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Divisibility – 1
Definition: divisibility
Given 𝑎, 𝑏 ∈ ℤ, we write 𝑏|𝑎 if ∃𝑘 ∈ ℤ, 𝑎 = 𝑏𝑘.
We say that ”𝑎 is divisible by 𝑏” or ”𝑏 is divisor of 𝑎” or ”𝑎 is a multiple of 𝑏”.

Examples
• (−5)|10 • 5 ∤ (−11)

Remarks
• When 𝑏 ≠ 0, 𝑏|𝑎 if and only if the remainder of the Euclidean division of 𝑎 by 𝑏 is 0.
• Any integer is a divisor of 0, i.e ∀𝑏 ∈ ℤ, 𝑏|0.

Indeed, 0 = 𝑏 × 0.
• Any integer is divisible by 1 and itself, i.e. ∀𝑎 ∈ ℤ, 1|𝑎 and 𝑎|𝑎.

Indeed, 𝑎 = 1 × 𝑎 = 𝑎 × 1.
• The only integer divisible by 0 is 0, i.e. ∀𝑎 ∈ ℤ, 0|𝑎 ⟹ 𝑎 = 0.

Indeed, then 𝑎 = 0 × 𝑘 for some 𝑘 ∈ ℤ and hence 𝑎 = 0.
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Divisibility – 2

Proposition
1 ∀𝑎, 𝑏 ∈ ℤ, (𝑎|𝑏 and 𝑏|𝑎) ⟹ |𝑎| = |𝑏|
2 ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎|𝑏 and 𝑏|𝑐) ⟹ 𝑎|𝑐
3 ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, (𝑎|𝑏 and 𝑐|𝑑) ⟹ 𝑎𝑐|𝑏𝑑
4 ∀𝑎, 𝑏, 𝑐, 𝜆, 𝜇 ∈ ℤ, (𝑎|𝑏 and 𝑎|𝑐) ⟹ 𝑎|(𝜆𝑏 + 𝜇𝑐)
5 ∀𝑎 ∈ ℤ, 𝑎|1 ⟹ |𝑎| = 1
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Divisibility – 3

Proof.
1 ∀𝑎, 𝑏 ∈ ℤ, (𝑎|𝑏 and 𝑏|𝑎) ⟹ |𝑎| = |𝑏|

Let 𝑎, 𝑏 ∈ ℤ satisfying 𝑎|𝑏 and 𝑏|𝑎. If 𝑎 = 0 then 𝑏 = 0 (from 0|𝑏). So we may assume that 𝑎 ≠ 0.
There exist 𝑘, 𝑙 ∈ ℤ such that 𝑏 = 𝑎𝑘 and 𝑎 = 𝑏𝑙. Then 𝑎 = 𝑏𝑙 = 𝑎𝑘𝑙, thus 1 = 𝑘𝑙 since 𝑎 ≠ 0.
Therefore, 1 = |1| = |𝑘𝑙| = |𝑘| × |𝑙|. Since |𝑘|, |𝑙| ∈ ℕ, we get that |𝑘| = |𝑙| = 1.
Finally, |𝑎| = |𝑏𝑙| = |𝑏| × |𝑙| = |𝑏| × 1 = |𝑏|.

2 ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎|𝑏 and 𝑏|𝑐) ⟹ 𝑎|𝑐
Let 𝑎, 𝑏, 𝑐 ∈ ℤ satisfying 𝑎|𝑏 and 𝑏|𝑐. Then 𝑏 = 𝑎𝑘 and 𝑐 = 𝑏𝑙 for some 𝑘, 𝑙 ∈ ℤ.
Therefore 𝑐 = 𝑏𝑙 = 𝑎𝑘𝑙, so 𝑎|𝑐.

3 ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, (𝑎|𝑏 and 𝑐|𝑑) ⟹ 𝑎𝑐|𝑏𝑑
Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ satisfying 𝑎|𝑏 and 𝑐|𝑑. Then 𝑏 = 𝑎𝑘 and 𝑑 = 𝑐𝑙 for some 𝑘, 𝑙 ∈ ℤ.
Therefore 𝑏𝑑 = 𝑎𝑐𝑘𝑙, so 𝑎𝑐|𝑏𝑑.

