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Complex power functions – 1

Similarly to the real case, for 𝑤 ∈ ℂ and 𝑧 ∈ ℂ ⧵ {0} we want to set 𝑧𝑤 ≔ 𝑒𝑤 log 𝑧.

But then it is only defined up to a factor 𝑒2𝑖𝑛𝜋𝑤, 𝑛 ∈ ℤ, since log is well defined modulo 2𝑖𝜋.

𝑧𝑤 ≔ 𝑒𝑤 log 𝑧 = {𝑒𝑤 Log 𝑧𝑒2𝑖𝑛𝜋𝑤 ∶ 𝑛 ∈ ℤ}

Example

For instance √𝑧 = 𝑧
1
2 = {𝑒

1
2 Log 𝑧𝑒𝑖𝑛𝜋 ∶ 𝑛 ∈ ℤ} = {±𝑒

1
2 Log 𝑧

}.
Indeed, the square root is well-defined only up to a sign.

However there is no indeterminacy when 𝑤 ∈ ℤ since 𝑒2𝑖𝜋𝑛𝑤 = 1 when 𝑛𝑤 ∈ ℤ.
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The power functions – 2

Beware
The identity (𝑧1𝑧2)𝑤 = 𝑧𝑤

1 𝑧𝑤
2 is only true modulo a factor 𝑒2𝑖𝜋𝑤𝑛, 𝑛 ∈ ℤ (i.e. as sets/multivalued

functions).

And…As if that wasn’t enough…

BEWARE
The identity 𝑧𝑤1+𝑤2 = 𝑧𝑤1𝑧𝑤2 is generally false even as multivalued functions:

• 𝑧𝑤1+𝑤2 is well-defined up to a factor 𝑒2𝑖𝜋𝑛(𝑤1+𝑤2), 𝑛 ∈ ℤ.
• 𝑧𝑤1𝑧𝑤2 is well-defined up to a factor 𝑒2𝑖𝜋(𝑛𝑤1+𝑘𝑤2), 𝑛, 𝑘 ∈ ℤ.

So 𝑧𝑤1+𝑤2 ⊂ 𝑧𝑤1𝑧𝑤2 (as multivalued functions).
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The complex cosine and sine – 1
Definitions
We define cos ∶ ℂ → ℂ and sin ∶ ℂ → ℂ respectively by

cos(𝑧) ≔ 𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2 and sin(𝑧) ≔ 𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖

Proposition
• ∀𝑧 ∈ ℂ, cos2 𝑧 + sin2 𝑧 = 1
• ∀𝑧, 𝑤 ∈ ℂ, sin(𝑧 + 𝑤) = sin 𝑧 cos 𝑤 + cos 𝑧 sin 𝑤
• ∀𝑧, 𝑤 ∈ ℂ, cos(𝑧 + 𝑤) = cos 𝑧 cos 𝑤 − sin 𝑧 sin 𝑤
• ∀𝑧 ∈ ℂ, sin(−𝑧) = − sin(𝑧)
• ∀𝑧 ∈ ℂ, cos(−𝑧) = cos(𝑧)
• ∀𝑧 ∈ ℂ, sin(𝑧 + 2𝜋) = sin(𝑧)
• ∀𝑧 ∈ ℂ, cos(𝑧 + 2𝜋) = cos(𝑧)

Homework: prove some of them.
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The complex cosine and sine – 2

Proposition
The functions cos ∶ ℂ → ℂ and sin ∶ ℂ → ℂ are surjective.

Proof.
Let 𝑤 ∈ ℂ, we look for 𝑧 ∈ ℂ such that cos(𝑧) = 𝑤, or equivalently 𝑒𝑖𝑧 + 𝑒−𝑖𝑧 = 2𝑤.
Set 𝑢 = 𝑒𝑖𝑧 then the above equation becomes 𝑢 + 𝑢−1 = 2𝑤 or equivalently 𝑢2 − 2𝑤𝑢 + 1 = 0.
Take such a 𝑢 (which is non-zero) then, since the range of exp is ℂ ⧵ {0}, there exists 𝑧 ∈ ℂ such
that 𝑢 = 𝑒𝑖𝑧. ■

