University of Toronto – MAT237Y1 – LEC5201 Multivariable calculus!

Jean-Baptiste Campesato

January 1st, 2020

When the dimension of the codomain is greater than 1, there is no generalization of the MVT. Nevertheless, we have the following useful MVT-like inequality.

Theorem 1. Let $U \subset \mathbb{R}^n$ be an open subset and $f: U \to \mathbb{R}^p$ be differentiable. Let $a, b \in U$. Assume that $\forall t \in [0, 1], (1 - t)a + tb \in U$. Then

$$||f(b) - f(a)|| \le \left(\sup_{t \in (0,1)} ||Df((1-t)a + tb)|| \right) ||b - a||$$

You'll find below two proofs of this theorem.

Proof 1 (using the MVT).

If f(a) = f(b) then there is nothing to do, so we may assume that $f(b) \neq f(a)$.

Define $\psi:U\to\mathbb{R}$ by $\psi(x)=f(x)\cdot\left(\frac{f(b)-f(a)}{\|f(b)-f(a)\|}\right)$ where \cdot denotes the dot product. We may apply the MVT to ψ (since its codomain is \mathbb{R}), and we obtain that there exists $\theta\in(0,1)$ such that

$$\begin{aligned} \psi(b) - \psi(a) &= \nabla \psi \left((1 - \theta)a + \theta b \right) \cdot (b - a) \\ &= d_{(1 - \theta)a + \theta b} \psi(b - a) \\ &= \left(Df \left((1 - \theta)a + \theta b \right) (b - a) \right) \cdot \left(\frac{f(b) - f(a)}{\|f(b) - f(a)\|} \right) \end{aligned}$$

(For the last equality, I used the fact that since $x \mapsto x \cdot v$ is linear then it is differentiable and that its differential is itself, together with the chain rule).

Then, after replacing ψ by its definition and simplifying, we obtain

$$||f(b) - f(a)|| \le \left| \left(Df \left((1 - \theta)a + \theta b \right) (b - a) \right) \cdot \left(\frac{f(b) - f(a)}{||f(b) - f(a)||} \right) \right|$$

$$\le ||Df \left((1 - \theta)a + \theta b \right) (b - a)|| \left| \frac{f(b) - f(a)}{||f(b) - f(a)||} \right| \quad \text{by the Cauchy-Schwarz inequality}$$

$$= ||Df \left((1 - \theta)a + \theta b \right) (b - a)||$$

$$\le ||Df \left((1 - \theta)a + \theta b \right) || ||b - a|| \quad \text{by sub-multiplicativity of the Frobenius norm}$$

$$\le \left(\sup_{t \in (0,1)} ||Df \left((1 - t)a + tb \right) || \right) ||b - a||$$

Proof 2 (using the FTC).

Claim 1.
$$f(b) - f(a) = \int_0^1 Df((1-t)a + tb)(b-a)dt$$

where the integral is computed componentwise

i.e. we apply the integral to the components of the vector in $M_{p,1}(\mathbb{R})$ obtained by multiplying the matrix $Df((1-t)a+tb) \in M_{p,n}(\mathbb{R})$ with the vector $(b-a) \in M_{n,1}(\mathbb{R})$.

Indeed, the *k*-th component of the RHS is

$$\int_0^1 \sum_{i=1}^n \frac{\partial f_k}{\partial x_i} ((1-t)a + tb)(b_i - a_i) dt = \int_0^1 \varphi'(t) dt$$

$$= \varphi(1) - \varphi(0) \text{ by the Fundamental Theorem of Calculus}$$

$$= f_k(b) - f_k(a)$$

where $\varphi(t) = f_k ((1 - t)a + tb)$. Which proves the claim.

Claim 2.
$$\left\| \left(\int_0^1 g_1(t) dt, \dots, \int_0^1 g_p(t) dt \right) \right\| \le \int_0^1 \left\| \left(g_1(t), \dots, g_p(t) \right) \right\| dt$$

Indeed,

$$\begin{split} \left\| \left(\int_0^1 g_1(t) \mathrm{d}t, \dots, \int_0^1 g_p(t) \mathrm{d}t \right) \right\|^2 &= \sum_{i=1}^n \left(\int_0^1 g_i(t) \mathrm{d}t \right)^2 \\ &= \sum_{i=1}^n \int_0^1 g_i(t) \mathrm{d}t \int_0^1 g_i(s) \mathrm{d}s \quad \text{since } t \text{ is a bound variable} \\ &= \int_0^1 \int_0^1 \sum_{i=1}^s g_i(t) g_i(s) \mathrm{d}t \mathrm{d}s \\ &= \int_0^1 \int_0^1 \left(g_1(t), \dots, g_p(t) \right) \cdot \left(g_1(s), \dots, g_p(s) \right) \mathrm{d}t \mathrm{d}s \\ &\leq \int_0^1 \int_0^1 \left| \left(g_1(t), \dots, g_p(t) \right) \cdot \left(g_1(s), \dots, g_p(s) \right) \right| \mathrm{d}t \mathrm{d}s \\ &\leq \int_0^1 \int_0^1 \left\| \left(g_1(t), \dots, g_p(t) \right) \right\| \left\| \left(g_1(s), \dots, g_p(s) \right) \right\| \mathrm{d}t \mathrm{d}s \text{ by Cauchy-Schwarz} \\ &= \int_0^1 \left\| \left(g_1(t), \dots, g_p(t) \right) \right\| \mathrm{d}t \int_0^1 \left\| \left(g_1(s), \dots, g_p(s) \right) \right\| \mathrm{d}s \\ &= \left(\int_0^1 \left\| \left(g_1(t), \dots, g_p(t) \right) \right\| \mathrm{d}t \right)^2 \end{split}$$

And the claim follows.

We go back to the proof of the theorem:

$$||f(b) - f(a)|| = \left\| \int_0^1 Df ((1 - t)a + tb) (b - a) dt \right\|$$
by Claim 1
$$\leq \int_0^1 ||Df ((1 - t)a + tb) (b - a)|| dt$$
by Claim 2
$$\leq \int_0^1 ||Df ((1 - t)a + tb)|| ||b - a|| dt$$
by sub-multiplicativity of the Frobenius norm
$$\leq \int_0^1 \left(\sup_{s \in (0,1)} ||Df ((1 - s)a + sb)|| \right) ||b - a|| dt$$

$$= \left(\sup_{s \in (0,1)} ||Df ((1 - s)a + sb)|| \right) ||b - a||$$