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Divisibility — 1

Definition: divisibility

Given a,b € Z, we write b|a if 3k € Z, a = bk.
We say that "a is divisible by b” or "b is divisor of a” or "a is a multiple of b”.
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Divisibility — 1

Definition: divisibility

Given a,b € Z, we write b|a if 3k € Z, a = bk.
We say that "a is divisible by b” or "b is divisor of a” or "a is a multiple of b”.

* (=5)[10 *5+(-11) l
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Divisibility — 1

Definition: divisibility

Given a,b € Z, we write b|a if 3k € Z, a = bk.
We say that "a is divisible by b” or "b is divisor of a” or "a is a multiple of b”.

* (=5)[10 *5+(-11) l

® When b # 0, b|a if and only if the remainder of the Euclidean division of a by b is 0.
* Any integer is a divisor of 0, i.e Vb € Z, b|0.
Indeed, 0 = b x 0.

¢ Any integer is divisible by 1 and itself, i.e. Va € Z, 1|a and q|a.
Indeed, a=1xa=ax1.

¢ The only integer divisible by 0is 0, i.e. Va € Z, 0la = a =0.
Indeed, then a = 0 x k for some k € Z and hence a = 0.
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Divisibility — 2

O Va,be Z, (alband bla) => |a| = |b]

® Va,b,ce Z, (alb and blc) = alc

© Va,b,c,d € Z, (alband c|d) => ac|bd

O Va,b,c,A\ueZ, (a|b and alc) = a|(Ab + uc)
OVaeZ, all = |a|=1
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Divisibility — 3
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Divisibility — 3

Proof.

@ Va,be 7, (alband bla) => |a| = |b]
Let a, b € Z satisfying a|b and bla. If a = 0 then b = 0 (from 0]b). So we may assume that a # 0.
There exist k,I € Z such that b = ak and a = bl. Then a = bl = akl, thus 1 = kI since a # 0.
Therefore, 1 = |1| = |kI| = |k| x |I]. Since |k|, |I|] € N, we get that |k| = |I| = 1.
Finally, |a| = |bl]| = |b] X |I] = |b] X 1 = |b].
® Va,b,c € Z, (alband blc) => alc
Let a, b, c € Z satisfying a|b and b|c. Then b = ak and ¢ = bl for some k,l € Z.
Therefore ¢ = bl = akl, so alc.
© Va,b,c,d € Z, (alband c|d) = ac|bd
Leta,b,c,d € Z satisfying a|b and c¢|d. Then b = ak and d = ¢l for some k,l € Z.
Therefore bd = ackl, so ac|bd.
O Va,b,c,Ap€eZ, (alband alc) => al|(Ab+ pc)
Let a, b, ¢ € Z satisfying a|b and alc. Then b = ka and ¢ = la for some k,/ € Z.
Hence Ab + pc = Aka + pla = (Ak + pl)a. Thus a|(Ab + uc).
O VvVaeZ all = |a|=1
Let a € Z. Assume that a|1. Then a|1 and 1|a. So by the first item, |a| = 1. [ |
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Greatest common divisor — 1

Given a, b € Z not both zero, the set common divisors of a and » admits a greatest element
denoted ged(a, b) and called the greatest common divisor of a and b.
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Greatest common divisor — 1

Given a, b € Z not both zero, the set common divisors of a and » admits a greatest element
denoted ged(a, b) and called the greatest common divisor of a and b.

Proof. Let a, b € Z not both zero. We set S = {d € Z : d|aand d|b}.
® S is non-empty since it contains 1.

e Without loss of generality, let assume that a # 0.
Let d € S then a = dk for some k € Z. Note that k # 0 (otherwise a = dk = 0), hence 1 < |k|.
Thus d < |d| < |d]| X |k| = |dk| = |al.
Hence S is bounded from above by |a].

Therefore, S admits a greatest element (as an non-empty subset of Z bounded from above). B
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Greatest common divisor — 1

Given a, b € Z not both zero, the set common divisors of a and » admits a greatest element
denoted ged(a, b) and called the greatest common divisor of a and b.

