MAT137Y1 – LEC0501 *Calculus!*

INVERSE FUNCTIONS

November 12th, 2018

For next lecture

For Wednesday (Nov 14), watch the videos:

- One-to-one functions: 4.3, 4.4, 4.5
- Inverse trig functions: 4.6, 4.7, 4.8

Warm up

A worm is crawling accross the table.

The path of the worm looks something like this:

True or False?

The position of the worm in terms of time is a function.

Worm function

A worm is crawling accross the table.

For any time t, let f(t) be the position of the worm.

This defines a function f.

- \bigcirc What is the domain of f?
- 2 What is the codomain of f?
- \odot What is the range of f?
- 4 Does f admit an inverse?

Worm function

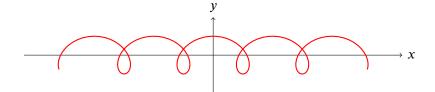
A worm is crawling accross the table.

For any time t, let f(t) be the position of the worm.

This defines a function f.

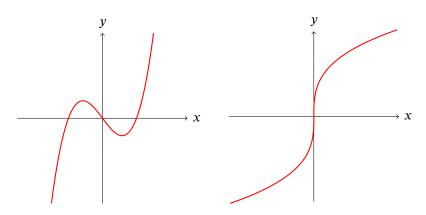
- \bullet What is the domain of f?
- 2 What is the codomain of f?
- \odot What is the range of f?
- 4 Does f admit an inverse?

Is it the graph of a function?

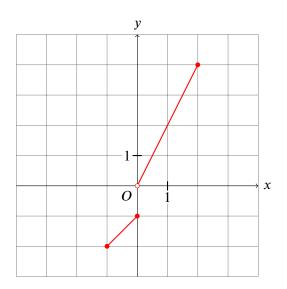


Do these functions admit an inverse?

If so, sketch the graph of the inverse.



Inverse function from a graph



Compute:

- **1** f(2)
- **2** f(0)
- **3** $f^{-1}(2)$
- **4** $f^{-1}(0)$
- **6** $f^{-1}(-1)$

Absolute value and inverses

Define the function $f: \mathbb{R} \to \mathbb{R}$ by

$$h(x) = x|x| + 1$$

- Sketch the graph of *h* and explain briefly why it admits an inverse.
- **2** Compute $h^{-1}(-8)$.
- **3** Sketch the graph of h^{-1} .
- **4** Find an equation for $h^{-1}(x)$.
- **6** Verify that for every $t \in \mathbb{R}$, $h(h^{-1}(t)) = t$, and that for every $t \in \mathbb{R}$, $h^{-1}(h(t)) = t$.

Logarithmic differentiation: be careful!

Let $f(x) = xe^{\sin(x)}$.

We want to prove that $f'(x) = e^{\sin(x)} + x \cos(x)e^{\sin(x)}$ on \mathbb{R} .

What do you think about the following proof?

We have $ln(f(x)) = ln(xe^{\sin(x)}) = ln(x) + \sin(x)$. Hence, by differentiating w.r.t. x, we get

$$\frac{f'(x)}{f(x)} = \frac{1}{x} + \cos(x)$$

Thus

$$f'(x) = f(x) \left(\frac{1}{x} + \cos(x)\right)$$
$$= xe^{\sin(x)} \left(\frac{1}{x} + \cos(x)\right)$$
$$= e^{\sin(x)} + x\cos(x)e^{\sin(x)}$$