MAT246H1S Lec0101 Burbulla

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's Theorem

Winter 2019

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's The MAT246H1S Lec0101 Burbulla

Chapter 5: Fermat's Theorem and Wilson's Theorem

Chapter 5: Fermat's Theorem and Wilson's Theorem

5.1: Fermat's Theorem

5.2: Wilson's Theorem

Congruency Modulo p

Let p be a prime number. Congruency modulo p has many interesting properties, compared to congruency modulo m, for m composite. For example, consider multiplication modulo 7:

•	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Every $r \in \{1, 2, 3, 4, 5, 6\}$ has a 'reciprocal' in $\{1, 2, 3, 4, 5, 6\}$: $1^{-1} = 1, 2^{-1} = 4, 3^{-1} = 5, 4^{-1} = 2, 5^{-1} = 3, \text{ and } 6^{-1} = 6.$

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's The

MAT246H1S Lec0101 Burbulla

Chapter 5: Fermat's Theorem and Wilson's Theorem

5.1: Fermat's Theorem5.2: Wilson's Theorem

Compare with multiplication modulo 6:

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

In this case we can write $1^{-1}=1$ and $5^{-1}=5$; but the other non-zero numbers in $\{1,2,3,4,5\}$, namely 2, 3 and 4, are divisors of zero:

$$2 \cdot 3 \equiv 0 \pmod{6}$$
 and $3 \cdot 4 \equiv 0 \pmod{6}$.

In practice, this means that it will be much easier to solve congruencies modulo p, where p is prime, than it will be to solve congruencies modulo m, where m is composite.

Theorem 5.1.1

First we find conditions under which "cancelling" common factors is valid, modulo p.

Theorem: Let p be a prime and suppose that a is not divisible by p. If $ab \equiv ac \pmod{p}$, then $b \equiv c \pmod{p}$.

Proof: $ab \equiv ac \pmod{p}$ means that $p \mid (ab - ac)$. Factoring gives

$$p | a(b-c).$$

Since p is prime, $p \mid a$ or $p \mid b - c$. But we are given that p does not divide a, so we must have

$$p \mid b - c \Leftrightarrow b \equiv c \pmod{p}$$
.

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's The MAT246H1S Lec0101 Burbulla

Chapter 5: Fermat's Theorem and Wilson's Theorem

5.1: Fermat's Theorem 5.2: Wilson's Theorem

Fermat's Theorem

Theorem 5.1.2: if p is a prime number and a is any natural number not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof: recall that no two numbers in the set $\{1,2,\ldots,p-1\}$ are equivalent modulo p to each other. And if p does not divide a then neither are any two numbers in the set $\{a\cdot 1,a\cdot 2,\ldots,a\cdot (p-1)\}$, by Theorem 5.1.1. On the other hand, since p does not divide a nor any of the numbers $1,2,\ldots,p-1$, each of the numbers in the set $\{a\cdot 1,a\cdot 2,\ldots,a\cdot (p-1)\}$ is congruent to exactly one number in the set $\{1,2,\ldots,p-1\}$, by Theorem 3.1.4. Thus

$$a^{p-1}\cdot 1\cdot 2\cdots (p-1)=a\cdot 1\cdot a\cdot 2\cdots a\cdot (p-1)\equiv 1\cdot 2\cdots (p-1)\ (\bmod\ p).$$

Now use Theorem 5.1.1, repeatedly, to cancel $2, 3, \ldots, p-1$ and conclude that

$$a^{p-1} \equiv 1 \; (\bmod p).$$

Example 1

What is the remainder of 7^{8152} when divided by 13?

Solution: by Fermat's Theorem $7^{12} \equiv 1 \pmod{13}$. Note that $8152 = 679 \cdot 12 + 4$. Thus

$$7^{8152} = (7^{12})^{679} \cdot 7^4 \equiv 1^{679} \cdot 7^4 \pmod{13}$$

$$\equiv 1 \cdot 7^4 \pmod{13}$$

$$\equiv (49)^2 \pmod{13}$$

$$\equiv (10)^2 \pmod{13}$$

$$\equiv (-3)^2 \pmod{13}$$

$$\equiv 9 \pmod{13}$$

So the remainder is 9.

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's The MAT246H1S Lec0101 Burbulla

Chapter 5: Fermat's Theorem and Wilson's Theorem

5.1: Fermat's Theorem 5.2: Wilson's Theorem

Two Corollaries

Corollary 5.1.3: if p is a prime number and a is any natural number, then $a^p \equiv a \pmod{p}$.

