MAT137Y1 – LEC0501 *Calculus!*

ABSOLUTE VALUE, DISTANCE & INEQUALITIES

September 24th, 2018

For next lecture

For Wednesday (Sep 26), watch the videos:

• Limits: 2.1, 2.2, 2.3, 2.5, 2.6

Let $a, b, c \in \mathbb{R}$.

- a + c < b + c
- 2 a c < b c
- ac < bc
- $a^2 < b^2$
- **5** $\frac{1}{a} < \frac{1}{b}$

Let $a, b, c \in \mathbb{R}$.

- a + c < b + c
- 2 a c < b c
- ac < bc
- **4** $a^2 < b^2$
- **5** $\frac{1}{a} < \frac{1}{b}$

Let $a, b, c \in \mathbb{R}$.

- a + c < b + c
- a c < b c
- ac < bc
- **4** $a^2 < b^2$
- **5** $\frac{1}{a} < \frac{1}{b}$

Let $a, b, c \in \mathbb{R}$.

- a + c < b + c
- a c < b c
- ac < bc
- **4** $a^2 < b^2$
- **5** $\frac{1}{a} < \frac{1}{b}$

Let $a, b, c \in \mathbb{R}$.

- a + c < b + c
- a c < b c
- ac < bc
- **4** $a^2 < b^2$

Properties of absolute value

Let $x, y \in \mathbb{R}$.

Which of the followings are true, and why?

Properties of absolute value

Let $x, y \in \mathbb{R}$.

Which of the followings are true, and why?

- |x + y| = |x| + |y|

Let $a, \delta \in \mathbb{R}$.

- $2 B = \{x \in \mathbb{R}, |x| > \delta\}$
- $3 C = \{x \in \mathbb{R}, |x a| > \delta\}$
- **4** $D = \{x \in \mathbb{R}, 0 < |x a| < \delta\}$
- **5** $E = \{x \in \mathbb{R}, |x 1| = |x + 1|\}$

Let $a, \delta \in \mathbb{R}$.

- $B = \{x \in \mathbb{R}, |x| > \delta\}$
- $3 C = \{x \in \mathbb{R}, |x a| > \delta\}$
- **4** $D = \{x \in \mathbb{R}, 0 < |x a| < \delta\}$
- **5** $E = \{x \in \mathbb{R}, |x 1| = |x + 1|\}$

Let $a, \delta \in \mathbb{R}$.

- $B = \{x \in \mathbb{R}, |x| > \delta\}$
- **3** $C = \{x \in \mathbb{R}, |x a| > \delta\}$
- **4** $D = \{x \in \mathbb{R}, 0 < |x a| < \delta\}$
- **5** $E = \{x \in \mathbb{R}, |x 1| = |x + 1|\}$

Let $a, \delta \in \mathbb{R}$.

- $B = \{x \in \mathbb{R}, |x| > \delta\}$
- **3** $C = \{x \in \mathbb{R}, |x a| > \delta\}$
- **4** $D = \{x \in \mathbb{R}, 0 < |x a| < \delta\}$
- **5** $E = \{x \in \mathbb{R}, |x 1| = |x + 1|\}$

Let $a, \delta \in \mathbb{R}$.

- $B = \{x \in \mathbb{R}, |x| > \delta\}$
- **3** $C = \{x \in \mathbb{R}, |x a| > \delta\}$
- **4** $D = \{x \in \mathbb{R}, 0 < |x a| < \delta\}$
- **5** $E = \{x \in \mathbb{R}, |x 1| = |x + 1|\}$

A new function

For $x, y \in \mathbb{R}$, we set

$$f(x,y) = \frac{x+y-|x-y|}{2}$$

Find a simpler description for f.

Implications

Find *all* values of A, B, and C that make the following implications true.

2
$$\forall x \in \mathbb{R}, |x-3| < B \implies |2x-6| < 1$$

Implications

Find *all* values of A, B, and C that make the following implications true.

2
$$\forall x \in \mathbb{R}, |x-3| < B \implies |2x-6| < 1$$

③
$$\forall x \in \mathbb{R}, |x-3| < 1 \implies |x+5| < C$$

Implications

Find *all* values of A, B, and C that make the following implications true.

2
$$\forall x \in \mathbb{R}, |x-3| < B \implies |2x-6| < 1$$

Prove the following statements:

$$\exists \forall x, y \in \mathbb{R}, \ ||x| - |y|| \le |x - y|$$

¹This slide was not used during the lecture. You can use it to train yourself.

Prove the following statements:

$$2 \forall x, y \in \mathbb{R}, |x - y| \le |x| + |y|$$

$$3 \forall x, y \in \mathbb{R}, \ \Big| |x| - |y| \Big| \le |x - y|$$

¹This slide was not used during the lecture. You can use it to train yourself.

Prove the following statements:

$$2 \forall x, y \in \mathbb{R}, |x - y| \le |x| + |y|$$

¹This slide was not used during the lecture. You can use it to train yourself.

Prove the following statements:

$$2 \forall x, y \in \mathbb{R}, |x - y| \le |x| + |y|$$

4 Study the equality case in 1

¹This slide was not used during the lecture. You can use it to train yourself.