Proof. Let a, b € Z not both zero. We set S = {d € Z : d|aand d|b}.
® S is non-empty since it contains 1.

e Without loss of generality, let assume that a # 0.
Let d € S then a = dk for some k € Z. Note that k # 0 (otherwise a = dk = 0), hence 1 < |k|.
Thus d < |d| < |d]| X |k| = |dk| = |al.
Hence S is bounded from above by |a].

Therefore, S admits a greatest element (as an non-empty subset of Z bounded from above). B

Note that ged(a, b) > 1 since 1 is a common divisor of a and b (particularly ged(a, b) € N).
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Greatest common divisor — 2

Given a,b € Z not both zero and d € N\ {0}, how do we prove that d = ged(a, b)?

Quite often the strategy is the following:
© Prove: d|a.
® Prove: d|b.
© Prove: V5 €N, (6laand 6|b) = 6ld.

Indeed, then d is a common divisor of a and b by the first two steps.
And it is the greatest one by the last step, as we show below.
Let 6 € Z be a common divisor of a and b.
° |If6§ <0thené <d.
e If § > 0then d = 6k for some k € Z.
Note that k > 1 since d,6 > 0.
Thus 6 < 6k=d
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Bézout’s identity — 1

Theorem: Bézout’s identity
Given a, b € Z not both zero, there exist u, v € Z such that au + bv = ged(a, b).
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Bézout’s identity — 1

Theorem: Bézout’s identity
Given a, b € Z not both zero, there exist u, v € Z such that au + bv = ged(a, b).

gcd(15,25) =5 = 15X 2 + 25 x (=1) I
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Bézout’s identity — 1

Theorem: Bézout’s identity

Given a, b € Z not both zero, there exist u, v € Z such that au + bv = ged(a, b).

ged(15,25)=5=15%x2+25x(-1)

® The couple (u,v) is not unique:

5=15%27+25x%x(-16)
=15%x2 +25%x(-1)

® The converse is false: 2 =3 x4 + 5 x (-2) but ged(3,5) = 1 # 2.
Nonetheless, we will see later that there is a partial converse when ged(a, b) = 1.
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Bézout’s identity — 2

Proof of Bézout’s identity. Let a,b € Z not both zero. We want to show Ju, v € Z, au + bv = ged(a, b).
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Bézout’s identity — 2

Proof of Bézout’s identity. Let a,b € Z not both zero. We want to show Ju, v € Z, au + bv = ged(a, b).
° SetS={neN\({0} : uve”Z n=au+bv}.
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Bézout’s identity — 2

Proof of Bézout’s identity. Let a,b € Z not both zero. We want to show Ju, v € Z, au + bv = ged(a, b).
° SetS={neN\({0} : uve”Z n=au+bv}.

* Note that |a| + |b| > 0 since at least one is non-zero.
Then |a| + |b| =ax(x])+bx(x]) € S. S0 S # @.
Thus, by the well-ordering principle, .S admits a least element 4.
Sinced € S, d = au + bv for some u,v € Z.
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Bézout’s identity — 2

Proof of Bézout’s identity. Let a,b € Z not both zero. We want to show Ju, v € Z, au + bv = ged(a, b).
e SetS={neN\{0} : Ju,v€ Z, n=au+bv}.

* Note that |a| + |b] > 0 since at least one is non-zero.
Then |a| + |b| =ax(x])+bx(x]) € S. S0 S # @.
Thus, by the well-ordering principle, .S admits a least element 4.
Sinced € S, d = au + bv for some u,v € Z.

® Let’s prove that d = ged(a, b).

® Euclidean division: 3¢,r € Z suchthata=dgq+rand 0 <r < |d| =d.
Assume by contradiction that r # 0.
Thenr=a-qd =a—qlau+bv)=ax (1 —qu)+b X (—qv)isin §.
Contradiction with d being the least element of S.
Hence r=0and a=dgq,i.e. d|a.
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Bézout’s identity — 2
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Contradiction with d being the least element of S.
Hence r=0and a=dgq,i.e. d|a.