Proof: if $a \equiv 0 \pmod{p}$, then $a^p \equiv 0 \pmod{p}$ as well, and the equation holds. If p does not divide a, then by Fermat's Theorem

$$a^{p-1} \equiv 1 \pmod{p}$$
, implying $a^p \equiv a \pmod{p}$.

Corollary 5.1.5: if p is a prime and a is any natural number not divisible by p, then there is a natural number x such that $a \cdot x \equiv 1 \pmod{p}$.

Proof: if p=2 then a must be odd, and x=1 will do. If p>2, let $x=a^{p-2}$ and use Fermat's Theorem:

$$a \cdot x = a \cdot a^{p-2} = a^{p-1} \equiv 1 \pmod{p}$$
.

Multiplicative Inverses, Modulo p

Definition 5.1.4: a multiplicative inverse modulo p for a natural number a is a natural number b such that $a \cdot b \equiv 1 \pmod{p}$.

- Corollary 5.1.5 says that any natural number a not divisible by p has a multiplicative inverse modulo p. For example, if p=7, then the example at the beginning of this section showed that the multiplicative inverse of 2 is 4, and that the multiplicative inverse of 3 is $5:2\cdot 4=8\equiv 1\pmod{7}$ and $3\cdot 5=15\equiv 1\pmod{7}$.
- Natural numbers can have inverses modulo m, if m is composite, but need not. For example, if m=6 we saw that 2 has no multiplicative inverse modulo 6, but that 5 has a multiplicative inverse, namely itself: $5 \cdot 5 = 25 \equiv 1 \pmod{6}$.

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's The MAT246H1S Lec0101 Burbulla

Chapter 5: Fermat's Theorem and Wilson's Theorem

5.1: Fermat's Theorem 5.2: Wilson's Theorem

When Is a Multiplicative Inverse Equal to Itself?

Theorem 5.1.7: if p is a prime number and x is an integer satisfying $x^2 \equiv 1 \pmod{p}$, then $x \equiv \pm 1 \pmod{p}$.

Proof: we use Corollary 4.1.3.

$$x^{2} \equiv 1 \pmod{p} \quad \Rightarrow \quad p \mid (x^{2} - 1) = (x - 1)(x + 1)$$

$$\Rightarrow \quad p \mid x - 1 \text{ or } p \mid x + 1$$

$$\Rightarrow \quad x \equiv 1 \pmod{p} \text{ or } x \equiv -1 \pmod{p}$$

Note: $-1 \equiv p - 1 \pmod{p}$, so Corollary 4.1.3 can also be stated as

$$x^2 \equiv 1 \pmod{p} \Rightarrow x \equiv 1 \pmod{p}$$
 or $x \equiv p - 1 \pmod{p}$.

Lemma 5.1.6

This lemma will be useful in the proof of Wilson's Theorem.

Lemma 5.1.6: let p be a prime. If a and c have the same multiplicative inverse modulo p, then $a \equiv c \pmod{p}$.

Proof: suppose $a \cdot b \equiv 1 \pmod{p}$ and $c \cdot b \equiv 1 \pmod{p}$. Then

$$c \cdot b \equiv 1 \pmod{p}$$
 \Rightarrow $c \cdot b \cdot a \equiv 1 \cdot a \pmod{p}$
 \Rightarrow $c(b \cdot a) \equiv a \pmod{p}$
 \Rightarrow $c \cdot 1 \equiv a \pmod{p}$
 \Rightarrow $c \equiv a \pmod{p}$

Comment: aside from this lemma, there are other observations that will be useful in proving Wilson's Theorem. They can all be stated as properties of the set $R = \{1, 2, ..., p - 2, p - 1\}$.

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's The MAT246H1S Lec0101 Burbulla

Chapter 5: Fermat's Theorem and Wilson's Theorem

5.1: Fermat's Theorem5.2: Wilson's Theorem

Properties of the Set $R = \{1, 2, \dots, p-2, p-1\}$

- ▶ 1: $(p-1)! = 1 \cdot 2 \cdot 3 \cdots (p-2) \cdot (p-1)$, the product of all the elements in R.
- ▶ 2: every number in R is distinct, modulo p, as we saw in the proof of Theorem 3.1.3.
- ▶ 3: each number in *R* has a multiplicative inverse, modulo *p*, by Corollary 5.1.5.
- ▶ 4: the multiplicative inverse of each number in *R* is congruent to one of the numbers in *R*, by Theorem 3.1.4.
- ▶ 5: by Lemma 5.1.6, no two distinct numbers in *R* can have the same multiplicative inverse.
- ▶ 6: 1 and p-1 are the only numbers in R that are their own multiplicative inverses, by Theorem 5.1.7.

