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1 Holomorphic functions are analytic

Theorem 1. Let U C C be open and f : U — C be holomorphic /analytic | C-differentiable.
Then f can be locally expressed as a power series in a neighborhood of any point of U.

More precisely, if D,(zy) C U then

+00

Vz € D,(zp), f(z) = z a,(z = zp)"

n=0

1 / Sw)
a,=— | ————dw
2ir J, (w— zp)™*!

and y : [0,1] — C is defined by y(t) = zo + re*™ and the radius of convergence of this power series is greater than or
equal to r.

where



2 Consequences of Cauchy’s integral formula

Proof. By Cauchy’s integral formula

1 f(w)
f(z) = i d

i |, w—1z

= —21 f(W) lz_zo dw
¥4 J,w—zol—szo
1 [ fw) & (z2-2\"

=-— | —/—— <—0> dw since |z — zo| < lw —zg| =7
2w J, w—zy S \w -z

5 ([ )
2z J, (w— zp)"*! 0

We need to justify the last equality (i.e. the permutation [ —Y).

Let € > 0. There exists N such that if k > N then the remainder satisfies < g, so that

+
i(z—z())"
n=k W=z

1 [ fw) o (z-%\"
2zﬂ/yw—z0;(<w—zo> dw

max |f|

1 lw—zgl=r
< o € Length(y)

<e max |f]|
lw—zo|=r

r0-3 (s [ L9 aw) -
“ \2in y (W — zy)r*! 0

Corollary 2. Let U c Cbeopenand f : U — C be a function.
Then f is holomorphic/analytic/C-differentiable if and only if f can be locally expressed as a power series in a
neighborhood of any point of U.

Proof. =: by Theorem 1.

+00

<:if f(z) = Z a,(z — zy)" in D,(z() then f is holomorphic on D,(z;) from last week lecture. |
n=0

Corollary 3. A holomorphic/analytic/C-differentiable function is infinitely many times C-differentiable.

Remark 4. The previous results are false for R-differentiability.

x? sin <%> ifx#0
otherwise

o Let f : R - R be defined by f(x) = {

Then f is R-differentiable but not C!.

L .
o Letg : R — R be defined by g(x) = e 2 ifx#0
0 otherwise

Then g is R-differentiable, even C*, but not analytic at 0,

i.e. it can’t be expressed as a power series around 0:

Indeed Vn € N, g™(0) = 0, so if g were equal to its Taylor series around 0 then it would be constant equal
to 0 but g is non-zero in any neighborhood of 0.
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e By a theorem of Borel *, given a real sequence (ap)pen,, there exists a C* function defined in a neigh-
borhood of 0 in R such that Vn € Ny, f™(0) = a,,

Otherwise stated, any real power series is the Taylor expansion of a C* function.

If we take a, = (n!)? then we obtain a power series whose radius of convergence is R = 0, hence a function
with such a Taylor expansion can’t be analytic.

2 Continuation of analytic functions

Theorem 5. Let U C C be a domain and f : U — C be a holomorphic/analytic function.
If there exists zy € U such that Vn € Ny, f"(zy) =0 then f =0on U.

Proof. Let z € U. Since U is path connected, there exists a curve y : [a,b] - C with y(a) = z; and y(b) = z.
Since U is open, for every w € y([a, b]) there exists r,, > 0 such that Drw(w) Cc U. Since y([a, b]) is compact
we may assume that it is covered by finitely many of these disks D, (w)), ..., D,, (wy).

By Theorem 1, if there exists v € D, (w;) such that Vn € N, ™) =0then f =0on D, (w)).
Two consecutive disks intersect (since they cover y), so we conclude using the previous remark disk by disk
from z; to z. [

Remark 6. If you attend MAT327, another proof consists in showing that {z € U : Vn € Ny, f M(z) = 0}
is open, closed, and non-empty, hence equals to U by connectedness.

Corollary 7. Let U C C bea domain and f,g : U — C be holomorphic/analytic functions.
If f and g coincide in the neighborhood of a point,

ie.dzpe U, Ir>0,Vze D.(zp)NU, f(z) = g(2),

then they coincide on U,
ie.Vze U, f(z)=g(2).

