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Cauchy’s residue theorem — 1

Theorem: the residue theorem

Let U c C be open. Let .S c U be finite. Assume that f : U \ S — C is holomorphic/analytic.

Let y : [a,b] — C be a positively oriented piecewise smooth simple closed curve on U \ S% whose inside? is
entirely included in U. Then®

/ fdz=2ir ) Res(f,z)
Y

zelnside(y)

4j.e. y doesn’t pass through any point of S.
bgee Jordan’s curve theorem, September 28.
°The following sum is finite since Res(f, z) # 0 only for z € S.
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Cauchy’s residue theorem — 1

Theorem: the residue theorem

Let U c C be open. Let .S c U be finite. Assume that f : U \ S — C is holomorphic/analytic.
Let y : [a,b] — C be a positively oriented piecewise smooth simple closed curve on U \ S% whose inside? is
entirely included in U. Then®

/ fdz=2ir ) Res(f,z)
Y

zelnside(y)

4j.e. y doesn’t pass through any point of S.
bgee Jordan’s curve theorem, September 28.
°The following sum is finite since Res(f, z) # 0 only for z € S.

<

Corollary

Let U c C be open and simply-connected. Let .S c U be finite.
Assume that f : U \ S — C is holomorphic/analytic.
Let y : [a,b] — C be a positively oriented piecewise smooth simple closed curve on U \ S. Then

/ f(z)dz = 2in 2 Res(f, z)
14

z€Inside(y)
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Cauchy’s residue theorem — 2

Proof.

{z,...,z,} are the points of .S enclosed in y.
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Cauchy’s residue theorem — 2

Proof.

We may find pairwise disjoints disks D, (z,) C U where {z,, ..., z,} are the points of S enclosed in y.
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Cauchy’s residue theorem — 2

We may find pairwise disjoints disks D, (z,) C U where {z,, ..., z,} are the points of S enclosed in y.

Proof. Y

We apply Green’s theorem to T = Inside(y) \ (U D,k(zk)>

i=1
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Cauchy’s residue theorem — 2

Proof.

We may find pairwise disjoints disks D, (z,) C U where {z,, ..., z,} are the points of S enclosed in y.

We apply Green’s theorem to T = Inside(y) \ (U D,k(zk)>, then

i=1

/f(z)dz— : f(z)dz —z// <6f )

where y, : [0, 1] — C is defined by y,(t) = z, + r,e*™.
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Cauchy’s residue theorem — 2

Proof.

We may find pairwise disjoints disks D, (z,) C U where {z,, ..., z,} are the points of S enclosed in y.

We apply Green’s theorem to T = Inside(y) \ (U D,k(zk)>, then

i=1

/f(Z)dZ— f(z)dz_z//<af ) -0
Yk

where y, : [0, 1] — C is defined by y,(t) = z, + r,e*™.
The last equality is due to the Cauchy—Riemann equations.
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Cauchy’s residue theorem — 2

Proof.

We may find pairwise disjoints disks D, (z,) C U where {z,, ..., z,} are the points of S enclosed in y.

We apply Green’s theorem to T = Inside(y) \ (U D,k(zk)>, then

i=1

/f(z)dz— f(z)dz_z//<af ) -0
Yk

where y, : [0, 1] — C is defined by y,(t) = z, + r,e*™.
The last equality is due to the Cauchy—Riemann equations.

Then / f(z)dz = E f(z)dz = 2in Z Res(f, z,) ]
Y k=1

k=1 Y Yk
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Cauchy’s residue theorem — 3

Let S c C be finite. Assume that f : C\ S — C is holomorphic/analytic. Then

Res(f, )+ ) Res(f,2)=0

ZES
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Cauchy’s residue theorem — 3

Let S c C be finite. Assume that f : C\ S — C is holomorphic/analytic. Then

Res(f, )+ ) Res(f,2)=0

ZES

Proof. Take r > 0 such that .S ¢ D,(0) and define y : [0,1] - C by y(t) = re®™ . Then
Z Res(f,z) = ﬁ /f(z)dz by Cauchy’s residue theorem
1
Y

zES

= —Res(f, o)
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Cauchy’s residue theorem — 3

Let S c C be finite. Assume that f : C\ S — C is holomorphic/analytic. Then

Res(f, )+ ) Res(f,2)=0

ZES

Proof. Take r > 0 such that .S ¢ D,(0) and define y : [0,1] - C by y(t) = re®™ . Then

Z Res(f,z) = ﬁ /f(z)dz by Cauchy’s residue theorem
Y

zES

= —Res(f, o)

We may rewrite the above conclusion as Z Res(f,z) =0.

zeC
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Example: /7 £2dx (rational function) — 1

— 0(x)

Assume that P and Q are two polynomials. Set f(z) =

+oo P(x)

We know that /
—o0 X
Then |llim zf(z) =0.
Z|—00
Assume that Q has no real root.