4 ∀𝑎, 𝑏, 𝑐, 𝜆, 𝜇 ∈ ℤ, (𝑎|𝑏 and 𝑎|𝑐) ⟹ 𝑎|(𝜆𝑏 + 𝜇𝑐)
Let 𝑎, 𝑏, 𝑐 ∈ ℤ satisfying 𝑎|𝑏 and 𝑎|𝑐. Then 𝑏 = 𝑘𝑎 and 𝑐 = 𝑙𝑎 for some 𝑘, 𝑙 ∈ ℤ.
Hence 𝜆𝑏 + 𝜇𝑐 = 𝜆𝑘𝑎 + 𝜇𝑙𝑎 = (𝜆𝑘 + 𝜇𝑙)𝑎. Thus 𝑎|(𝜆𝑏 + 𝜇𝑐).

5 ∀𝑎 ∈ ℤ, 𝑎|1 ⟹ |𝑎| = 1
Let 𝑎 ∈ ℤ. Assume that 𝑎|1. Then 𝑎|1 and 1|𝑎. So by the first item, |𝑎| = 1. ■
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Greatest common divisor – 1
Theorem
Given 𝑎, 𝑏 ∈ ℤ not both zero, the set common divisors of 𝑎 and 𝑏 admits a greatest element
denoted gcd(𝑎, 𝑏) and called the greatest common divisor of 𝑎 and 𝑏.

Proof. Let 𝑎, 𝑏 ∈ ℤ not both zero. We set 𝑆 = {𝑑 ∈ ℤ ∶ 𝑑|𝑎 and 𝑑|𝑏}.
• 𝑆 is non-empty since it contains 1.
• Without loss of generality, let assume that 𝑎 ≠ 0.

Let 𝑑 ∈ 𝑆 then 𝑎 = 𝑑𝑘 for some 𝑘 ∈ ℤ. Note that 𝑘 ≠ 0 (otherwise 𝑎 = 𝑑𝑘 = 0), hence 1 ≤ |𝑘|.
Thus 𝑑 ≤ |𝑑| ≤ |𝑑| × |𝑘| = |𝑑𝑘| = |𝑎|.
Hence 𝑆 is bounded from above by |𝑎|.

Therefore, 𝑆 admits a greatest element (as an non-empty subset of ℤ bounded from above). ■

Remark
Note that gcd(𝑎, 𝑏) ≥ 1 since 1 is a common divisor of 𝑎 and 𝑏 (particularly gcd(𝑎, 𝑏) ∈ ℕ).

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Jan 28, 2021 5 / 12



Greatest common divisor – 1
Theorem
Given 𝑎, 𝑏 ∈ ℤ not both zero, the set common divisors of 𝑎 and 𝑏 admits a greatest element
denoted gcd(𝑎, 𝑏) and called the greatest common divisor of 𝑎 and 𝑏.

Proof. Let 𝑎, 𝑏 ∈ ℤ not both zero. We set 𝑆 = {𝑑 ∈ ℤ ∶ 𝑑|𝑎 and 𝑑|𝑏}.
• 𝑆 is non-empty since it contains 1.
• Without loss of generality, let assume that 𝑎 ≠ 0.

Let 𝑑 ∈ 𝑆 then 𝑎 = 𝑑𝑘 for some 𝑘 ∈ ℤ. Note that 𝑘 ≠ 0 (otherwise 𝑎 = 𝑑𝑘 = 0), hence 1 ≤ |𝑘|.
Thus 𝑑 ≤ |𝑑| ≤ |𝑑| × |𝑘| = |𝑑𝑘| = |𝑎|.
Hence 𝑆 is bounded from above by |𝑎|.

Therefore, 𝑆 admits a greatest element (as an non-empty subset of ℤ bounded from above). ■

Remark
Note that gcd(𝑎, 𝑏) ≥ 1 since 1 is a common divisor of 𝑎 and 𝑏 (particularly gcd(𝑎, 𝑏) ∈ ℕ).

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Jan 28, 2021 5 / 12



Greatest common divisor – 1
Theorem
Given 𝑎, 𝑏 ∈ ℤ not both zero, the set common divisors of 𝑎 and 𝑏 admits a greatest element
denoted gcd(𝑎, 𝑏) and called the greatest common divisor of 𝑎 and 𝑏.

