

r

)
dt

= r

(
p0 −

H

r

)
ert = (r p0 − H) ert ;

and

r p(t)−H = r

((
p0 −

H

r

)
ert +

H

r

)
−H = (r p0 − H) ert+H−H;

so, yes,
p′(t) = r p(t)− H.

As for the initial condition:

p(0) =

(
p0 −

H

r

)
+

H

r
= p0.
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Example 4

Plot graphs of

p(t) =

(
p0 −

H

r

)
ert +

H

r

for p0 = 1000, r = 0.1 and the
values of

H = 50, 75, 100, 125, 150.

Note: if the harvest rate is too great, H = 125, 150, (blue and
violet) the population of the resource will decline and eventually
become extinct; if the harvest rate is not too great, H = 50, 75,
(green and yellow) the population will increase.

Chapter 8 Lecture Notes MAT187H1F Lec0101 Burbulla

Chapter 8: Differential Equations

8.1 Basic Ideas
8.2 Direction Fields
8.3 Separable Differential Equations
8.4 Special First-Order Differential Equations
8.5 Modeling with Differential Equations

Equilibrium Solutions

If H = 100, red graph, then the population remains constant, at
p = 1000; it is called an equilibrium solution.

Equilibrium solutions to a differential equation can be found by
setting p′(t) identically to zero.That is,

p′(t) = 0

for all t. In this example, we have

p′(t) = r p(t)− H = 0 ⇔ H = r p(t).

In particular, taking t = 0 we obtain H = r p0. This is the relation
between the parameters r , p0 and H required to ensure an
equilibrium solution.
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What Is A Direction Field?

Consider the general differential equation

DE:
dy

dx
= F (x , y),

where F (x , y) is some expression in terms of x and y . This
equation tells you a lot about the graph of any solution to DE;
namely, any solution y = f (x) to DE that passes through the point
(x , y), does so with slope m = F (x , y). By plotting many of these
slopes – represented by short lines with slope m – for many
different points (x , y), you can produce what is called a direction
field, or a slope field. The slope field can be used to picture the
graphs of solutions to DE.
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Isoclines

The relation
m = F (x , y)

determines a graph in the Cartesian plane that joins together all
points (x , y) for which any solution to the

DE:
dy

dx
= F (x , y)

will pass with slope m. The graph of the relation m = F (x , y) is
called an isocline. In the two examples that follow the isoclines are
lines; but in general plotting the isoclines can be much more
difficult.
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Example 1:
dy

dx
= 2y

y = 0;m = 0

y = −2;m = −4CC CC CC CC CC CC CC CC CC CC CC CC

y = −1.5;m = −3BB BB BB BB BB BB BB BB BB BB BB BB

y = −1;m = −2A A A A A A A A A A A A

y = −.5;m = −1@ @ @ @ @ @ @ @ @ @ @ @

y = .5;m = 1� � � � � � � � � � � �

y = 1;m = 2� � � � � � � � � � � �

y = 1.5;m = 3�� �� �� �� �� �� �� �� �� �� �� ��

y = 2;m = 4�� �� �� �� �� �� �� �� �� �� �� ��
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y = 0 Is A Special Solution of
dy

dx
= 2y

y = 0 is an obvious solution to

dy

dx
= 2y ;

it is the equilibrium solution. On the direction field, the line y = 0
is itself a line of slope 0 while the value of m on that line is also 0.
This coincidence indicates that the function

y = 0

is a special solution to
dy

dx
= 2y .
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Example 2: dy
dx = x + y
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y = −x − 1 Is A Special Solution to
dy

dx
= x + y

y = −x − 1 is an obvious solution to

dy

dx
= x + y .

