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Disclaimer: those are quick-and-dirty notes written just after the class, so it is very likely that they
contain some mistakes/typos…
Send me an e-mail if you find something wrong/suspicious and I will update the notes.

The following criterion can be very useful to prove that a function is integrable!

Theorem 1 (from slide 4).
Let 𝑓 be a bounded function on [𝑎, 𝑏].
Then 𝑓 is integrable on [𝑎, 𝑏] if and only if

∀𝜀 > 0, ∃ a partition 𝑃 of [𝑎, 𝑏], 𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝜀

Proof.
⇒∶
We know that 𝑓 is integrable on [𝑎, 𝑏], i.e.

𝐼𝑏
𝑎 (𝑓 ) = 𝐼𝑏

𝑎 (𝑓 ) (1)

where

𝐼𝑏
𝑎 (𝑓 ) = sup{𝐿𝑃 (𝑓 ), ∀𝑃 partition of [a,b]} and 𝐼𝑏

𝑎 (𝑓 ) = inf{𝑈𝑃 (𝑓 ), ∀𝑃 partition of [a,b]}

We want to prove:
∀𝜀 > 0, ∃ a partition 𝑃 of [𝑎, 𝑏], 𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝜀

Let 𝜀 > 0.

Then 𝐼𝑏
𝑎 (𝑓 ) + 𝜀

2 is greater than 𝐼𝑏
𝑎 (𝑓 ) which is the greatest lower bound of the upper Darboux

sums.
Hence 𝐼𝑏

𝑎 (𝑓 ) + 𝜀
2 is not an lower bound of the upper Darboux sums.

That means that there exists a partition 𝑃1 of [𝑎, 𝑏] such that

𝑈𝑃1 (𝑓 ) < 𝐼𝑏
𝑎 (𝑓 ) + 𝜀

2
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Similarly 𝐼𝑏
𝑎 (𝑓 ) − 𝜀

2 is less than 𝐼𝑏
𝑎 (𝑓 ) which is the least upper bound of the lower Darboux sums.

Hence 𝐼𝑏
𝑎 (𝑓 ) − 𝜀

2 is not an upper bound of the lower Darboux sums.
That means that there exists a partition 𝑃2 of [𝑎, 𝑏] such that

𝐿𝑃2 (𝑓 ) > 𝐼𝑏
𝑎 (𝑓 ) − 𝜀

2
Let 𝑃 = 𝑃1 ∪ 𝑃2.
Then 𝑃 is finer than 𝑃1, hence

𝑈𝑃 (𝑓 ) ≤ 𝑈𝑃1 (𝑓 ) < 𝐼𝑏
𝑎 (𝑓 ) + 𝜀

2 (2)

and similarly 𝑃 is finer than 𝑃2, hence

𝐿𝑃 (𝑓 ) ≥ 𝐿𝑃2 (𝑓 ) > 𝐼𝑏
𝑎 (𝑓 ) − 𝜀

2 (3)

We derive from (2) and (3) that

𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝐼𝑏
𝑎 (𝑓 ) + 𝜀

2 − 𝐼𝑏
𝑎 (𝑓 ) + 𝜀

2
Using (1), we obtain that the RHS of the above inequality is 𝜀.
Therefore we have well obtained a partition 𝑃 of [𝑎, 𝑏] such that

𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝜀

Which is what we wanted to prove.

⇐∶
We know that

∀𝜀 > 0, ∃ a partition 𝑃 of [𝑎, 𝑏], 𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝜀
and we want to prove that 𝑓 is integrable, i.e. that

𝐼𝑏
𝑎 (𝑓 ) = 𝐼𝑏

𝑎 (𝑓 )

It is enough to prove that
∀𝜀 > 0, 0 ≤ 𝐼𝑏

𝑎 (𝑓 ) − 𝐼𝑏
𝑎 (𝑓 ) < 𝜀

Let 𝜀 > 0.
By our assumption, there exists a partition 𝑃 of [𝑎, 𝑏] such that 𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝜀.
Then, we have

𝐿𝑃 (𝑓 ) ≤ 𝐼𝑏
𝑎 (𝑓 ) ≤ 𝐼𝑏

𝑎 (𝑓 ) ≤ 𝑈𝑃 (𝑓 )