Proof. Let 𝑎, 𝑏 ∈ ℤ not both zero. We set 𝑆 = {𝑑 ∈ ℤ ∶ 𝑑|𝑎 and 𝑑|𝑏}.
• 𝑆 is non-empty since it contains 1.
• Without loss of generality, let assume that 𝑎 ≠ 0.

Let 𝑑 ∈ 𝑆 then 𝑎 = 𝑑𝑘 for some 𝑘 ∈ ℤ. Note that 𝑘 ≠ 0 (otherwise 𝑎 = 𝑑𝑘 = 0), hence 1 ≤ |𝑘|.
Thus 𝑑 ≤ |𝑑| ≤ |𝑑| × |𝑘| = |𝑑𝑘| = |𝑎|.
Hence 𝑆 is bounded from above by |𝑎|.

Therefore, 𝑆 admits a greatest element (as an non-empty subset of ℤ bounded from above). ■

Remark
Note that gcd(𝑎, 𝑏) ≥ 1 since 1 is a common divisor of 𝑎 and 𝑏 (particularly gcd(𝑎, 𝑏) ∈ ℕ).

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Jan 28, 2021 5 / 12



Greatest common divisor – 2

Given 𝑎, 𝑏 ∈ ℤ not both zero and 𝑑 ∈ ℕ ⧵ {0}, how do we prove that 𝑑 = gcd(𝑎, 𝑏)?

Quite often the strategy is the following:
1 Prove: 𝑑|𝑎.
2 Prove: 𝑑|𝑏.
3 Prove: ∀𝛿 ∈ ℕ, (𝛿|𝑎 and 𝛿|𝑏) ⟹ 𝛿|𝑑.

Indeed, then 𝑑 is a common divisor of 𝑎 and 𝑏 by the first two steps.
And it is the greatest one by the last step, as we show below.
Let 𝛿 ∈ ℤ be a common divisor of 𝑎 and 𝑏.

• If 𝛿 ≤ 0 then 𝛿 ≤ 𝑑.
• If 𝛿 > 0 then 𝑑 = 𝛿𝑘 for some 𝑘 ∈ ℤ.

Note that 𝑘 ≥ 1 since 𝑑, 𝛿 > 0.
Thus 𝛿 ≤ 𝛿𝑘 = 𝑑

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Jan 28, 2021 6 / 12



Bézout’s identity – 1

Theorem: Bézout’s identity
Given 𝑎, 𝑏 ∈ ℤ not both zero, there exist 𝑢, 𝑣 ∈ ℤ such that 𝑎𝑢 + 𝑏𝑣 = gcd(𝑎, 𝑏).

Example
gcd(15, 25) = 5 = 15 × 2 + 25 × (−1)

Remarks
• The couple (𝑢, 𝑣) is not unique:

5 = 15 × 27 + 25 × (−16)
= 15 × 2 + 25 × (−1)

• The converse is false: 2 = 3 × 4 + 5 × (−2) but gcd(3, 5) = 1 ≠ 2.
Nonetheless, we will see later that there is a partial converse when gcd(𝑎, 𝑏) = 1.
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Bézout’s identity – 2
Proof of Bézout’s identity. Let 𝑎, 𝑏 ∈ ℤ not both zero. We want to show ∃𝑢, 𝑣 ∈ ℤ, 𝑎𝑢 + 𝑏𝑣 = gcd(𝑎, 𝑏).

• Set 𝑆 = {𝑛 ∈ ℕ ⧵ {0} ∶ ∃𝑢, 𝑣 ∈ ℤ, 𝑛 = 𝑎𝑢 + 𝑏𝑣}.
• Note that |𝑎| + |𝑏| > 0 since at least one is non-zero.

Then |𝑎| + |𝑏| = 𝑎 × (±1) + 𝑏 × (±1) ∈ 𝑆. So 𝑆 ≠ ∅.
Thus, by the well-ordering principle, 𝑆 admits a least element 𝑑.
Since 𝑑 ∈ 𝑆, 𝑑 = 𝑎𝑢 + 𝑏𝑣 for some 𝑢, 𝑣 ∈ ℤ.

• Let’s prove that 𝑑 = gcd(𝑎, 𝑏).

