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1 Holomorphic functions are analytic

Theorem 1. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic/ℂ-differentiable.
Then 𝑓 can be locally expressed as a power series in a neighborhood of any point of 𝑈 .

More precisely, if 𝐷𝑟(𝑧0) ⊂ 𝑈 then

∀𝑧 ∈ 𝐷𝑟(𝑧0), 𝑓 (𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛

where

𝑎𝑛 = 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1d𝑤

and 𝛾 ∶ [0, 1] → ℂ is defined by 𝛾(𝑡) = 𝑧0 + 𝑟𝑒2𝑖𝜋𝑡 and the radius of convergence of this power series is greater than or
equal to 𝑟.



2 Consequences of Cauchy’s integral formula

Proof. By Cauchy’s integral formula

𝑓(𝑧) = 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧d𝑤

= 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧0

1
1 − 𝑧−𝑧0

𝑤−𝑧0

d𝑤

= 1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧0

+∞

∑
𝑛=0 (

𝑧 − 𝑧0
𝑤 − 𝑧0 )

𝑛
d𝑤 since |𝑧 − 𝑧0| < |𝑤 − 𝑧0| = 𝑟

=
+∞

∑
𝑛=0 (

1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1d𝑤) (𝑧 − 𝑧0)𝑛

We need to justify the last equality (i.e. the permutation ∫ − ∑).

Let 𝜀 > 0. There exists 𝑁 such that if 𝑘 ≥ 𝑁 then the remainder satisfies
|

+∞

∑
𝑛=𝑘 (

𝑧 − 𝑧0
𝑤 − 𝑧0 )

𝑛

|
≤ 𝜀, so that

|
|
||
𝑓 (𝑧) −

𝑘

∑
𝑛=0 (

1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1d𝑤) (𝑧 − 𝑧0)𝑛

|
|
||

≤
|

1
2𝑖𝜋 ∫𝛾

𝑓(𝑤)
𝑤 − 𝑧0

+∞

∑
𝑛=𝑘 (

𝑧 − 𝑧0
𝑤 − 𝑧0 )

𝑛
d𝑤

|

≤ 1
2𝜋

max
|𝑤−𝑧0|=𝑟

|𝑓 |

𝑟 𝜀Length(𝛾)

≤ 𝜀 max
|𝑤−𝑧0|=𝑟

|𝑓 |

■

Corollary 2. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be a function.
Then 𝑓 is holomorphic/analytic/ℂ-differentiable if and only if 𝑓 can be locally expressed as a power series in a
neighborhood of any point of 𝑈 .

Proof. ⇒: by Theorem 1.

⇐: if 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 in 𝐷𝑟(𝑧0) then 𝑓 is holomorphic on 𝐷𝑟(𝑧0) from last week lecture. ■

Corollary 3. A holomorphic/analytic/ℂ-differentiable function is infinitely many times ℂ-differentiable.

Remark 4. The previous results are false for ℝ-differentiability.

• Let 𝑓 ∶ ℝ → ℝ be defined by 𝑓(𝑥) =
{

𝑥2 sin(
1
𝑥 ) if 𝑥 ≠ 0

0 otherwise
Then 𝑓 is ℝ-differentiable but not 𝒞1.

• Let 𝑔 ∶ ℝ → ℝ be defined by 𝑔(𝑥) =
{

𝑒− 1
𝑥2 if 𝑥 ≠ 0

0 otherwise
Then 𝑔 is ℝ-differentiable, even 𝒞∞, but not analytic at 0,
i.e. it can’t be expressed as a power series around 0:
Indeed ∀𝑛 ∈ ℕ≥0, 𝑔(𝑛)(0) = 0, so if 𝑔 were equal to its Taylor series around 0 then it would be constant equal
to 0 but 𝑔 is non-zero in any neighborhood of 0.



MAT334H1-F – LEC0101 – J.-B. Campesato 3

• By a theorem of Borel ⋆ , given a real sequence (𝑎𝑛)𝑛∈ℕ≥0 , there exists a 𝒞∞ function defined in a neigh-
borhood of 0 in ℝ such that ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(0) = 𝑎𝑛.
Otherwise stated, any real power series is the Taylor expansion of a 𝒞∞ function.
If we take 𝑎𝑛 = (𝑛!)2 then we obtain a power series whose radius of convergence is 𝑅 = 0, hence a function
with such a Taylor expansion can’t be analytic.