On the direction field, the line y = −x − 1 is itself a line of slope
−1 while the value of m on that line is also −1. This coincidence
indicates that the function

y = −x − 1

is a special solution to
dy

dx
= x + y .
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Separable Differential Equations

A differential equation is called separable if you can separate the
variables, so that only one variable is present on each side of the
equation. Here are two examples:

1.
dx

dt
= kx ⇔ 1

x
dx = k dt

2. A(y)
dy

dt
= −a

√
2gy ⇔ A(y)

√
y

dy = −a
√

2g dt

Then you can try to solve the differential equation by integrating
both sides of the equation. Note: not all DE’s are separable! Here
is an example of a differential equation that is not separable:

dy

dx
= x + y .
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Example 1: DE:
dy

dx
= y 2; IC: y = 2 when x = 0.

Solution: separate variables.

dy

dx
= y2 ⇔ 1

y2
dy = dx , if y 6= 0

⇔
∫

1

y2
dy =

∫
dx

⇔ −1

y
= x + C

⇔ y = − 1

x + C
, the general solution.

To find C , use IC: 2 = − 1

0 + C
⇔ C = −1

2
.
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Example 1, Continued

DE:
dy

dx
= y2; IC: y = 0 when x = 0.

Solution: y = 0, obviously! This is the function y = 0, for all x .
It is called an equilibrium solution. That is, it is a constant
function that satisfies the DE and the IC. You can find it by setting

dy

dx
= 0,

and solving for y . The method of the previous slide won’t work,
since the previous slide assumed y 6= 0. Note that this particular
solution is not included in the general solution to DE:

y = − 1

x + C
= − 1

C
, if x = 0.

But y will never be 0, no matter what C is.
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Integral Curves for DE:
dy

dx
= y 2

Note that all curves are
asymptotic to the equi-
librium solution y = 0.
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Example 2

DE:
dy

dx
= (y2 + 1)

(
xe−x

)
; IC: y = 1 when x = 0.

Solution: separate variables.

dy

dx
= (y2 + 1)

(
xe−x

)
⇔ 1

1 + y2
dy = xe−x dx

⇔
∫

1

1 + y2
dy =

∫
xe−x dx

⇔ tan−1 y = −xe−x − e−x + C

To find C , use IC: tan−1 1 = −1 + C ⇔ C = π
4 + 1. So

y = tan
(
1− xe−x − e−x +

π

4

)
.
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The Graph of y = tan
(
1− xe−x − e−x +

π

4

)
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Natural Growth Equation

Let x be the amount of some substance present at time t. The
following differential equation

dx

dt
= kx , k 6= 0

has many important applications. It can be interpreted as

dx

dt︸︷︷︸
the rate of change

= k︸︷︷︸
is proportional to

x︸︷︷︸
the amount present

.

In this case, the substance is said to be growing naturally.
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Solution to the Natural Growth Equation

dx

dt
= kx ⇔

∫
1

x
dx =

∫
k dt

⇔ ln |x | = kt + C

⇔ |x | = ekt+C

⇔ |x | = eC ekt

⇔ x = ±eC ekt

⇔ x = Aekt , for arbitrary constant A 6= 0

If in addition x = x0 when t = 0, then A = x0, and

x = x0e
kt .
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Exponential Growth: k > 0, x0 > 0

In this case the value of x is always increasing. Two key features:

1. Doubling time:

x = 2x0 ⇔ x0e
kt = 2x0

⇔ ekt = 2

⇔ kt = ln 2

⇔ t =
ln 2

k

2. lim
t→∞

x = ∞

Examples: exponential population growth; compound interest.
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Example 3; This Is A Repeat of Example 1 in Sec 6.9

The population of a town is growing exponentially so that its
population doubles every 10 years. The population of the town was
10,000 in 1995; what will its population be in the year 2020?
Solution: Let x be the population of the town at time t, where
time is measured in years since 1995. So t = 0 corresponds to
1995, and x0 = 10 000. Use the doubling time to find k :

10 =
ln 2

k
⇔ k =

ln 2

10
≈ 0.0693.

