
MAT 137Y: Calculus!
Problem Set 10

Due on TUESDAY, April 2 by 11:59pm via crowdmark

1. Consider the power series

S(x) =
∞∑
n=r

P (n)

Q(n)

(
x− c

a

)n

where P and Q are polynomials, r ∈ N, a ∈ R, c ∈ R. Assume a ̸= 0. Assume P is
not the zero polynomial. Assume for every n ∈ N, Q(n) ̸= 0.
Find the radius of convergence and the interval of convergence of the power series
S.
We know that P and Q are non-zero polynomials, so they can be written as

P (n) =
d∑

i=0

αin
i and Q(n) =

e∑
i=0

βin
i

where αd ̸= 0 and βe ̸= 0.
We say that d is the degree of P (resp. e is the degree of Q) and that αd is the
leading coefficient of P (resp. βe is the leading coefficient of Q).

The radius of convergence is |a|.

• If e ≤ d then the interval of convergence is
(
c− |a|, c+ |a|

)
.

• If e = d+ 1 and a > 0 then the interval of convergence is
[
c− a, c+ a

)
.

• If e = d+ 1 and a < 0 then the interval of convergence is
(
c+ a, c− a

]
.

• If e ≥ d+ 2 then the interval of convergence is
[
c− |a|, c+ |a|

]
.

Useful facts. Let P (x) =
d∑

i=0

αix
i be a polynomial with d ∈ N≥0 and αd ̸= 0.

(a) Then P has at most d roots:
Using division of polynomials, it is easy to check that

P (x0) = 0 ⇔ P (x) = (x− x0)P̃ (x)

where P̃ is a polynomial of degree deg(P )− 1.
Hence the number of roots can’t exceed the degree.



(b) (Lagrange’s bound) If P (x0) = 0 then |x0| ≤ max

(
1,

d−1∑
i=0

∣∣∣∣ aiad
∣∣∣∣
)

.

Indeed assume that P (x0) = 0 and that |x0| ≥ 1, then adx
d
0 = −

d−1∑
i=0

aix
i
0 and

hence

|adxd
0| ≤

d−1∑
i=0

|aixi
0| ≤

d−1∑
i=0

|ai||x0|d−1

dividing by |ad||x0|d−1 we get

|x0| ≤
d−1∑
i=0

∣∣∣∣ aiad
∣∣∣∣ .

Let’s start answering the question.
We begin by applying the ratio test when x ̸= c (notice that P (n) ̸= 0 for n large
enough, by using any one of the two above useful facts).

lim
n→+∞

∣∣∣∣∣∣
P (n+1)
Q(n+1)

(
x−c
a

)n+1

P (n)
Q(n)

(
x−c
a

)n
∣∣∣∣∣∣ = lim

n→+∞

∣∣∣∣P (n+ 1)

P (n)
· Q(n)

Q(n+ 1)
· x− c

a

∣∣∣∣ = ∣∣∣∣x− c

a

∣∣∣∣
The last equality comes from the fact that P̃ (n) = P (n+1) is a polynomial with the
same degree and the same leading coefficient as P (just write P (n+ 1) and expand
it). The same claim holds for Q(n+ 1).
Hence, according to the ratio test,

• if |x− c| < |a| then S(x) is convergent.
• if |x− c| > |a| then S(x) is divergent.

Furthermore, the radius of convergence of S is |a|.
To determine the interval of convergence, we still have to study the case |x−c| = |a|.
We will need the following two lemmas:

Lemma 1. Let P (x) =
d∑

i=0

αix
i be a polynomial with d ∈ N≥0 and αd ̸= 0.

If the leading coefficient αd of P is positive then P is eventually positive.
If the leading coefficient αd of P is negative then P is eventually negative.



Proof. If d = 0, the polynomial is constant and there is nothing to show.
Hence, we may assume that d > 0.
Notice that

lim
x→+∞

P (x) = lim
x→+∞

d∑
i=0

αix
i

= lim
x→+∞

αdx
d

(
1 +

d−1∑
i=0

αi

αdxd−i

)

=

{
+∞ when αd > 0
−∞ when αd < 0

By the very definition of these limits, we get in the first case that

∃A ∈ R, ∀x ∈ R, (x > A =⇒ P (x) > 0)

and in the second case that

∃A ∈ R, ∀x ∈ R, (x > A =⇒ P (x) < 0)

Lemma 2. A rational function f(x) = P (x)
Q(x)

, where P and Q are two polynomials
and Q ̸= 0, is eventually monotonic.