2 Continuation of analytic functions

Theorem 5. Let 𝑈 ⊂ ℂ be a domain and 𝑓 ∶ 𝑈 → ℂ be a holomorphic/analytic function.
If there exists 𝑧0 ∈ 𝑈 such that ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(𝑧0) = 0 then 𝑓 ≡ 0 on 𝑈 .

Proof. Let 𝑧 ∈ 𝑈 . Since 𝑈 is path connected, there exists a curve 𝛾 ∶ [𝑎, 𝑏] → ℂ with 𝛾(𝑎) = 𝑧0 and 𝛾(𝑏) = 𝑧.
Since 𝑈 is open, for every 𝑤 ∈ 𝛾([𝑎, 𝑏]) there exists 𝑟𝑤 > 0 such that 𝐷𝑟𝑤(𝑤) ⊂ 𝑈 . Since 𝛾([𝑎, 𝑏]) is compact
we may assume that it is covered by finitely many of these disks 𝐷𝑟1(𝑤1), … , 𝐷𝑟𝑘(𝑤𝑘).

𝑧0

𝑧

By Theorem 1, if there exists 𝑣 ∈ 𝐷𝑟𝑖(𝑤𝑖) such that ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(𝑣) = 0 then 𝑓 ≡ 0 on 𝐷𝑟𝑖(𝑤𝑖).
Two consecutive disks intersect (since they cover 𝛾), so we conclude using the previous remark disk by disk
from 𝑧0 to 𝑧. ■

Remark 6. If you attend MAT327, another proof consists in showing that {𝑧 ∈ 𝑈 ∶ ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(𝑧) = 0}
is open, closed, and non-empty, hence equals to 𝑈 by connectedness.

Corollary 7. Let 𝑈 ⊂ ℂ be a domain and 𝑓, 𝑔 ∶ 𝑈 → ℂ be holomorphic/analytic functions.
If 𝑓 and 𝑔 coincide in the neighborhood of a point,

i.e. ∃𝑧0 ∈ 𝑈, ∃𝑟 > 0, ∀𝑧 ∈ 𝐷𝑟(𝑧0) ∩ 𝑈, 𝑓(𝑧) = 𝑔(𝑧),

then they coincide on 𝑈 ,
i.e.∀𝑧 ∈ 𝑈, 𝑓(𝑧) = 𝑔(𝑧).

Proof. Then ∀𝑛 ∈ ℕ≥0, (𝑓 − 𝑔)(𝑛)(𝑧0) = 0 (since 𝑓 − 𝑔 ≡ 0 on 𝐷𝑟(𝑧0) ∩ 𝑈).
Hence 𝑓 − 𝑔 ≡ 0 on 𝑈 by the previous theorem. ■

Remark 8. The previous results are false for ℝ-differentiability. Define 𝑓 ∶ ℝ → ℝ by

𝑓(𝑥) =
{

𝑒− 1
𝑥 if 𝑥 > 0

0 otherwise

then 𝑓 is ℝ-differentiable (even 𝒞∞). And

• ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(0) = 0 but 𝑓 ≢ 0.

• ∀𝑥 ∈ (−∞, 0), 𝑓 (𝑥) = 0 but 𝑓 ≢ 0.
⋆ It generalizes to multivariable functions.



4 Consequences of Cauchy’s integral formula

A common way to construct an analytic function consists in defining it in a ”small” domain and then to
extend it to an analytic function with a bigger domain.
By the above result, this analytic continuation, if it exists, is unique.
That’s a very powerful tool: knowing a function on a ”small” domain determines the function everywhere
else ⋆ . Holomorphic/analytic functions are very rigid!

⚠ The maximal domain may not be ℂ: for instance, if we try to extend Log, we won’t be able to do a
full turn around the origin since we won’t recover the same values (it increases by 2𝑖𝜋).

Example 9. Let 𝑓 ∶ 𝐷1(0) → ℂ be defined by 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑧𝑛.

Then 𝑓 coincides with 1
1−𝑧 on 𝐷1(0).