So x = x0e
kt = 10 000e

ln 2
10

t = 10 000 · 2
t
10 , or x ≈ 10 000e0.0693t .

Now let t = 25 :

x = 10 000 · 2
25
10 = 10 000 · 22.5 ≈ 56 569.
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Exponential Decay: k < 0, x0 > 0

In this case the value of x is always decreasing.

I Half Life:

x =
1

2
x0 ⇔ x0e

kt =
1

2
x0

⇔ ekt = 2−1

⇔ kt = − ln 2

⇔ t = − ln 2

k

I Long term value:
lim

t→∞
x = 0

Example: radioactive decay.
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Example 4: Carbon-14 Dating (Repeat of Ex 2 in Sec 6.9)

The half life of carbon-14 is 5,700 years. If a specimen of charcoal
found in Stonehenge contains only 63% of its original carbon-14,
how old is Stonehenge? Solution: Let x be the amount of
carbon-14 present in the charcoal at time t, with t in years since
the charcoal was created. Use the half life to find k :

5 700 = − ln 2

k
⇔ k = − ln 2

5 700
≈ −0.0001216.

Then x = x0e
kt = x0e

−0.0001216t . Let x = 0.63x0, and solve for t :

0.63x0 = x0e
−0.0001216t ⇔ 0.63 = e−0.0001216t

⇔ ln 0.63 = −0.0001216t

⇔ t = − ln 0.63

0.0001216
≈ 3 800
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Exponential Growth is Not Realistic

Suppose k > 0.

x = x0e
kt

⇒ lim
t→∞

x = ∞

It is not realistic for a population to
grow exponentially for ever; eventu-
ally some limits to growth will take
effect.
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Logistic Growth is More Realistic

Logistic growth is more realistic; it includes built-in limits to
growth. The differential equation for logistic growth is

dx

dt
= kx − k

L
x2 = kx

(
1− x

L

)
,

for some positive constants k and L. It is the DE for exponential
growth with an additional second degree term. Observe that x = L
is an equilibrium solution. It is a stable equilibrium solution since

dx

dt
> 0 if x < L and

dx

dt
< 0 if x > L

and it can be shown that

lim
t→∞

x = L.
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Solving the DE for Logistic Growth

The differential equation for logistic growth,

dx

dt
= kx − k

L
x2,

for some positive constants k and L, can be solved by separating
variables. For simplicity, we shall assume 0 < x < L.

dx

dt
= kx

(L− x)

L
⇒

∫
L

x(L− x)
dx =

∫
k dt

(partial fractions) ⇒
∫ (

1

x
+

1

L− x

)
dx = kt + c

⇒ ln x − ln(L− x) = kt + c

⇒ ln

(
x

L− x

)
= kt + c
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The Logistic Equation

⇒ x

L− x
= ekt+c = Aekt , for A = ec

⇒ L

x
− 1 = Be−kt , for B = 1/A

⇒ L

x
= 1 + Be−kt ⇒ x

L
=

1

1 + Be−kt

⇒ x =
L

1 + Be−kt

which is called the logistic equation. Note:

1. lim
t→∞

x = lim
t→∞

L

1 + Be−kt
=

L

1 + 0
= L.

2. x = x0 if t = 0 ⇒ x0 =
L

1 + B
⇔ B =

L

x0
− 1.
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The Inflection Point of the Logistic Curve

It’s not necessary to calculate the second derivative directly. We
started with

dx

dt
= kx − k

L
x2;

whence

d2x

dt2
= k

dx

dt
− k

L
· 2x

dx

dt
= k

dx

dt

(
1− 2x

L

)
.