• Euclidean division: ∃𝑞, 𝑟 ∈ ℤ such that 𝑎 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 < |𝑑| = 𝑑.
Assume by contradiction that 𝑟 ≠ 0.
Then 𝑟 = 𝑎 − 𝑞𝑑 = 𝑎 − 𝑞(𝑎𝑢 + 𝑏𝑣) = 𝑎 × (1 − 𝑞𝑢) + 𝑏 × (−𝑞𝑣) is in 𝑆.
Contradiction with 𝑑 being the least element of 𝑆.
Hence 𝑟 = 0 and 𝑎 = 𝑑𝑞, i.e. 𝑑|𝑎.

• Similarly 𝑑|𝑏.
• Let 𝛿 ∈ ℕ be another common divisor of 𝑎 and 𝑏.

Then there ∃𝑘, 𝑙 ∈ ℤ, 𝑎 = 𝛿𝑘, 𝑏 = 𝛿𝑙. Hence 𝑑 = 𝑎𝑢 + 𝑏𝑣 = 𝛿(𝑘𝑢 + 𝑙𝑣).
Therefore 𝛿|𝑑.

• According to Slide 6, we proved that 𝑑 is the greatest common divisor of 𝑎 and 𝑏. ■
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Properties of the gcd – 1

Proposition
∀𝑎 ∈ ℤ ⧵ {0}, gcd(𝑎, 0) = |𝑎|

Proof.
By definition, gcd(𝑎, 0) is the greatest divisor of 𝑎.
Since 𝑎 = |𝑎| × (±1), we know that |𝑎| is a divisor of 𝑎. We have to check that it is the greatest one.
Let 𝑑 be a non-negative divisor of 𝑎, then 𝑎 = 𝑑𝑘 for some 𝑘 ∈ ℤ.
Since 𝑎 ≠ 0, we know that 𝑘 ≠ 0.
Hence 1 ≤ |𝑘| from which we get that 𝑑 ≤ 𝑑|𝑘| = |𝑑| × |𝑘| = |𝑑𝑘| = |𝑎|. ■
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Properties of the gcd – 2
Proposition
Let 𝑎, 𝑏 ∈ ℤ not both zero, then

1 gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎)
2 gcd(𝑎, 𝑏) = gcd(𝑎, −𝑏) = gcd(−𝑎, 𝑏) = gcd(−𝑎, −𝑏)
3 ∀𝛿 ∈ ℤ, (𝛿|𝑎 and 𝛿|𝑏) ⟹ 𝛿| gcd(𝑎, 𝑏)
4 ∀𝜆 ∈ ℤ ⧵ {0}, gcd(𝜆𝑎, 𝜆𝑏) = |𝜆| gcd(𝑎, 𝑏)
5 ∀𝑘 ∈ ℤ, gcd(𝑎 + 𝑘𝑏, 𝑏) = gcd(𝑎, 𝑏)

Proof.
3 Let 𝑎, 𝑏 ∈ ℤ. Let 𝛿 ∈ ℤ. Assume that 𝛿|𝑎 and 𝛿|𝑏.

By Bézout’s theorem, gcd(𝑎, 𝑏) = 𝑎𝑢 + 𝑏𝑣 for some 𝑢, 𝑣 ∈ ℤ.
Since 𝛿|𝑎 and 𝛿|𝑏, we have that 𝛿|𝑎𝑢 + 𝑏𝑣 = gcd(𝑎, 𝑏).

4 Let 𝑎, 𝑏 ∈ ℤ let 𝜆 ∈ ℤ ⧵ {0}. Since |𝜆| divides 𝜆𝑎 and 𝜆𝑏, then it divides gcd(𝜆𝑎, 𝜆𝑏) by the third item.
Hence gcd(𝜆𝑎, 𝜆𝑏) = |𝜆| × 𝑑 for some 𝑑 ∈ ℤ. Let’s prove that 𝑑 = gcd(𝑎, 𝑏).
Let 𝑛 ∈ ℤ, then 𝑛|𝑎, 𝑏 ⇔ |𝜆|𝑛|𝜆𝑎, 𝜆𝑏 ⇔ |𝜆|𝑛| gcd(𝜆𝑎, 𝜆𝑏) ⇔ 𝑛|𝑑.

