
MAT 137Y: Calculus!
Problem Set 8

Due on Thursday, February 28 by 11:59pm via crowdmark

1. Let R be the bounded region enclosed by the curves y = x and 2y2 = 3x+ 2. We
rotate R around the y-axis. Compute the volume of the resulting solid.
Notes: Careful! The region R intersects three quadrants. The axis of rotation cuts
across the region, and you need to figure out what that does to the solid.
The difficulty of this problem is the set up. The volume can be written as an integral
(or a sum of integrals) of polynomials. Make sure you explain all the process to get
it to that form. If you get it to that form, you do not need to perform the integration
in detail. You may jump directly from that expression to the final answer.

Below is a drawing recapitulating the situation: we want to compute the volume
of the solid obtained by revolving the yellow region around the y-axis.
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Below is the solid obtained by revolving the yellow region around the y-axis, viewed
under three different angles:

Since the axis of revolution passes through the yellow region, one has to be very
careful not to count any piece of volume twice.
For this purpose, I am first going to check at each level y = a, a ∈ (0, 1), whether
the region is larger on the left side or on the right side of the y-axis.
Indeed, the largest region will overlap the smallest one after taking the revolution
around the y-axis.

On the right side, the border is delimited by x = y and on the left side the border
is delimited by x = 2

3
y2 − 2

3
. So we need to find, for each y ∈ (0, 1), whether
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or equivalently, since y ∈ (0, 1), whether
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Since 2y2 + 3y − 2 = (y + 2)(2y − 1), we need to take into account the left side of
the yellow region when y ∈

(
0, 1

2

)
and the right side when y ∈

(
1
2
, 1
)
.

To recap, we obtain the same solid of revolution by using the revolution around the
y-axis of the following yellow region, but without any overlapping.
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Method 1: using the slicing method.
Since the purple curve is given by x = 2

3
y2 − 2

3
, it is easier to integrate with respect

to the y-variable (in order to avoid working with square roots).
For this reason, it is a good idea to use the slicing method since with this method
we integrate along the axis parallel to the axis of revolution (whereas with the shell
method we integrate along the axis perpendicular to the axis of revolution).

We are going to apply the slicing method separately for y ∈
(
−1

2
, 0
)
, y ∈

(
0, 1

2

)
,

y ∈
(
1
2
, 1
)

and y ∈ (1, 2).
Indeed, for these different values, the regions are not enclosed by the same curves.
I am just explaining the computation for y ∈ (1, 2), the other cases are similar.
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The volume of the slice obtained by revolving the rectangle around the y-axis is

dV = (πR2 − πr2)dy = π

(
y2 −

(
2

3
y2 − 2

3

)2
)
dy

Hence the volume of the solid obtained by revolving the green region around the
y-axis is

π

∫ 2

1

(
y2 −

(
2

3
y2 − 2

3

)2
)
dy

By repeating the above process to the other parts, we obtain that the total volume
of the solid is

V = π

∫ 0
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2

((
2
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− y2

)
dy + π

∫ 1
2

0

(
2

3
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)2

dy

+ π

∫ 1

1
2

y2dy + π

∫ 2

1

(
y2 −

(
2

3
y2 − 2

3

)2
)
dy

=
79

540
π +
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1080
π +

7

24
π +
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135
π

=
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6
π

Method 2: using the shell method.
We are now using the shell method, but applied separately for x ∈

(
−2

3
,−1

2

)
,

x ∈
(
−1

2
, 0
)
, x ∈

(
0, 1

2

)
and x ∈

(
1
2
, 2
)
.