So
d2x

dt2
= 0 ⇔ x =

L

2
.
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Example 5: x =
10

1 + 3e−0.8t
; k = 0.8; L = 10
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Example 6

The rate at which a rumour spreads through a group of
stockbrokers is proportional to the product of the number who
have heard the rumour and the number who have not yet heard of
the rumour. 25% of the stockbrokers have heard of the rumour at
1 PM. 30 min later, 40 % of all stockbrokers have heard of it. How
long will it take until 75% of all stockbrokers have heard of the
rumour? 95% ?
Solution: Let L = 1 = 100%; let x be the percentage of all
stockbrokers who have heard of the rumor at time t.

dx

dt
= kx(1− x) ⇒ x =

1

1 + Be−kt
.

Since x0 = 25% at t = 0, we have
1

4
=

1

1 + B
⇔ B = 3.
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To find k, use the fact that x = 40% at t = 30 :

2

5
=

1

1 + 3e−30k
⇔ 5

2
= 1 + 3e−30k

⇔ 3

2
= 3e−30k

⇔ 2 = e30k

⇔ 30k = ln 2

⇔ k =
ln 2

30
≈ 0.0231049

Thus

x =
1

1 + 3 · e−t ln 2/30
=

1

1 + 3 · 2−t/30
.
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So far,

x =
1

1 + 3 · 2−t/30
.

Let x = 75% and solve for t :

3

4
=

1

1 + 3 · 2−t/30
⇔ 4

3
= 1 + 3 · 2−t/30

⇔ 1

3
= 3 · 2−t/30

⇔ 9 = 2t/30

⇔ t

30
=

ln 9

ln 2

⇔ t = 30

(
ln 9

ln 2

)
≈ 95.1

So it will take 95.1 min, or until approximately 2:35 PM, until 75%
of all stockbrokers have heard of the rumour.
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Graph for Example 6: x =
1

1 + 3 · 2−t/30

It will take considerably longer un-
til 95% of all stockbrokers have
heard of the rumour:

19

20
= x ⇔ t = 30

(
ln 57

ln 2

)
≈ 175.
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Newton’s Law of Cooling

Suppose an object with temperature T , at time t, is in a room
with constant ambient temperature A. Let the temperature of the
object at time t = 0 be T0. Newton’s Law of Cooling, or heating,

states that

dT

dt
= −k(T − A),

for some positive constant k. That is,
the rate of change of T is propor-
tional to the difference of T and the
ambient temperature A.

T

A

Chapter 8 Lecture Notes MAT187H1F Lec0101 Burbulla

Chapter 8: Differential Equations

8.1 Basic Ideas
8.2 Direction Fields
8.3 Separable Differential Equations
8.4 Special First-Order Differential Equations
8.5 Modeling with Differential Equations

This differential equation can be solved by separating variables:

dT

dt
= −k(T − A) ⇒ 1

T − A
dT = −k dt

⇒
∫

1

T − A
dT = −

∫
k dt

⇒ ln |T − A| = −kt + C

To find C use the initial condition:

ln |T0 − A| = −k · 0 + C ⇔ C = ln |T0 − A|.

To solve for T in terms of t, we consider two cases:

1. cooling: T0 > A

2. heating: T0 < A
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Case 1: T0 > A

In this case the object will cool until it is eventually the same
temperature as the surrounding medium.

ln |T − A| = −kt + ln |T0 − A| ⇒ ln(T − A) = −kt + ln(T0 − A)

⇒ T − A = e−kt+ln(T0−A)

⇒ T − A = (T0 − A)e−kt

⇒ T = A + (T0 − A)e−kt

Note that

lim
t→∞

T = lim
t→∞

(
A + (T0 − A)e−kt

)
= A + 0 = A
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Case 2: T0 < A

In this case the object will heat up until it is eventually the same
temperature as the surrounding medium.

ln |T − A| = −kt + ln |T0 − A| ⇒ ln(A− T ) = −kt + ln(A− T0)

⇒ A− T = e−kt+ln(A−T0)

⇒ A− T = (A− T0)e
−kt

⇒ −T = −A + (A− T0)e
−kt

⇒ T = A + (T0 − A)e−kt

This solution looks exactly the same as the solution in Case 1. The
difference is that now T0 − A < 0, so that as time passes T will
increase, instead of decrease.
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Example 1

A freshly baked cake is taken out of the oven at 11 AM with
temperature 200 C, and put on a table to cool, in a room with
constant temperature 20 C. Fifteen minutes later the temperature
of the cake is 125 C. How long will it take until the temperature of
the cake is 25 C ?
Solution: We have T0 = 200,A = 20. Thus

T = 20 + 180e−kt .