5 Let 𝑎, 𝑏, 𝑘 ∈ ℤ. gcd(𝑎, 𝑏)|𝑎, 𝑏 hence gcd(𝑎, 𝑏)|𝑎 + 𝑘𝑏. Thus gcd(𝑎, 𝑏)| gcd(𝑎 + 𝑘𝑏, 𝑏).
Similarly, gcd(𝑎 + 𝑘𝑏, 𝑏)|𝑎 + 𝑘𝑏, 𝑏 hence gcd(𝑎 + 𝑘𝑏, 𝑏)|𝑎 + 𝑘𝑏 − 𝑘𝑏 = 𝑎. Thus gcd(𝑎 + 𝑘𝑏, 𝑏)| gcd(𝑎, 𝑏).
Hence | gcd(𝑎 + 𝑘𝑏, 𝑏)| = | gcd(𝑎, 𝑏)|. Since they are both non-negative, we get gcd(𝑎 + 𝑘𝑏, 𝑏) = gcd(𝑎, 𝑏). ■
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5 Let 𝑎, 𝑏, 𝑘 ∈ ℤ. gcd(𝑎, 𝑏)|𝑎, 𝑏 hence gcd(𝑎, 𝑏)|𝑎 + 𝑘𝑏. Thus gcd(𝑎, 𝑏)| gcd(𝑎 + 𝑘𝑏, 𝑏).
Similarly, gcd(𝑎 + 𝑘𝑏, 𝑏)|𝑎 + 𝑘𝑏, 𝑏 hence gcd(𝑎 + 𝑘𝑏, 𝑏)|𝑎 + 𝑘𝑏 − 𝑘𝑏 = 𝑎. Thus gcd(𝑎 + 𝑘𝑏, 𝑏)| gcd(𝑎, 𝑏).
Hence | gcd(𝑎 + 𝑘𝑏, 𝑏)| = | gcd(𝑎, 𝑏)|. Since they are both non-negative, we get gcd(𝑎 + 𝑘𝑏, 𝑏) = gcd(𝑎, 𝑏). ■
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How to compute the gcd? Euclid’s algorithm! – 1

Result: gcd(𝑎, 𝑏) where 𝑎, 𝑏 ∈ ℤ not both zero.
𝑎 ← |𝑎|
𝑏 ← |𝑏|
while 𝑏 ≠ 0 do

𝑟 ← 𝑎%𝑏 (the remainder of the Euclidean division 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏)
𝑎 ← 𝑏
𝑏 ← 𝑟

end
return 𝑎

Why does it work?
1 Initialization: gcd(|𝑎|, |𝑏|) = gcd(𝑎, 𝑏) so we reduce to the case 𝑎, 𝑏 ≥ 0.
2 Inductive step: gcd(𝑎, 𝑏) = gcd(𝑏𝑞 + 𝑟, 𝑏) = gcd(𝑟, 𝑏) = gcd(𝑏, 𝑟).

At the end of the loop, 𝑎 > 0 and 𝑏 ≥ 0 is decreasing since 0 ≤ 𝑏 < 𝑟.
So 𝑏 = 0 after finitely many steps.

3 Termination: then gcd(𝑎, 𝑏) = gcd(𝑎, 0) = 𝑎 since 𝑎 > 0.
See the lecture notes for a version without pseudo-code.
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How to compute the gcd? Euclid’s algorithm! – 2
We want to compute gcd(600, −136):

𝑎0 = 600, 𝑏0 = 136
600 = 136 × 4 + 56 𝑎1 = 136, 𝑏1 = 56
136 = 56 × 2 + 24 𝑎2 = 56, 𝑏2 = 24
56 = 24 × 2 + 8 𝑎3 = 24, 𝑏3 = 8
24 = 8 × 3 + 0 𝑎4 = 8, 𝑏4 = 0

Hence gcd(600, −136) = 8.

Remark
Then it is possible to obtain a suitable Bézout’s identity going backward.

8 = 56 + 24 × (−2) since 8 = 56 − 24 × 2
= 56 + (136 + 56 × (−2)) × (−2) since 24 = 136 − 56 × 2
= 136 × (−2) + 56 × 5
= 136 × (−2) + (600 + 136 × (−4)) × 5 since 56 = 600 − 136 × 4

8 = 600 × 5 + (−136) × 22
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