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The following criterion can be very useful to prove that a function is integrable!

Theorem 1 (from slide 4).
Let f be a bounded function on [a, b].
Then f is integrable on [a, b] if and only if

Ve > 0, 3 a partition P of [a,b], Up(f) — Lp(f) <e¢
Proof.

=
We know that f is integrable on [a, b], i.e.

180f) = 12(f) (1)
where

I2(f) = sup { Lp(f), VP partition of [a,b]} and I_g(f) =inf {Up(f), VP partition of [a,b] }

We want to prove:
Ve > 0, 3 a partition P of [a,b], Up(f) — Lp(f) <&

Lete > 0.

Then I2(f) + % is greater than I, 2(f) which is the greatest lower bound of the upper Darboux
sums.

Hence I2(f) + % is not an lower bound of the upper Darboux sums.

That means that there exists a partition P, of [a, b] such that

Un ()< 12N +5
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Similarly 1, fl’ - % is less than I fl’ (f) which is the least upper bound of the lower Darboux sums.

Hence I é’ ) - % is not an upper bound of the lower Darboux sums.
That means that there exists a partition P, of [a, b] such that

Lp,(N)> 15 =3

Let P= P] U Pz.
Then P is finer than P}, hence

Up(f) < Up(H) < 1) +5
and similarly P is finer than P,, hence
Lp(f) 2 Lp(f)> L) =5

We derive from (2) and (3) that
Up(H) = Lp(f) < I+ 5 = 12N +5

Using (1), we obtain that the RHS of the above inequality is e.
Therefore we have well obtained a partition P of [a, b] such that

Up(f) — Lp(f) <e

Which is what we wanted to prove.

&
We know that

Ve > 0, 3 a partition P of [a,b], Up(f) — Lp(f) <&

and we want to prove that f is integrable, i.e. that

120f) = 13(f)

It is enough to prove that
Ve>0,0<I0(f)—I)f)<e

Lete > 0.

By our assumption, there exists a partition P of [a, b] such that Up(f) — Lp(f) <e.

Then, we have .
Lp(/) < 13(/) < 13(/) < Up(f)
Hence

0 < I2(f) ~ I2() SUp(f) ~ Lp(f) <

We have well obtained .
0<I3(N) ~ Ig(f) < e

(2)

3)
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The following proof is a good application of the above criterion.
Theorem 2 (From slide 5). If f : [a, b] — R is non-decreasing then f is integrable on [a, b].
Remark 3. Notice that we don’t assume that f is continuous, only that f is non-decreasing!

Proof. First, notice that f is bounded. Indeed, for any x € [a, b] we have a < x < b and hence, since
f is non-decreasing, we have

fla) < f(x) < f(b)
Hence, f is bounded from above by f(b) and from below by f(a).

Then, according to the above criterion, it is enough to prove that

Ve > 0, 3 a partition P of [a,b], Up(f) — Lp(f) <&

Lete > 0.
Setn = l—(f b1 i“))(b_a)J + 1. Then

(f(b) = f@)b=a) __

n

(4)

Let P = {a = xy < x; < --- < x,, = b} be the partition of [a, b] consisting in n subintervals of the
same length, i.e. x; =a+ kb_Ta.

b—a b—a b—a b—a b—a

a= X X1 X2 X3 X4 Xn-1 X

Since f is non-decreasing, we easily check (do it!) that

sup f = f(xp) and inf f=f(x;_)
[xg—1-%] [Xi-1%c]
Then
Up(H)=), ((xk = Xg_1) sup f) =y (b_af(xk)> =b-a PWIEN)
k=1 [Xe—1-X%] =1 " L
and
c . - b—a b—a -
lﬂﬂzZ(W—nm Wu0=2(—ﬂWHﬂ= > fxip)
=1 (Xi—1-%] =1 " noa
Therefore
Up(f) = Lp(f) = =23 (£ = F(xi)
k=1
= b-a Fx) = fOxg) + f(x0) = f(x) + f(x3) = f(xp) + =+ + f(x,) = f(x,_1))
= 29 ) - £
b —_

n%ﬂ@—ﬂ@)

We deduce from (4) that
Up(f)—Lp(f)<e

which is what we wanted to prove!