To find k, let t = 15,T = 125 :

125 = 20+180e−15k ⇔ e15k =
180

105
⇔ k =

1

15
ln

(
12

7

)
≈ 0.03593
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Graph for Example 1

Now let T = 25 and solve for t :

25 = 20 + 180e−kt

⇒ ekt =
180

5
= 36

⇒ t =
1

k
ln 36

⇒ t ≈ 99.7 min

So it will take about 1 hr and 40 min for the cake to cool to 25 C.
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Example 2

A metal shovel taken from outside, at temperature -10 C, is put in
a porch with constant air temperature 15 C. After 5 min the
temperature of the shovel is -5 C. When will the temperature of
the shovel be 10 C?
Solution: (I will solve this without finding the formula for T .) We
have T0 = −10,A = 15.

dT

dt
= −k(T − 15) ⇒

∫
1

T − 15
dT = −

∫
k dt

⇒ ln |T − 15| = −kt + C

To find C , let t = 0,T = −10 : C = ln | − 10− 15| = ln 25.
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To find k, let t = 5,T = −5 :

ln | − 5− 15| = −5k + ln 25 ⇒ 5k = ln 25− ln 20

⇒ k =
1

5
ln

(
5

4

)
≈ 0.04463

Finally, let T = 10 and solve for t :

ln |10− 15| = − t

5
ln

(
5

4

)
+ ln 25 ⇒ t

5
ln

(
5

4

)
= ln 25− ln 5

⇒ t

5
ln 1.25 = ln 5

⇒ t =
5 ln 5

ln 1.25
≈ 36.1
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First Order Linear Differential Equation

Newton’s Law of Cooling is a special case of the general first order
linear differential equation

DE:
dy

dt
= k y + b,

where y is a function of t, and k 6= 0 and b are parameters. It can
be solved by separating variables, as above. Or, since

d(y + b
k )

dt
=

dy

dt
= k

(
y +

b

k

)
,

it can be solved by using the solution for exponential growth:

y +
b

k
= C ekt ⇒ y = C ekt − b

k
,

for some arbitrary constant C , depending on initial conditions.
Suppose y = y0 when t = 0; then y0 = C − b

k ⇔ C = y0 + b
k .
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Alternate Solution

DE: y ′ = k y + b ⇒ y ′′ = k y ′

Using the solution for exponential growth, applied to y ′, we have

y ′ = y ′0e
kt .

From DE , y ′0 = k y0 + b, so y ′ = (k y0 + b) ekt . Integrating with
respect to t gives

y =

(
y0 +

b

k

)
ekt + D.

Finally, y = y0 when t = 0, so

D = −b

k
.
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Example 3

A drug administered intravenously to a patient at a rate of 6 mg/hr
decays exponentially in the blood at a rate of 3% per hr. If initially
none of the drug was present in the patient’s bloodstream, how
much of the drug will there be in the patient’s bloodstream in the
long run? How long will it take until the amount of drug in the
patient’s bloodstream reaches 95% of this stable equilibrium value?

Solution: let y(t) be the amount of the drug in the patient’s
bloodstream at time t, measured in hours, with initial value
y(0) = 0. The differential equation is

dy

dt
= −0.03 y + 6.

This is a first order linear differential equation; its general solution
is
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y = C e−0.03t +
6

0.03
= C e−0.03t + 200.

Since y0 = 0, we have C = −200. So

y = 200
(
1− e−0.03t

)
.