- ▶ 7: each number in the set $\{2, 3, ..., p-3, p-2\}$ has a multiplicative inverse in that set, and the number differs from its multiplicative inverse.
- ▶ 8: if x is the multiplicative inverse of y, then y is the multiplicative inverse of x, and vice-versa; thus the numbers in the set $\{2,3,\ldots,p-3,p-2\}$ come in pairs, each pair of which consists of numbers that are multiplicative inverses of each other.
- 9: the product of all the numbers in the set

$$\{2,3,\ldots,p-3,p-2\}$$

is congruent to 1, modulo p, by item 8.

We now have enough facts to prove Wilson's Theorem; the key one is Item 9.

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's The MAT246H1S Lec0101 Burbulla

Chapter 5: Fermat's Theorem and Wilson's Theorem

5.1: Fermat's Theorem5.2: Wilson's Theorem

Wilson's Theorem

Theorem 5.2.1: if p is prime then $(p-1)! + 1 \equiv 0 \pmod{p}$.

Proof: if p = 2 the theorem is obviously true. Now assume p > 2.

$$\begin{array}{rcl} (p-1)! & = & 1 \cdot 2 \cdots (p-2) \cdot (p-1) \\ & \equiv & 1 \cdot \underbrace{2 \cdots (p-2)}_{\text{congruent to } 1} \cdot (p-1) \; (\mathsf{mod} \, p) \\ & \equiv & (p-1) \; (\mathsf{mod} \, p) \\ & \equiv & -1 \; (\mathsf{mod} \, p) \\ \Rightarrow (p-1)! + 1 \; \equiv & 0 \; (\mathsf{mod} \, p) \end{array}$$

Example: for example, if p = 7, $6! + 1 = 721 \equiv 0 \pmod{7}$.

Theorem 5.2.2

What happens to the conclusion of Wilson's Theorem if m is composite? We obtain a very different result:

Theorem: if m is a composite number larger than 4, then $(m-1)! \equiv 0 \pmod{m}$; that is, $(m-1)! + 1 \equiv 1 \pmod{m}$.

Proof: let $m = a \cdot b$, where 1 < a, b < m. There are two cases:

- 1. $a \neq b$: then a and b both divide (m-1)!, so $ab \mid (m-1)!$ and $(m-1)! \equiv 0 \pmod{m}$.
- 2. a=b: then $m=a^2$. If a is not prime, then we can reduce this case to case 1. If a=p, for p prime, then $m=p^2$ and p>2, because m>4. In particular $m=p^2>2p>p$. Then

$$(m-1)! = (p^2-1)! = 1 \cdot 2 \cdots p \cdots 2p \cdots (p^2-1),$$

implying $2p^2 | (m-1)! \Rightarrow m = p^2 | (m-1)!$ and so $(m-1)! \equiv 0 \pmod{m}$.

Chapter 5 Lecture Notes Fermat's Theorem and Wilson's The

MAT246H1S Lec0101 Burbulla

Chapter 5: Fermat's Theorem and Wilson's Theorem

5.1: Fermat's Theorem 5.2: Wilson's Theorem

Theorem 5.2.3

We can combine Wilson's Theorem and its converse:

Theorem: if m is a natural number other than 1, then $(m-1)! + 1 \equiv 0 \pmod{m}$ if and only if m is a prime number.

Proof: (\Leftarrow) if m is prime, then $(m-1)!+1\equiv 0\pmod{m}$ is true by Wilson's theorem.

 (\Rightarrow) if m is not prime and m > 4, then by Theorem 5.2.2,

$$(m-1)!+1\equiv 1\ (\bmod\, m),$$

and (m-1)!+1 is *not* congruent to 0, modulo m. Finally, if m=4, then $(m-1)!+1=3!+1=7\equiv 3 \pmod 4$.

Comment: even though this theorem gives a computational condition to test if m is prime, it is not a practical condition because (m-1)! + 1 can be very large!