I am just explaining the computation for x ∈
(
1
2
, 2
)
, the other cases are similar.
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The volume of the shell obtained by revolving the rectangle around the y-axis is
approximately

dV ≃ (2πx) · (R− r)dx = (2πx)

(√
3

2
x+ 1− x

)
dx

Hence the volume of the solid obtained by revolving the green area is∫ 2

1
2

(2πx)

(√
3

2
x+ 1− x

)
dx

By repeating the above process to the other parts, we obtain that the total volume
of the solid is

V =

∫ − 1
2

− 2
3

(−2πx) · 2
√

3

2
x+ 1dx+

∫ 0

− 1
2

(−2πx)

(
1

2
− x

)
dx

+

∫ 1
2

0

(2πx)

(√
3

2
x+ 1− 1

2

)
dx+

∫ 2

1
2

(2πx)

(√
3

2
x+ 1− x

)
dx

=
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π +

5

24
π +

(
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1080
+

7
√
7

270

)
π +

(
749

540
− 7

√
7

270

)
π

=
11

6
π

Remark: by symmetry with respect to the y-axis, we could have considered the
revolution around the y-axis of the following region only situated on the right side.
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2. Write a proof for the following theorem

Theorem Let {an}∞n=0 be a sequence.
• IF {an}∞n=0 is eventually decreasing and not bounded below,
• THEN {an}∞n=0 is divergent to −∞.

Write a proof directly from the definitions. You will need to use the definitions of
“eventually decreasing”, “not bounded below”, and “divergent to −∞”. As usual,
pay attention to the proof structure.

Method 1:
This method relies on the following lemma, that we need to prove first (notice that
it answers the question around 4:30 in Video 11.4).

Lemma: {an}∞n=0 is bounded from below if and only if {an}∞n=0 is eventually bounded
from below.

Proof: Recall that {an}∞n=0 is bounded from below means

∃L ∈ R, ∀n ∈ N, an ≥ L (1)

and that {an}∞n=0 is eventually bounded from below means

∃n0 ∈ N, ∃L ∈ R, ∀n ∈ N, (n > n0 =⇒ an ≥ L) (2)

The non-trivial part consists in proving that if a sequence is eventually bounded
from below then it is bounded from below.
Assume that {an}∞n=0 is eventually bounded from below.

• By (2), there exist n0 ∈ N and L′ ∈ R such that if n > n0 then an ≥ L′.
• Set L = min(a0, a1, . . . , an0 , L

′).
• Let n ∈ N.
• Either n = 0, · · · , n0 and then an ≥ L or n > n0 and then an ≥ L′ ≥ L.

We have proven that {an}∞n=0 is bounded from below by L. Q.E.D.

We can now answer the question. We know that

• {an}∞n=0 is eventually decreasing, i.e.

∃n0 ∈ N, ∀n,m ∈ N, (n > m ≥ n0 =⇒ an < am) (3)



• {an}∞n=0 is not bounded from below, by the above lemma, it means that {an}∞n=0

satisfies the negation of (2), i.e.

∀L ∈ R, ∀n0 ∈ N, ∃n ∈ N, (n > n0 and an < L) (4)

and we want to show that lim
n→+∞

an = −∞, i.e.

∀M ∈ R, ∃n0 ∈ N, ∀n ∈ N, (n > n0 =⇒ an < M)

• Let M ∈ R.
• By (3), there exists n1 ∈ N such that

∀n,m ∈ N, (n > m ≥ n1 =⇒ an < am) (5)

• By (4) applied to M and n1, there exists n0 ∈ N such that

n0 > n1 and an0 < M (6)

• Let n ∈ N, assume that n > n0.
• Since n > n0 > n1, by (5) we know that an < an0 .
• Morever, by (6) an0 < M .
• Hence we have well that if n > n0 then an < M .

Q.E.D.

Method 2:
We know that

• {an}∞n=0 is eventually decreasing, i.e.

∃n0 ∈ N, ∀n,m ∈ N, (n > m ≥ n0 =⇒ an < am) (7)

• {an}∞n=0 is not bounded from below, i.e.

∀L ∈ R, ∃n ∈ N, an < L (8)

and we want to show that lim
n→+∞

an = −∞, i.e.

∀M ∈ R, ∃n0 ∈ N, ∀n ∈ N, (n > n0 =⇒ an < M)

• Let M ∈ R.