The graph of y is to the right.

The stable equilibrium solution is y = 200, so in the long run there
will be 200 mg of the drug in the patient’s bloodstream. To reach
95% of this steady-state level it will take about 100 hours:

190 = 200(1− e−0.03t) ⇔ 0.95 = 1− e−0.03t ⇔ e−0.03t = 0.05

⇔ e0.03t = 20 ⇔ 0.03t = ln 20 ⇔ t ≈ 99.858
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Stable and Unstable Equilibrium Solutions

The equilibrium solution to the general first order linear differential
equation

dy

dt
= k y + b is the constant function y = −b

k
.

1. If k > 0, then it is an unstable equilibrium solution to DE since

y > −b

k
⇒ dy

dt
> 0; y < −b

k
⇒ dy

dt
< 0.

2. If k < 0, then it is a stable equilibrium solution to DE since

y > −b

k
⇒ dy

dt
< 0; y < −b

k
⇒ dy

dt
> 0; and lim

t→∞
y = −b

k
.
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Method of the Integrating Factor

DE:
dy

dx
+ P(x) y = Q(x).

Multiply both sides of DE by the integrating factor, µ = e
R

P(x) dx :

dy

dx
e

R
P(x) dx +

(
P(x)e

R
P(x) dx

)
y = Q(x) e

R
P(x) dx

⇒ d

dx

(
y e

R
P(x) dx

)
= Q(x) e

R
P(x) dx

⇒ y e
R

P(x) dx =

∫ (
Q(x) e

R
P(x) dx

)
dx

⇒ y =

∫ (
Q(x) e

R
P(x) dx

)
dx

e
R

P(x) dx

Chapter 8 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 8: Differential Equations

8.1 Basic Ideas
8.2 Direction Fields
8.3 Separable Differential Equations
8.4 Special First-Order Differential Equations
8.5 Modeling with Differential Equations

Example 4

Consider the non-separable differential equation

dy

dx
= x + y ⇔ dy

dx
− y = x .

The integrating factor is

µ = e
R
−dx = e−x

and

ye−x =

∫
xe−x dx = −xe−x − e−x + C , by parts.

So the general solution is

y = −x − 1 + C ex .
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Graphs for Example 4, C = −10,−9, . . . , 9, 10
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Example 5

For
dy

dx
+

2

x
y = x3

the integrating factor is

µ = e
R

2
x

dx = e2 ln |x | = |x |2 = x2.

So

x2y =

∫
x5 dx =

1

6
x6 + C

and

y =
1

6
x4 +

C

x2
.
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Graphs for Example 5, C = −10,−9, . . . , 9, 10

Chapter 8 Lecture Notes MAT187H1F Lec0101 Burbulla



Chapter 8: Differential Equations

8.1 Basic Ideas
8.2 Direction Fields
8.3 Separable Differential Equations
8.4 Special First-Order Differential Equations
8.5 Modeling with Differential Equations

Example 6: cos x
dy

dx
+ y sin x = cos2 x

First divide the whole equation through by cos x :

dy

dx
+ y tan x = cos x .

The integrating factor is

µ = e
R

tan x dx = e ln | sec x | = | sec x |.

Pick either of ± sec x ; it makes no difference.

y =

∫
cos x sec x dx

sec x
=

∫
dx

sec x
=

x + C

sec x
= x cos x + C cos x .
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Graphs for Example 6, C = −10,−9, . . . , 9, 10
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Mixing Problems

Let the amount of solute in a mixing tank at time t be x . Let the
volume of the solution in the tank at time t be V . More solution is
poured into the tank from above, mixed with the solution in the
tank, and then poured out from the bottom of the tank.