Proof. Then Vn € Ny, (f — g)(")(zo) =0 (since f —g=0o0n D,(zg) N U).
Hence f — g = 0 on U by the previous theorem. [ |

Remark 8. The previous results are false for R-differentiability. Define f : R — R by

_ e_% ifx>0
f(x)—{ 0

otherwise
then f is R-differentiable (even C*). And
o Vne Ny f™0)=0but f 0.

e Vx € (—00,0), f(x) =0but f £0.

* It generalizes to multivariable functions.



4 Consequences of Cauchy’s integral formula

A common way to construct an analytic function consists in defining it in a “small” domain and then to
extend it to an analytic function with a bigger domain.
By the above result, this analytic continuation, if it exists, is unique.
That’s a very powerful tool: knowing a function on a “small” domain determines the function everywhere
else * . Holomorphic/analytic functions are very rigid!

A The maximal domain may not be C: for instance, if we try to extend Log, we won’t be able to do a
full turn around the origin since we won'’t recover the same values (it increases by 2ix).

+00
Example 9. Let / : D;(0) — C be defined by f(z) = Z z".

n=0
Then f coincides with 1+z on D(0).

Hence we may extend f with F : C\ {1} — C defined by F(z) = L

1-z°

3 Order of a zero

Definition 10. Let U ¢ Cbe openand f : U — C be holomorphic/analytic.
Let z, € U besuch that f(z,) = 0. We define the order of vanishing of f at z, by m(zp) == min {n eN : f(”)(zo) + O}.

Remark 11. Note that m,(z,) > 0 since f(z,) = Oz = 0.

Proposition 12. Let U C C beopen and f : U — C be holomorphic/analytic. Let z, € U be such that f(zy) = 0.

+00
Denote the power series expansion of f at zy by f(z) = Z a,(z — zp)". Then m;(z,) = min {n eN :a,# O}.
n=0
“(z)
Proof. a, = fn—,zo [

Proposition 13. Let U C C be open and f : U — C be holomorphic/analytic.
Then z( is a zero of order n € Ny of f if and only if there exists g : U — C holomorphic such that f(z) = (z—z)"g(2)
and g(zq) # 0.

4 Morera’s theorem

Theorem 14 (Morera’s theorem). Let U € C beopen and f : U — C be continuous.

If for every (full) triangle T lying in U we have / f =0then f is holomorphic/analytic on U.
oT

Proof. Let zy € U and r > 0 be such that D,(z5) c U.
We define F : D,(zy,) - Cby F(z) = f.

[z0.2]
Let z, h € C be such that z, z + h € D,(z;) then, considering the triangle whose vertices are z(, z and z + A,

weobtain/ f+/ f+/ f=0,i.e.F(z+h)—F(z)=/ f.
[z0,2] [z,z+h] [z+h,z(] [z,z+h]

z+h

20

* And we will even weaken the assumptions later this term: it is enough to know the function on a set with a limit point.
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Then

(Jiozem£) =11
h

F(z+ h)— F(2)
h

- f(Z)‘ =

1

/ (f (w) - f(z)dw’
[z,z+h]

Il
sup |f(w)— f(2)]
we|[z,z+h]
< m Length([z, z + A])
= sup |[f(w)-f(z)] —0
we[z,z+h] h—0

Hence F is holomorphic on D,(zy) and F’ = f. Furthermore, f is holomorphic on D,(z;) (and hence at z,)
as the complex derivative of a holomorphic function. [

5 Characterizations of holomorphicity/analyticity

Theorem 15. Let U € C beopen and f : U — C. Then the following are equivalent:

f(zo+h) = f(zp)
h

1. f is holomorphic/analytic/C-differentiable, i.e. Vz, € U, }lin(l) exists.

2. f: U - R?is R-differentiable and satisfies the Cauchy—Riemann equations on U

+o0

. f may be written as a power series f(z) = z a,(z — zq)" on a neighborhood of every z, € U.
n=0

o8}

H

. f is continuous and for every (full) triangle T lying in U we have / f=0.
aT

€1

. f is continuous and for every simple closed curve y on U whose inside is also included in U, we have / f=0.
v

[o)}

. [ admits local primitives /antiderivatives: for every z, € U there exists F : D.(zy) N U — C holomorphic for
some r > 0 such that F' = f on D,(zy) N U.