3

R
-R R

Define yx : [0,1] = C by yz(t) = Re'™.

P(z)
0"

)dx is convergent if and only if deg O > deg P + 2, let’s assume the latter.

For R > 0 big enough, all the poles of f whose imaginary
part is positive are included within the upper-half disk
centered at 0 and of radius R.

R
Then / f@dz+ [ fzdz=2ir ) Res(f,z).
-R

YR zs.t. 3(2)>0
But / f| <xRsup|f| —— 0since lim zf(z)=0.
YR YR R—+ |z] >0
+00 P
Hence P& 4y = 2in z Res <£, z).
o Q) zst S(2)>0 0
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Example: [ %dx (rational function) — 2

+00 dx
Compute / ou0<ac<hb.
oo (X2 4+ a?)(x2 + b2)
The poles of f(z) = Traa are —ia, ia, —ib and ib which are simple. Hence
+oo dx
=2in Res(f,ia) + 2imr Res(f,ib
/_00 21 D) (f.ia) (f.ib)
_ 2im o 2im
2i(b2 —a®)a  2i(a® — b2)b
=8
ab(a + b)
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Example: fOZ” R(cost, sin t)dt

Set z = ¢ then cos(?) = % (z + i) sin() = % (z - i) and % =dr.
Set f(z) = iR(% (z+l) 1 (z— l)) Then /OzﬂR(cost,sint)dt=/Sl f(dz=2ix Y Res(f.2).

z)’2i
2€D;(0)

Example

2
Compute / %dz where a > 0.
0

A a® +sin” t 4
Set f(z) = — a =— 1az .
lzaz—i z—i 2 (22 +2az — 1)(z22 = 2az — 1)

Note that the singularity at 0 of the LHS is removable since we may extend f through 0 using the RHS, so
that Res(f,0) = 0.

Then, the only poles of f within the unit disk are z;, = —a + V/a? + 1 and z, = a — /a2 + 1 which are simple.
Hence

2n
/ —%—dr=2inRes(f.z) +2inRes(f.z,) = 27
0o a?+sin“t a?+1
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Jordan’s lemma

The following trick called, Jordan’s lemma, can be very useful.
Let yx : [0, 7] — C be defined by yg(f) = Re".

/ g(z)e*dz
Yr

e
— ‘/ g(Reit)eiR(cost+isint)l-Reitdt
0

< '/7r |g(Reit)eiR(cost+isint)l-Reit| dt
0 e
SRsupIgI/ e Rsintqy
YR 0
/2
=2Rsup|g|/ e Rsintqy
YR 0

/2
<2Rsup|g| / e 2Ri"dr by Jordan’s inequality: ¥x € [O, g] , 2, < sin(x) < x
YR 0 b/

<nsuplg| (1-eF)
YR

< msuplgl
YR
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Example: /7% ZWgiaxqy — 4

— 0(x)

+w@

We want to compute I(a) := 00
oo X

e*dx where P, Q are real polynomials and a € R. Assume that Q

has no real root.
Note that I(—a) = I(a), SO we may restrict our attention to a > 0.

The integral is convergent if and only if degQ > deg P + 1 (integration by parts), so we assume the latter.

I For R > 0 big enough, all the poles of f(z) = %e"“ whose imaginary
part is positive are included within the upper-half disk centered at 0 and
of radius R.

R
Then / fdz+ | fz)dz =2irn Z Res(f,z) (%)
-R YR zs.t S(2)>0
But, by Jordan’s lemma,

L6

iZdz| < wsup |P/Q] —— 0
—R R R YR Q(z)e : }’Rpl @l Rotoo
Define yy : [0, 1] — C by yx(1) = Re™. Hence, by taking R - +oo in (x), we get
+o0
Px) e'dx = 2in Z Res <—P(Z) elez, z)
—wo Q) 25t S(2)>0 0(z)
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Example: [

Example

+00
Compute /

o0

+o0
Note that /

o

The poles of f(

+o0 iz e e
By the previous slide, dz =2ir Res(f,ia) = 2in— = 7—.
o 224 a? 2ia a
+00 —a
cos
Hence / (x) dx=n%—.
oo X2+ a? a

s Py

— 0(x)

cos(x)
x? +a?

cos(x) too o gix
m‘?“’"(/_m Frade)

1Z

e . ) . :

z) = ——— are ia and —ia which are simple.
2 2
-+ a

dx where a > 0.