-

?

mixing tank

Let the rate of inflow be ri with concen-
tration ci ; let the rate of outflow be ro
with concentration co . Then

dx

dt
= rici − roco

= rici − ro
x

V
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We then have

DE:
dx

dt
+

ro
V

x = rici ; IC: x = x0,V = V0 if t = 0

There are two cases:

1. if ri = ro , then V is constant, and

dx

dt
+

ro
V

x = rici

can be solved by separating variables.

2. if ri 6= ro , then V = V0 + (ri − ro)t and

dx

dt
+

ro
V

x = rici

must be solved by other methods.
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Example 1

Consider a reservoir with a volume of 1000 m3 and an initial
pollutant concentration of 1%. There is a daily inflow of 50 m3 of
water with a pollutant concentration of 0.05%. The daily outflow
rate of the well-mixed water from the reservoir is also 50 m3. How
long will it take to reduce the pollutant concentration in the
reservoir to 0.5% ?
Solution: We have ri = ro = 50,V = 1000, ci = 0.05% = 0.0005.

x0 = 1% of 1000 = 10.

The pollutant concentration in the tank is 0.5% if

x = 0.5% of 1000 = 5.

Chapter 8 Lecture Notes MAT187H1F Lec0101 Burbulla

Chapter 8: Differential Equations

8.1 Basic Ideas
8.2 Direction Fields
8.3 Separable Differential Equations
8.4 Special First-Order Differential Equations
8.5 Modeling with Differential Equations

dx

dt
+

ro
V

x = rici ⇒ dx

dt
+

50

1000
x = 50(0.0005)

⇒ dx

dt
+

1

20
x =

1

40

⇒ dx

dt
= − 1

40
(2x − 1)

⇒
∫

1

2x − 1
dx = −

∫
1

40
dt

⇒ 1

2
ln |2x − 1| = − 1

40
t + C

x0 = 10 ⇒ C = 1
2 ln 19. Let x = 5 and solve for t :

1

40
t =

1

2
ln 19− 1

2
ln 9 ⇒ t = 20 ln

19

9
≈ 14.9
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Alternate Solution to Example 1

DE:
dx

dt
+

1

20
x =

1

40
; x0 = 10 if t = 0.

The integrating factor is

µ = e
R

1
20

dt = et/20,

so

x =

∫
1
40et/20 dt

et/20
= e−t/20

(
20

40
et/20 + C

)
=

1

2
+ Ce−t/20

x0 = 10 ⇒ 10 =
1

2
+ C ⇒ C =

19

2
⇒ x =

1

2
+

19

2
e−t/20.
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Graph for Example 1

Letting x = 5 and solving for t gives the same answer as before:

5 =
1

2
+

19

2
e−t/20 ⇒ 9

2
=

19

2
e−t/20 ⇒ et/20 =

19

9
⇒ t = 20 ln

19

9
.
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Example 2

A 120 gal tank initially contains 90 lb of salt in 90 gal of water.
Brine – salt water – containing 2 lb/gal of salt flows into the tank
at a rate of 4 gal/min. The well-stirred mixture flows out at a rate
of 3 gal/min. How much salt does the tank contain when it is full?
Solution: We have: V0 = 90, x0 = 90, ri = 4, ro = 3, ci = 2. Thus
V = 90 + t, and

dx

dt
+

3

90 + t
x = 8.

The integrating factor is

µ = e
R

3
90+t

dt = e3 ln(90+t) = (90 + t)3.

Thus x =∫
8(90 + t)3 dt

(90 + t)3
=

8

(90 + t)3

(
1

4
(90 + t)4 + C

)
= 2(90+t)+

8C

(90 + t)3
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x0 = 90 ⇒ 90 = 180 +
8C

903

⇒ 8C = −904

Therefore

x = 2(90 + t)− 904

(90 + t)3
.