® Similarly d|b.
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Bézout’s identity — 2

Proof of Bézout’s identity. Let a,b € Z not both zero. We want to show Ju, v € Z, au + bv = ged(a, b).
e SetS={neN\{0} : Ju,v€ Z, n=au+bv}.

* Note that |a| + |b] > 0 since at least one is non-zero.
Then |a| + |b| =ax(x])+bx(x]) € S. S0 S # @.
Thus, by the well-ordering principle, .S admits a least element 4.
Sinced € S, d = au + bv for some u,v € Z.

® Let’s prove that d = ged(a, b).

® Euclidean division: 3¢,r € Z suchthata=dgq+rand 0 <r < |d| =d.
Assume by contradiction that r # 0.
Thenr=a-qd =a—qlau+bv)=ax (1 —qu)+b X (—qv)isin §.
Contradiction with d being the least element of S.
Hence r=0and a=dgq,i.e. d|a.

® Similarly d|b.

® Let 6 € N be another common divisor of a and b.
Then there 3k,l € Z, a = 6k, b= 61. Hence d = au + bv = &(ku + lv).
Therefore &|d.
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Bézout’s identity — 2

Proof of Bézout’s identity. Let a,b € Z not both zero. We want to show Ju, v € Z, au + bv = ged(a, b).
e SetS={neN\{0} : Ju,v€ Z, n=au+bv}.

* Note that |a| + |b] > 0 since at least one is non-zero.
Then |a| + |b| =ax(x])+bx(x]) € S. S0 S # @.
Thus, by the well-ordering principle, .S admits a least element 4.
Sinced € S, d = au + bv for some u,v € Z.

® Let’s prove that d = ged(a, b).

® Euclidean division: 3¢,r € Z suchthata=dgq+rand 0 <r < |d| =d.
Assume by contradiction that r # 0.
Thenr=a-qd =a—qlau+bv)=ax (1 —qu)+b X (—qv)isin §.
Contradiction with d being the least element of S.
Hence r=0and a=dgq,i.e. d|a.

® Similarly d|b.

® Let 6 € N be another common divisor of a and b.
Then there 3k,l € Z, a = 6k, b= 61. Hence d = au + bv = &(ku + lv).
Therefore &|d.

¢ According to Slide 6, we proved that d is the greatest common divisor of a and b. |
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Properties of the gcd — 1

Proposition
Va € Z\ {0}, gcd(a,0) = |a]
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Properties of the gcd — 1

Proposition
Va € Z\ {0}, gcd(a,0) = |a]

Proof.

By definition, ged(a, 0) is the greatest divisor of a.

Since a = |a| x (1), we know that |a| is a divisor of a. We have to check that it is the greatest one.
Let d be a non-negative divisor of a, then a = dk for some k € Z.

Since a # 0, we know that k # 0.

Hence 1 < |k| from which we get that d < d|k| = |d| X |k| = |dk| = |a]. [ |
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Properties of the gcd — 2

Let a, b € Z not both zero, then
© ged(a, b) = ged(b, a)
@ ged(a, b) = ged(a, —b) = ged(—a, b) = ged(—a, —b)
© Vs 7, (5laand §|b) = 8| ged(a, b)
O Vi e 7\ {0}, gcd(Aa, Ab) = |A| ged(a, b)
® vk € Z, gcd(a + kb, b) = ged(a, b)
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Properties of the gcd — 2

Let a, b € Z not both zero, then
© ged(a, b) = ged(b, a)
@ ged(a, b) = ged(a, —b) = ged(—a, b) = ged(—a, —b)
© Vs 7, (5laand §|b) = 8| ged(a, b)
O vAe 7\ {0}, gcd(Aa, Ab) = |A| ged(a, b)
® vk € Z, gcd(a + kb, b) = ged(a, b)

Proof.
9 Leta,be Z. Let § € Z. Assume that §|a and &|b.
By Bézout’s theorem, gcd(a, b) = au + bv for some u,v € Z.
Since 6|a and 5|5, we have that §|au + bv = ged(a, b).