Homework
What is wrong with this proof?
Let 𝑧 ∈ ℂ, then |cos(𝑧)| = |

𝑒𝑖𝑧+𝑒−𝑖𝑧

2 | ≤ |
𝑒𝑖𝑧

2 | + |
𝑒−𝑖𝑧

2 | = |𝑒𝑖𝑧|
2 + |𝑒−𝑖𝑧|

2 = 1
2 + 1

2 = 1.
Hence ∀𝑧 ∈ ℂ, | cos 𝑧| ≤ 1.
This property is obviously false according to the above proposition.
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The complex cosine and sine – 3
The horizontal line ℑ(𝑧) = 𝑐 is mapped by cos to {cos(𝑥) (

𝑒𝑐+𝑒−𝑐

2 ) + 𝑖 sin(𝑥) (
𝑒−𝑐−𝑒𝑐

2 ) ∶ 𝑥 ∈ ℝ}
which is an ellipse (possibly flat for 𝑐 = 0).

ℜ

ℑ

cos ℜ

ℑ
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The complex cosine and sine – 4
The vertical line ℜ(𝑧) = 𝑐 is mapped by cos to {cos(𝑐) (

𝑒𝑦+𝑒−𝑦

2 ) + 𝑖 sin(𝑐) (
𝑒−𝑦−𝑒𝑦

2 ) ∶ 𝑦 ∈ ℝ}
which is a branch of hyperbola.

ℜ

ℑ

cos ℜ

ℑ
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The complex cosine and sine – 5

ℜ

ℑ

cos ℜ

ℑ
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The complex cosine and sine – 6

Proposition
• cos 𝑧 = 0 ⇔ ∃𝑛 ∈ ℤ, 𝑧 = 𝜋

2 + 𝜋𝑛
• sin 𝑧 = 0 ⇔ ∃𝑛 ∈ ℤ, 𝑧 = 𝜋𝑛

Proof.

cos 𝑧 = 0 ⇔ 𝑒𝑖𝑧 + 𝑒−𝑖𝑧 = 0
⇔ 𝑒2𝑖𝑧 = −1
⇔ ∃𝑛 ∈ ℤ, 2𝑖𝑧 = 𝑖𝜋 + 2𝑖𝜋𝑛
⇔ ∃𝑛 ∈ ℤ, 𝑧 = 𝜋

2 + 𝜋𝑛

sin 𝑧 = 0 ⇔ 𝑒𝑖𝑧 − 𝑒−𝑖𝑧 = 0
⇔ 𝑒2𝑖𝑧 = 1
⇔ ∃𝑛 ∈ ℤ, 2𝑖𝑧 = 2𝑖𝜋𝑛
⇔ ∃𝑛 ∈ ℤ, 𝑧 = 𝜋𝑛

■
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Other complex trigonometric functions

Definition: the complex tangent function
We define tan ∶ ℂ ⧵ {

𝜋
2 + 𝜋𝑛 ∶ 𝑛 ∈ ℤ} → ℂ by

tan 𝑧 ≔ sin 𝑧
cos 𝑧

Definition: the complex cotangent function
We define cot ∶ ℂ ⧵ {𝜋𝑛 ∶ 𝑛 ∈ ℤ} → ℂ by

cot 𝑧 ≔ cos 𝑧
sin 𝑧
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Inverse trigonometric functions – 1

We want to find the inverse of cos.
(cos is not injective so we will get a multivalued function as for log).

cos(𝑤) = 𝑧 ⇔ (𝑒𝑖𝑤)
2 − 2𝑧𝑒𝑖𝑤 + 1 = 0

Then
𝑣2 − 2𝑧𝑣 + 1 = 0 ⇔ 𝑣 = 𝑧 + √𝑧2 − 1

Here √⋅ is already multivalued: it is only well defined up to its sign.