Jean-Baptiste Campesato MAT334H1-F — LEC0101 — Oct 30, 2020 and Nov 2, 2020 10/13



+00 x

Example:

dx n,p €N

+00

We know that the integral

-dx is convergent if and only if n > p+2. Set f(z) =

2P x
anda=¢e'n.
zn

We consider the following sector of the circle centered at 0 and of radius R, such that the only pole of f
enclosed in its inside is a.

K

By the residue theorem, 2i7tReS(f,a)=/ f+/f+/ f
[0,R] y [a2R.0]

P p+1
® Res(f.a)= —5 =—-"—.

n

R 2p R,
° / fz)dz = —a2/ L P _azuz+1>/ *
R [a2R,0] 0 1 4 g2nn o T+

(z)dz

0l R
Lety : [O, 27”] — C be defined
by y(t) = Re".

ap+1 +00 xP +o0 xP
Hence, by taking the limit as R — +o0, we get —2ir— = / I dx - az(”“)/
n 0 x" 0

dx
14+ x"
+00 . 1 .
. xP? 2ir  a’t n 2i T
Finall dx==— == .
y o 1+ x n a2t — 1 n abtl — a—(p+l) nsin (p+nl)7!

< 2—”Rsup |f] —— 0 since lim zf(z) =
n Y R—+ zZ—00
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Example: /" =dr

3 By Cauchy’s integral theorem

-r it Reit
/—dz— —dz+/ —dt+/ —dr =

1t .t
/e—dz
YR z

e Since 0 is a simple pole of f(z) = “7 we have that

® By Jordan’s lemma:

<zsup|l/z| — 0
YR R—+00

M R f(2) =Res(f,0)z™! + g(z) where g is holomorphic.
K - R Then / f(z)dz = / Res(f,0)z"'dz + / g(z)dz but
Define yg : [0,1] = C by yg(1) = Re™ Yr v v
andy, : [0,1] = C by y,(1) = re™. Res(f,0)z"'dz = Res(f,0)ix and / g(2)dz| < nrsup|g| — 0.
Yr Yr =

Yr

Hence | f(z)dz -2 Res(f,0)inr = in.

R R it _ it R it R’ —n —r it iz iz
/ S‘—n’d_1 e dr=l,/ Ca-L [t =—/ e—dz:i(/e—dz-/ e—dz)
, 2i t 2i J, t 2i /, t 2i\J,, z vr 2

too
Hence, taking r — 0 and R — +oco we get that / Lntd = 5
0
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+00 (log
1412

Example:

We set f(z) = (logz) but for that we need to fix a branch of the logarithm. Let’s fixlog : C\ {iy : y <0} — C defined by

log z = log 2| +zArg(z) where Arg(z) € (—5,3g).

S
By Cauchy’s residue theorem
—r R 3
f(dz— | f(z)dz+ / f(dz + / f(z)dz = 2in Res(f, i) = - Z-.
YR Yr -R r 4
. (|Inr| + 7[)2
° < <
. Since |logz| < |Inr|+zonvy,, : f(z)dz < nr T2 v
; . .
AN ® Since z = te'” on [-R, —r], we have
- R 2o N\2 R 2 R R
R r (Int+in) / (Inr) . / Int / b
_ —r| r dz = ——dt= dr+2 dr— dr
R "I R /_R f@dz E 1+12 P a . 1412 . 1412

Define Y& : [0,1]1 = C by yg(t) = Re'™ and
: [0,1] = C by y,(t) = re'™.

+o0 2 +o0 3 +o0 2 3
y taking the limits » — 0 and R — +oo we ge t+ t— — + t=——.
By taking the limits r — 0 and e O g 0in Int_4,_x nd” 4, - _7
o 1+72 0o 1+ 2 o 1+ 4
400 2 3
. (Int) T
By taking the real part, we get dr = —.
y 9 P 9 /0 1+12 8
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