• By (7), there exists n1 ∈ R such that ∀n,m ∈ N,

n > m ≥ n1 =⇒ an < am (9)

• Let L = min (a0, a1, . . . , an1−1,M).
• By (8), there exists n0 ∈ N such that an0 < L.
• Notice that for i = 0, 1, . . . , n1 − 1, ai ≥ L. Hence, n0 ≥ n1.
• Let n ∈ N and assume that n > n0.
• Then, since n > n0 ≥ n1, by (9), we have that an < an0 < L ≤ M .
• Hence if n > n0 then an < M .

Q.E.D.



3. In this problem we only consider sequences that are positive and divergent to
∞.
For each of the following statements, decide whether they are true or false. If true,
prove it. If false, give a counterexample.

(a) IF {xn}n, {yn}n, {zn}n are sequences such that xn << yn and yn << zn
THEN xn << zn.

The statement is true. Below is a proof:
Assume that xn << yn and yn << zn. We want to show that xn << zn.
Since xn

zn
= xn

yn
· yn
zn

, we have by the product law for limits

lim
n→∞

xn

zn
= lim

n→∞

xn

yn
· yn
zn

= 0 · 0 = 0

Hence xn << zn. Q.E.D.

(b) For every sequence {xn}n, there exists a sequence {yn}n such that yn << xn

The statement is true. Below is a proof:
Let {xn}n be a positive sequence which diverges to +∞.
We define a sequence {yn}n by

yn =
√
xn

Notice that yn > 0 and lim
n→∞

yn = lim
n→∞

√
xn = +∞.

Then
lim
n→∞

yn
xn

= lim
n→∞

1
√
xn

= 0

Hence yn << xn. Q.E.D.



(c) IF {xn}n and {yn}n are sequences such that xn << yn
THEN there exists a sequence {zn}n such that xn << zn << yn.

The statement is true. Below is a proof:
Let {xn}n and {yn}n be two positive sequences which diverge to +∞.
We define a sequence {zn}n by

zn =
√
xnyn

Notice that zn > 0 and lim
n→∞

zn = lim
n→∞

√
xn

√
yn = +∞.

Then, by continuity of the square root function at 0+, we have

lim
n→∞

xn

zn
= lim

n→∞

√
xn

yn
= 0

and
lim
n→∞

zn
yn

= lim
n→∞

√
xn

yn
= 0

Hence we have well xn << zn and zn << yn, as required. Q.E.D.



(d) For every sequence {xn}n, there exists a sequence {yn}n such that for every
a > 0, (xn)

a << yn

The statement is true. Below are two proofs:
Proof 1:
Let {xn}n be a positive sequence which diverges to +∞.
We define a sequence {yn}n by

yn = exn

Notice that yn > 0 and lim
n→∞

yn = lim
n→∞

exn = +∞.

Let a > 0. By studying the function f(x) = e
x

a+1 − x
a+1

, we can easily check
that for x > 0,

e
x

a+1 > 1 +
x

a+ 1
>

x

a+ 1

Hence ex >
(

x
a+1

)a+1
= Cxa+1 where C = 1

(a+1)a+1 .
Therefore, we proved that

∀x > 0, 0 <
xa

ex
<

1

Cx

We derive from the above inequality that

∀n ∈ N, 0 <
(xn)

a

yn
=

(xn)
a

exn
<

1

Cxn

Then, using the squeeze theorem, we obtain that

lim
n→+∞

(xn)
a

yn
= 0

We have proven that for any a > 0 we have (xn)
a << yn, as required.

Q.E.D.

Proof 2:
Let {xn}n be a positive sequence which diverges to +∞.
We define a sequence {yn}n by

yn = (xn)
n

Notice that yn > 0 and lim
n→∞

yn = lim
n→∞

en ln(xn) = +∞.
Let a ∈ N, then

lim
n→+∞

(xn)
a

yn
= lim

n→+∞
e(a−n) ln(xn) = 0

We have proven that for any a > 0 we have (xn)
a << yn, as required.

Q.E.D.