Hence

𝑒𝑖𝑤 = 𝑧 + √𝑧2 − 1 ⇔ 𝑖𝑤 = log (𝑧 + √𝑧2 − 1)
⇔ 𝑤 = −𝑖 log (𝑧 + √𝑧2 − 1)

We may repeat the same thing for arcsin and arctan.
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Inverse trigonometric functions – 2

arccos(𝑧) = −𝑖 log (𝑧 + √𝑧2 − 1)

arcsin(𝑧) = −𝑖 log (𝑖𝑧 + √1 − 𝑧2)

arctan(𝑧) = 𝑖
2 log (

1 − 𝑖𝑧
1 + 𝑖𝑧) , 𝑧 ≠ ±𝑖

Beware
They are multivalued functions defined on ℂ.

Beware
By the way, the range of tan is ℂ ⧵ {±𝑖}.
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Inverse trigonometric functions – 3

We define the principal branches of arccos, arcsin and arctan by1:

Arccos ∶
ℂ ⧵ ((−∞, −1] ∪ [1, +∞)) → {𝑧 ∈ ℂ ∶ 0 < ℜ(𝑧) < 𝜋}

𝑧 ↦ −𝑖 Log (𝑧 + √𝑧2 − 1)

Arcsin ∶
ℂ ⧵ ((−∞, −1] ∪ [1, +∞)) → {𝑧 ∈ ℂ ∶ − 𝜋

2 < ℜ(𝑧) < 𝜋
2 }

𝑧 ↦ −𝑖 Log (𝑖𝑧 + √1 − 𝑧2)

Arctan ∶
ℂ ⧵ ((−𝑖∞, −𝑖] ∪ [𝑖, +𝑖∞)) → {𝑧 ∈ ℂ ∶ − 𝜋

2 < ℜ(𝑧) < 𝜋
2 }

𝑧 ↦ 𝑖
2 Log (

1−𝑖𝑧
1+𝑖𝑧 )

1We take the square root whose real part is non-negative.
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Inverse trigonometric functions – 4

ℜ

ℑ

cos

Arccos

ℜ

ℑ

0 𝜋 1−1

ℜ

ℑ

sin

Arcsin

ℜ

ℑ

− 𝜋
2

𝜋
2

1−1

ℜ

ℑ

tan

Arctan

ℜ

ℑ

− 𝜋
2

𝜋
2

𝑖

−𝑖
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Inverse trigonometric functions – 5

arccos(𝑧) = {± Arccos(𝑧) + 2𝜋𝑛 ∶ 𝑛 ∈ ℤ}

arcsin(𝑧) = {(−1)𝑛 Arcsin(𝑧) + 𝜋𝑛 ∶ 𝑛 ∈ ℤ}

arctan(𝑧) = {Arctan(𝑧) + 𝜋𝑛 ∶ 𝑛 ∈ ℤ}
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The complex hyperbolic functions
Definitions
We define cosh ∶ ℂ → ℂ and sinh ∶ ℂ → ℂ respectively by

cosh(𝑧) ≔ 𝑒𝑧 + 𝑒−𝑧

2 and sinh(𝑧) ≔ 𝑒𝑧 − 𝑒−𝑧

2

Proposition
• ∀𝑧 ∈ ℂ, cos(𝑧) = cosh(𝑖𝑧) • ∀𝑧 ∈ ℂ, sin(𝑧) = −𝑖 sinh(𝑖𝑧)
The above proposition allows us to derive hyperbolic identities from the trigonometric ones.

Homework
• ∀𝑧 ∈ ℂ, cosh2(𝑧) − sinh2(𝑧) = 1
• ∀𝑧, 𝑤 ∈ ℂ, cosh(𝑧 + 𝑤) = cosh 𝑧 cosh 𝑤 + sinh 𝑧 sinh 𝑤
• ∀𝑧, 𝑤 ∈ ℂ, sinh(𝑧 + 𝑤) = sinh 𝑧 cosh 𝑤 + cosh 𝑧 sinh 𝑤
• ∀𝑥, 𝑦 ∈ ℝ, cos(𝑥 + 𝑖𝑦) = cos 𝑥 cosh 𝑦 − 𝑖 sin 𝑥 sinh 𝑦
• ∀𝑥, 𝑦 ∈ ℝ, sin(𝑥 + 𝑖𝑦) = sin 𝑥 cosh 𝑦 + 𝑖 cos 𝑥 sinh 𝑦
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