Hence
0 ≤ 𝐼𝑏

𝑎 (𝑓 ) − 𝐼𝑏
𝑎 (𝑓 ) ≤ 𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝜀

We have well obtained
0 ≤ 𝐼𝑏

𝑎 (𝑓 ) − 𝐼𝑏
𝑎 (𝑓 ) < 𝜀

■
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The following proof is a good application of the above criterion.
Theorem 2 (From slide 5). If 𝑓 ∶ [𝑎, 𝑏] → ℝ is non-decreasing then 𝑓 is integrable on [𝑎, 𝑏].
Remark 3. Notice that we don’t assume that 𝑓 is continuous, only that 𝑓 is non-decreasing!
Proof. First, notice that 𝑓 is bounded. Indeed, for any 𝑥 ∈ [𝑎, 𝑏] we have 𝑎 ≤ 𝑥 ≤ 𝑏 and hence, since
𝑓 is non-decreasing, we have

𝑓(𝑎) ≤ 𝑓(𝑥) ≤ 𝑓(𝑏)
Hence, 𝑓 is bounded from above by 𝑓(𝑏) and from below by 𝑓(𝑎).

Then, according to the above criterion, it is enough to prove that

∀𝜀 > 0, ∃ a partition 𝑃 of [𝑎, 𝑏], 𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝜀

Let 𝜀 > 0.
Set 𝑛 = ⌊

(𝑓 (𝑏)−𝑓(𝑎))(𝑏−𝑎)
𝜀 ⌋ + 1. Then

(𝑓 (𝑏) − 𝑓(𝑎))(𝑏 − 𝑎)
𝑛 < 𝜀 (4)

Let 𝑃 = {𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏} be the partition of [𝑎, 𝑏] consisting in 𝑛 subintervals of the
same length, i.e. 𝑥𝑘 = 𝑎 + 𝑘 𝑏−𝑎

𝑛 .

𝑎 = 𝑥0

𝑏−𝑎
𝑛

𝑥1

𝑏−𝑎
𝑛

𝑥2

𝑏−𝑎
𝑛

𝑥3

𝑏−𝑎
𝑛

𝑥4 𝑥𝑛−1 𝑥𝑛 = 𝑏

𝑏−𝑎
𝑛

Since 𝑓 is non-decreasing, we easily check (do it!) that

sup
[𝑥𝑘−1,𝑥𝑘]

𝑓 = 𝑓(𝑥𝑘) and inf
[𝑥𝑘−1,𝑥𝑘]

𝑓 = 𝑓(𝑥𝑘−1)

Then

𝑈𝑃 (𝑓 ) =
𝑛

∑
𝑘=1 (

(𝑥𝑘 − 𝑥𝑘−1) sup
[𝑥𝑘−1,𝑥𝑘]

𝑓
)

=
𝑛

∑
𝑘=1

(
𝑏 − 𝑎

𝑛 𝑓(𝑥𝑘)) = 𝑏 − 𝑎
𝑛

𝑛

∑
𝑘=1

𝑓(𝑥𝑘)

and

𝐿𝑃 (𝑓 ) =
𝑛

∑
𝑘=1 ((𝑥𝑘 − 𝑥𝑘−1) inf

[𝑥𝑘−1,𝑥𝑘]
𝑓) =

𝑛

∑
𝑘=1

(
𝑏 − 𝑎

𝑛 𝑓(𝑥𝑘−1)) = 𝑏 − 𝑎
𝑛

𝑛

∑
𝑘=1

𝑓(𝑥𝑘−1)

Therefore

𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) = 𝑏 − 𝑎
𝑛

𝑛

∑
𝑘=1

(𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1))

= 𝑏 − 𝑎
𝑛 (𝑓(𝑥1) − 𝑓(𝑥0) + 𝑓(𝑥2) − 𝑓(𝑥1) + 𝑓(𝑥3) − 𝑓(𝑥2) + ⋯ + 𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1))

= 𝑏 − 𝑎
𝑛 (𝑓(𝑥𝑛) − 𝑓(𝑥0))

= 𝑏 − 𝑎
𝑛 (𝑓(𝑏) − 𝑓(𝑎))

We deduce from (4) that
𝑈𝑃 (𝑓 ) − 𝐿𝑃 (𝑓 ) < 𝜀

which is what we wanted to prove!
■