Remark 16. When U is simply-connected, we may drop the assumption that the inside of the triangle/curve
is included in U in (4) and (5). Furthermore we may also replace “local primitives/antiderivatives” by "a
primitive/antiderivative” in (6) i.e. there exists F : U — C holomorphics.t. F' = f .

6 Liouville’s theorem

Definition 17. We say that a function f : C — C is entire if it is holomorphic (everywhere) on C.
Theorem 18 (Liouville’s theorem). A bounded entire function is constant.

Lemma 19 (Cauchy’s inequalities). Let U C C be openand f : U — C be holomorphic.
Letr > 0. If D,(zy) C U then

n

17Dz <2 max |£(2)]
' |z—zy|=r

Proof.

F"(zp)

n!

max
1 / _ S R TN Length (12 - 201 = 1) _ max_g | f(2)]
2im Jyz—zy)=r (W — zg)"*! =

i+l 2r r?



6 Consequences of Cauchy’s integral formula

For the first equality: we know that the n-th coefficient of the power expansion of f at z; is a,

S (w)

and by Theorem 1 that it is also equal to a, = %im o — 2y
IT J)z—zp|=r (W — Z

Proof of Liouville’s theorem. Assume that there exists M > 0 such thatVz € C, |f(z)| < M.
Let z € C. For r > 0, by Cauchy’s inequality with n = 1, we have |f’(z)| < % —> 0.

r—>+oo

Hence, Vz € C, f'(z) = 0. Therefore f is constant on C.

Theorem 20 (d’Alembert-Gauss theorem or the Fundamental Theorem of Algebra).
A non-constant polynomial with coefficients in C admits a root/zero in C.

Proof. Assume that P is a complex polynomial with no root in C.
Then O = % is a entire function and Q is bounded since lim O = 0.

zZ—>+00

Therefore, by Liouville’s theorem, Q is constant, and so is P.

7 Analytic logarithm

_ f(n)(zo)
- n!
|
|
|

Theorem 21. Let U C C be a simply connected domain and f : U — C a holomorphic/analytic function which

doesn’t vanish,i.e. Vz € U, f(z) # 0.
Then there exists g : U — C holomorphic/analytic such that e® = f.

Proof. Since f doesn’t vanish, fT/ is holomorphic on U.
f/
7 !
holomorphic/analytic such that §" = fT
Then (fe~8) = (f' — &' f)e~¢ = 0 and therefore fe ¢ = K is constant since U is connected.
Since K # 0, there exists w € C such that ¢ = K.

Then, for g = § + w, we have ¢® = f.

Then, since U is simply connected,

Remark 22. Such a function g is not unique! For instance g + 2ix is another suitable function.

8 Multiplication of complex power series

We are going to prove the following theorem, but using results related to analytic functions.

+00

admits a complex primitive/antiderivative, i.e. thereexists § : U — C

+o0
Theorem 23. Let S,(z) = Z a,(z — zy)" and Sg(z) = Z b,(z — zy)" be two power series of radii R, and Rpg.
n=0

n=0
We define S 4 (z) = +200 (i akbn_k> (z — z()" and denote its radius of convergence by R 4p.
Then A
1. R, > min(R,, Rp).

2. lf IZ - Zol < min(RA, RB) then SAB(Z) = SA(Z)SB(Z),

+00 n +oo too
ie ) (Z akbn_k) (z—zo)" = <Z a,(z— zO)”> (Z b,(z — zo)”>.
n=0 0 n=0

k= n=0

Proof. We know that §, and Sz are holomorphic on z € C such that |z — z,| < min(Ry4, Rp).

Then f(z) = S4(2)Sp(2) is holomorphic on |z — z5| < min(Ry, Rp), so it can be written as a power series
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+o00
f(z) = Z c,(z—z¢)" on |z—zy| < min(R,, Rp) (particularly its radius of convergence is at least min(R 4, Rp)).
n=0
Then
Pz 1 < n! (n—k) k) .
¢, = = 2 mSA (29)S () by Leibniz rule

_ g Sa G0 Sy @)
= -k k!

n

n
= Z ay_iby = Z b,k
k=0

k=0
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