Hence we may extend 𝑓 with 𝐹 ∶ ℂ ⧵ {1} → ℂ defined by 𝐹 (𝑧) = 1
1−𝑧 .

3 Order of a zero
Definition 10. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Let 𝑧0 ∈ 𝑈 be such that 𝑓(𝑧0) = 0. Wedefine the order of vanishing of 𝑓 at 𝑧0 by𝑚𝑓 (𝑧0) ≔ min{𝑛 ∈ ℕ ∶ 𝑓 (𝑛)(𝑧0) ≠ 0}.

Remark 11. Note that 𝑚𝑓 (𝑧0) > 0 since 𝑓(𝑧0) = 𝑓 (0)(𝑧0) = 0.

Proposition 12. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Let 𝑧0 ∈ 𝑈 be such that 𝑓(𝑧0) = 0.

Denote the power series expansion of 𝑓 at 𝑧0 by 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛. Then 𝑚𝑓 (𝑧0) = min{𝑛 ∈ ℕ ∶ 𝑎𝑛 ≠ 0}.

Proof. 𝑎𝑛 = 𝑓 (𝑛)(𝑧0)
𝑛! ■

Proposition 13. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic.
Then 𝑧0 is a zero of order 𝑛 ∈ ℕ>0 of 𝑓 if and only if there exists 𝑔 ∶ 𝑈 → ℂ holomorphic such that 𝑓(𝑧) = (𝑧−𝑧0)𝑛𝑔(𝑧)
and 𝑔(𝑧0) ≠ 0.

4 Morera’s theorem
Theorem 14 (Morera’s theorem). Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be continuous.
If for every (full) triangle 𝑇 lying in 𝑈 we have ∫𝜕𝑇

𝑓 = 0 then 𝑓 is holomorphic/analytic on 𝑈 .

Proof. Let 𝑧0 ∈ 𝑈 and 𝑟 > 0 be such that 𝐷𝑟(𝑧0) ⊂ 𝑈 .
We define 𝐹 ∶ 𝐷𝑟(𝑧0) → ℂ by 𝐹 (𝑧) = ∫[𝑧0,𝑧]

𝑓 .

Let 𝑧, ℎ ∈ ℂ be such that 𝑧, 𝑧 + ℎ ∈ 𝐷𝑟(𝑧0) then, considering the triangle whose vertices are 𝑧0, 𝑧 and 𝑧 + ℎ,
we obtain ∫[𝑧0,𝑧]

𝑓 + ∫[𝑧,𝑧+ℎ]
𝑓 + ∫[𝑧+ℎ,𝑧0]

𝑓 = 0, i.e. 𝐹 (𝑧 + ℎ) − 𝐹 (𝑧) = ∫[𝑧,𝑧+ℎ]
𝑓 .

𝑧0
𝑧

𝑧 + ℎ

⋆ And we will even weaken the assumptions later this term: it is enough to know the function on a set with a limit point.
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Then

|
𝐹 (𝑧 + ℎ) − 𝐹 (𝑧)

ℎ − 𝑓(𝑧)| =
|
|
|
||

(∫[𝑧,𝑧+ℎ] 𝑓) − ℎ𝑓(𝑧)
ℎ

|
|
|
||

= 1
|ℎ| |∫[𝑧,𝑧+ℎ]

(𝑓 (𝑤) − 𝑓(𝑧)d𝑤|

≤
sup

𝑤∈[𝑧,𝑧+ℎ]
|𝑓 (𝑤) − 𝑓(𝑧)|

|ℎ| Length([𝑧, 𝑧 + ℎ])

= sup
𝑤∈[𝑧,𝑧+ℎ]

|𝑓 (𝑤) − 𝑓(𝑧)| −−−→
ℎ→0

0

Hence 𝐹 is holomorphic on 𝐷𝑟(𝑧0) and 𝐹 ′ = 𝑓 . Furthermore, 𝑓 is holomorphic on 𝐷𝑟(𝑧0) (and hence at 𝑧0)
as the complex derivative of a holomorphic function. ■

5 Characterizations of holomorphicity/analyticity
Theorem 15. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ. Then the following are equivalent:

1. 𝑓 is holomorphic/analytic/ℂ-differentiable, i.e. ∀𝑧0 ∈ 𝑈, lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ exists.