The tank is full when V = 120 ⇔ 90 + t = 120 ⇔ t = 30. Then

x = 2(90 + 30)− 904

(90 + 30)3
≈ 202.
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Motion With Resistance

Air resistance is typically proportional to the speed, in the direction
opposed to motion. Including air resistance is much more realistic,
but much messier! To find the equation of motion with resistance,
we start with

ma = F = −mg − cv ,

where g is the acceleration due to gravity, m is the mass of the
falling object, and c is a positive constant.

ma = F = −mg − cv ⇒ dv

dt
= −g − kv , for k = c/m

⇒ dv

dt
+ kv = −g ,

which has integrating factor µ = e
R

k dt = ekt .
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Terminal Velocity

Thus

v =
−

∫
gekt dt

ekt
=
−g

k ekt + C

ekt
= −g

k
+ Ce−kt .

If v = v0 when t = 0, then

v0 = −g

k
+ C ⇔ C = v0 +

g

k
.

Thus
v = −g

k
+

(
v0 +

g

k

)
e−kt .

The terminal velocity is

lim
t→∞

v = lim
t→∞

(
−g

k
+

(
v0 +

g

k

)
e−kt

)
= −g

k
.
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Since v = dx
dt , we can solve for x :

x =

∫
v dt =

∫ (
−g

k
+

(
v0 +

g

k

)
e−kt

)
dt

= −g

k
t − 1

k

(
v0 +

g

k

)
e−kt + A

If x = x0 when t = 0, then

A = x0 +
1

k

(
v0 +

g

k

)
,

as you can check. So the equation of motion with air resistance is

x = x0 −
g

k
t +

1

k

(
v0 +

g

k

) (
1− e−kt

)
.
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Example 3

Let

x0 = 100, v0 = 0, k = 1.

Let’s compare the trajectories with
and without air resistance. That is,
compare graphically

x = 100− 1

2
gt2

with

x = 100− g
(
t + e−t − 1

)
.
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Derivation of Torricelli’s Law

∆yA(y)

y

x

Suppose a tank is full of liquid. Tor-
ricelli’s Law is a differential equation
that describes how the liquid drains
out of the tank. Let A(y) be the
cross-sectional area of the tank at
height y above the bottom of the
tank. Let ∆y be the decrease in liq-
uid level over a short time interval ∆t.
We have ∆V ≈ A(y)∆y . ∆V < 0,
since the liquid level is decreasing.
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Torricelli’s Law: A(y)dy
dt = −a

√
2gy

Let a be the area of a small exit hole at the bottom of the tank; let
g be the acceleration due to gravity. In the absence of friction, a
drop of liquid starting from rest at height y will fall with
acceleration g and reach the exit hole with speed v =

√
2gy . So in

the short time interval ∆t, the volume of liquid leaving through
the exit hole is a

√
2gy∆t. Thus

A(y)∆y ≈ ∆V ≈ −a
√

2gy∆t ⇔ A(y)
∆y

∆t
≈ ∆V

∆t
≈ −a

√
2gy .

As ∆t → 0, we obtain

A(y)
dy

dt
=

dV

dt
= −a

√
2gy ⇒ A(y)

dy

dt
= −a

√
2gy .
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Mass On A Spring; Mechanical Vibrations
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A
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�
u x-axism

1. x is the position of a mass on a spring at time t.

2. x is measured as displacement from the equilibrium position,
x = 0.

3. m is the mass of the object on the spring.

4. c depends on the friction of the surrounding medium.

5. k is the spring constant, from Hooke’s Law.
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Differential Equation for a Mass on a Spring

We do a force analysis, considering the resisting force of the
surrounding medium, with c representing the coefficient of friction;
and the restoring force of the spring, with k representing the spring
constant.

F = ma = Fresisting + Frestoring
= −cv − kx

⇔ m
d2x

dt2
= −c

dx

dt
− kx

⇔ m
d2x

dt2
+ c

dx

dt
+ kx = 0, or mx ′′(t) + cx ′(t) + kx(t) = 0

This differential equation is second order, linear, homogeneous,
with constant coefficients. We’ll solve this later, in Chapter 16.
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