Proof. Using any one of the two above useful facts, it is easy to notice that f is
well-defined for x large enough (since Q(x) ̸= 0 for x large enough).
Notice that f is differentiable on its domain as a rational function and that

f ′(x) =
P ′(x)Q(x)− P (x)Q′(x)

Q(x)2

Since the numerator is a polynomial, we conclude using Lemma 1 that f ′ is eventually
non-negative or eventually non-positive.
So f is eventually non-decreasing or non-increasing.

Let’s come back to the question.

(a) First case: x− c = a. Then S(c+ a) =
+∞∑
n=r

P (n)

Q(n)
.

Up to multiplying S by −1 (which doesn’t change the convergence or diver-
gence of the series), we may assume that αd > 0, βe > 0 and, using Lemma 1,
P (n)
Q(n)

> 0 for n large enough.



Notice that lim
n→+∞

P (n)
Q(n)

1
ne−d

= lim
n→+∞

P (n)
nd

Q(n)
ne

=
αd

βe

> 0.

Hence, using the LCT, S(c+a) is convergent if and only
∞∑
n=r

1

ne−d
is convergent.

But we know that the latter is convergent if and only if e− d > 1.

(b) Second case: x− c = −a. Then S(c− a) =
+∞∑
n=r

(−1)n
P (n)

Q(n)
.

i. If d ≥ e then lim
n→+∞

(−1)n
P (n)

Q(n)
̸= 0.

(notice that lim
n→+∞

an = 0 ⇔ lim
n→+∞

|an| = 0, so we don’t have to take care
of (−1)n to check the above limit).
Hence S(c− a) is divergent.

ii. Assume that d < e and set bn = P (n)
Q(n)

.
Applying Lemma 1 to P and Q, we know that bn is eventually of constant
sign. Hence, up to multiplying S by −1 if necessary, we may assume that
bn > 0 for n large enough.
Then we know that
• bn is eventually positive
• lim

n→+∞
bn = 0

• bn is eventually non-increasing: by Lemma 2, we know that bn is even-
tually monotonic but since bn is eventually positive and tends to 0, it
has to be eventually non-increasing.

Using the AST, we deduce that S(c− a) =
+∞∑
n=r

(−1)nbn is convergent.



2. (a) Let f(x) = e1/x. Use the Maclaurin series of g(x) = ex to write f as a “power
series with negatives exponents”. For which values of x is f(x) actually equal
to this series?

From the Maclaurin series of g, we obtain

+∞∑
n=0

(
1
x

)n
n!

=
+∞∑
n=0

x−n

n!

We know that g(x) =
+∞∑
n=0

xn

n!
for all x ∈ R.

Hence f(x) =
+∞∑
n=0

x−n

n!
for all x ∈ R \ {0}.

(b) Let h(x) = xe1/x. Use your answer to Question 2a (write down the first few
terms to see what it looks like) to find the slant asymptote of the function h.

We know that h(x) =
+∞∑
n=0

x−n+1

n!
= x+ 1 +

+∞∑
n=2

x−n+1

n!
.

So the slant asymptote is y = x+ 1.



3. Let a, b, c ∈ R. Let k,N ∈ N. We define the function

H(x) =

∫ bx

ax

xke−c2t2dt.

Find a formula for H(N)(0).

If N ≥ k + 1 and N − k is odd then

H(N)(0) =
(−1)

N−k−1
2 cN−k−1

(
bN−k − aN−k

)
(N !)

(N − k)
(
N−k−1

2

)
!

Otherwise, H(N)(0) = 0.

H(x) =

∫ bx

ax

xke−c2t2dt

=

∫ bx

ax

xk

+∞∑
n=0

(−1)nc2n

n!
t2ndt

=
+∞∑
n=0

(−1)n
c2n

n!
xk

∫ bx

ax

t2ndt

=
+∞∑
n=0

(−1)n
c2n

n!
xk b

2n+1 − a2n+1

2n+ 1
x2n+1

=
+∞∑
n=0

(−1)nc2n (b2n+1 − a2n+1)

(2n+ 1)(n!)
x2n+k+1

=
+∞∑
N=0

H(N)(0)

N !
xN