2. ̃𝑓 ∶ 𝑈̃ → ℝ2 is ℝ-differentiable and satisfies the Cauchy–Riemann equations on 𝑈̃ .

3. 𝑓 may be written as a power series 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 on a neighborhood of every 𝑧0 ∈ 𝑈 .

4. 𝑓 is continuous and for every (full) triangle 𝑇 lying in 𝑈 we have ∫𝜕𝑇
𝑓 = 0.

5. 𝑓 is continuous and for every simple closed curve 𝛾 on 𝑈 whose inside is also included in 𝑈 , we have ∫𝛾
𝑓 = 0.

6. 𝑓 admits local primitives/antiderivatives: for every 𝑧0 ∈ 𝑈 there exists 𝐹 ∶ 𝐷𝑟(𝑧0) ∩ 𝑈 → ℂ holomorphic for
some 𝑟 > 0 such that 𝐹 ′ = 𝑓 on 𝐷𝑟(𝑧0) ∩ 𝑈 .

Remark 16. When 𝑈 is simply-connected, wemay drop the assumption that the inside of the triangle/curve
is included in 𝑈 in (4) and (5). Furthermore we may also replace ”local primitives/antiderivatives” by ”a
primitive/antiderivative” in (6) i.e. there exists 𝐹 ∶ 𝑈 → ℂ holomorphic s.t. 𝐹 ′ = 𝑓 .

6 Liouville’s theorem
Definition 17. We say that a function 𝑓 ∶ ℂ → ℂ is entire if it is holomorphic (everywhere) on ℂ.

Theorem 18 (Liouville’s theorem). A bounded entire function is constant.

Lemma 19 (Cauchy’s inequalities). Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic.
Let 𝑟 > 0. If 𝐷𝑟(𝑧0) ⊂ 𝑈 then

|𝑓 (𝑛)(𝑧0)| ≤ 𝑛!
𝑟𝑛 max

|𝑧−𝑧0|=𝑟
|𝑓 (𝑧)|

Proof.

|
𝑓 (𝑛)(𝑧0)

𝑛! |
=

|
1

2𝑖𝜋 ∫|𝑧−𝑧0|=𝑟

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1d𝑤

|
≤

max
|𝑧−𝑧0|=𝑟

|𝑓 (𝑧)|

𝑟𝑛+1
Length (|𝑧 − 𝑧0| = 𝑟)

2𝜋 =
max|𝑧−𝑧0|=𝑟 |𝑓 (𝑧)|

𝑟𝑛
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For the first equality: we know that the 𝑛-th coefficient of the power expansion of 𝑓 at 𝑧0 is 𝑎𝑛 = 𝑓 (𝑛)(𝑧0)
𝑛!

and by Theorem 1 that it is also equal to 𝑎𝑛 = 1
2𝑖𝜋 ∫|𝑧−𝑧0|=𝑟

𝑓(𝑤)
(𝑤 − 𝑧0)𝑛+1d𝑤. ■

Proof of Liouville’s theorem. Assume that there exists 𝑀 > 0 such that ∀𝑧 ∈ ℂ, |𝑓(𝑧)| ≤ 𝑀 .
Let 𝑧 ∈ ℂ. For 𝑟 > 0, by Cauchy’s inequality with 𝑛 = 1, we have |𝑓 ′(𝑧)| ≤ 𝑀

𝑟 −−−−−→
𝑟→+∞

0.
Hence, ∀𝑧 ∈ ℂ, 𝑓 ′(𝑧) = 0. Therefore 𝑓 is constant on ℂ. ■

Theorem 20 (d’Alembert–Gauss theorem or the Fundamental Theorem of Algebra).
A non-constant polynomial with coefficients in ℂ admits a root/zero in ℂ.