0 Leta,be Z let A € Z\ {0}. Since |A| divides Aa and Ab, then it divides gcd(Aa, Ab) by the third item.
Hence ged(Aa, Ab) = |A| x d for some d € Z. Let's prove that d = ged(a, b).
Letn € Z, then n|a, b < |A|n|Aa, Ab < |A|n| ged(Aa, Ab) < n|d.
e Leta, b,k € Z. ged(a, b)|a, b hence ged(a, b)|a + kb. Thus ged(a, b)| ged(a + kb, b).
Similarly, gcd(a + kb, b)|a + kb, b hence ged(a + kb, b)|a + kb — kb = a. Thus ged(a + kb, b)| ged(a, b).
Hence | ged(a + kb, b)| = | ged(a, b)|. Since they are both non-negative, we get gcd(a + kb, b) = ged(a, b). |
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How to compute the gcd? Euclid’s algorithm! — 1

Result: gcd(a, b) where a, b € Z not both zero.

a < |a|

b < |b|

while » # 0 do

r < a%b (the remainder of the Euclidean division a = bq + r with 0 < r < b)
a<b

b<r
end

return a
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How to compute the gcd? Euclid’s algorithm! — 1

Result: gcd(a, b) where a, b € Z not both zero.

a < |a|

b < |b|

while » # 0 do

r < a%b (the remainder of the Euclidean division a = bq + r with 0 < r < b)
a< b

b<r
end
return a

Why does it work?
© Initialization: gcd(|al, |b|) = ged(a, b) so we reduce to the case a,b > 0.
@ Inductive step: ged(a, b) = ged(bg + r, b) = ged(r, b) = ged(b, r).
At the end of the loop, a > 0 and b > 0 is decreasing since 0 < b < r.
So b = 0 after finitely many steps.
©® Termination: then ged(a, b) = ged(a,0) = a since a > 0.
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How to compute the gcd? Euclid’s algorithm! — 1

Result: gcd(a, b) where a, b € Z not both zero.

a < |a|

b < |b|

while » # 0 do

r < a%b (the remainder of the Euclidean division a = bq + r with 0 < r < b)
a< b

b<r
end
return a

Why does it work?
© Initialization: gcd(|al, |b|) = ged(a, b) so we reduce to the case a,b > 0.
@ Inductive step: ged(a, b) = ged(bg + r, b) = ged(r, b) = ged(b, r).
At the end of the loop, a > 0 and b > 0 is decreasing since 0 < b < r.
So b = 0 after finitely many steps.
©® Termination: then ged(a, b) = ged(a,0) = a since a > 0.
See the lecture notes for a version without pseudo-code.
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How to compute the gcd? Euclid’s algorithm! — 2

We want to compute gcd(600, —136):
a, =600, b,=136

600 = 136 x 4 + 56|a =136, b =56
136 = 56 x 2 + 24|a,=56, b,=24
56 = 24 x 2 + 8 |ay=24 b,=8
24 = 8 x 3 + 0 |a=8  b=0

Hence gcd(600, —136) = 8.
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How to compute the gcd? Euclid’s algorithm! — 2

We want to compute gcd(600, —136):
a, =600, b,=136

600 = 136 x 4 + 56|a =136, b =56
136 = 56 x 2 + 24|a,=56, b,=24
56 = 24 x 2 + 8 |ay=24 b,=8
24 = 8 x 3 + 0 |a=8  b=0

Hence gcd(600, —136) = 8.

Then it is possible to obtain a suitable Bézout’s identity going backward. I

8 =56+24x(-2) since 8 =56 -24x2
=56+ (136 + 56 X (=2)) X (—2) since 24 = 136 — 56 x 2
=136 X(-2)+56 %5
=136 X (—2) + (600 + 136 X (—4)) X 5 since 56 = 600 — 136 x 4

8 =600x 5+ (—136) x 22
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