Proof. Assume that 𝑃 is a complex polynomial with no root in ℂ.
Then 𝑄 = 1

𝑃 is a entire function and 𝑄 is bounded since lim
𝑧→+∞

𝑄 = 0.
Therefore, by Liouville’s theorem, 𝑄 is constant, and so is 𝑃 . ■

7 Analytic logarithm

Theorem 21. Let 𝑈 ⊂ ℂ be a simply connected domain and 𝑓 ∶ 𝑈 → ℂ a holomorphic/analytic function which
doesn’t vanish, i.e. ∀𝑧 ∈ 𝑈, 𝑓(𝑧) ≠ 0.
Then there exists 𝑔 ∶ 𝑈 → ℂ holomorphic/analytic such that 𝑒𝑔 = 𝑓 .

Proof. Since 𝑓 doesn’t vanish, 𝑓 ′

𝑓 is holomorphic on 𝑈 .

Then, since 𝑈 is simply connected, 𝑓 ′

𝑓 admits a complex primitive/antiderivative, i.e. there exists ̃𝑔 ∶ 𝑈 → ℂ
holomorphic/analytic such that ̃𝑔′ = 𝑓 ′

𝑓 .
Then (𝑓𝑒− ̃𝑔)′ = (𝑓 ′ − ̃𝑔′𝑓)𝑒− ̃𝑔 = 0 and therefore 𝑓𝑒− ̃𝑔 = 𝐾 is constant since 𝑈 is connected.
Since 𝐾 ≠ 0, there exists 𝑤 ∈ ℂ such that 𝑒𝑤 = 𝐾 .
Then, for 𝑔 = ̃𝑔 + 𝑤, we have 𝑒𝑔 = 𝑓 . ■

Remark 22. Such a function 𝑔 is not unique! For instance 𝑔 + 2𝑖𝜋 is another suitable function.

8 Multiplication of complex power series

We are going to prove the following theorem, but using results related to analytic functions.

Theorem 23. Let 𝑆𝐴(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 and 𝑆𝐵(𝑧) =
+∞

∑
𝑛=0

𝑏𝑛(𝑧 − 𝑧0)𝑛 be two power series of radii 𝑅𝐴 and 𝑅𝐵 .

We define 𝑆𝐴𝐵(𝑧) ≔
+∞

∑
𝑛=0 (

𝑛

∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘)
(𝑧 − 𝑧0)𝑛 and denote its radius of convergence by 𝑅𝐴𝐵 .

Then

1. 𝑅𝐴𝐵 ≥ min(𝑅𝐴, 𝑅𝐵).

2. If |𝑧 − 𝑧0| < min(𝑅𝐴, 𝑅𝐵) then 𝑆𝐴𝐵(𝑧) = 𝑆𝐴(𝑧)𝑆𝐵(𝑧),

i.e.
+∞

∑
𝑛=0 (

𝑛

∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘)
(𝑧 − 𝑧0)𝑛 =

(

+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛
) (

+∞

∑
𝑛=0

𝑏𝑛(𝑧 − 𝑧0)𝑛
)
.

Proof. We know that 𝑆𝐴 and 𝑆𝐵 are holomorphic on 𝑧 ∈ ℂ such that |𝑧 − 𝑧0| < min(𝑅𝐴, 𝑅𝐵).
Then 𝑓(𝑧) = 𝑆𝐴(𝑧)𝑆𝐵(𝑧) is holomorphic on |𝑧 − 𝑧0| < min(𝑅𝐴, 𝑅𝐵), so it can be written as a power series
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𝑓(𝑧) =
+∞

∑
𝑛=0

𝑐𝑛(𝑧−𝑧0)𝑛 on |𝑧−𝑧0| < min(𝑅𝐴, 𝑅𝐵) (particularly its radius of convergence is at leastmin(𝑅𝐴, 𝑅𝐵)).

Then

𝑐𝑛 = 𝑓 (𝑛)(𝑧0)
𝑛! = 1

𝑛!

𝑛

∑
𝑘=0

𝑛!
(𝑛 − 𝑘)!𝑘!𝑆(𝑛−𝑘)

𝐴 (𝑧0)𝑆(𝑘)
𝐵 (𝑧0) by Leibniz rule

=
𝑛

∑
𝑘=0

𝑆(𝑛−𝑘)
𝐴 (𝑧0)
(𝑛 − 𝑘)!

𝑆(𝑘)
𝐵 (𝑧0)

𝑘!

=
𝑛

∑
𝑘=0

𝑎𝑛−𝑘𝑏𝑘 =
𝑛

∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘
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