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POLYNOMIAL UPPER BOUNDS FOR THE ORBITAL
INSTABILITY OF THE 1D CUBIC NLS

BELOW THE ENERGY NORM

J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, AND T. TAO

Abstract. We study the long-time behaviour of the focusing cubic NLS on

R in the Sobolev norms Hs for 0 < s < 1. We obtain polynomial growth-type
upper bounds on the Hs norms, and also limit any orbital Hs instability of the

ground state to polynomial growth at worst; this is a partial analogue of the

H1 orbital stability result of Weinstein [27], [26]. In the sequel to this paper we
generalize this result to other nonlinear Schrödinger equations. Our arguments
are based on the “I-method” from earlier papers [9]-[15] which pushes down

from the energy norm, as well as an “upside-down I-method” which pushes up
from the L2 norm.

1. Introduction. We consider the long-time behaviour of solutions to the Cauchy
problem for the one-dimensional focusing cubic nonlinear Schrödinger equation

iut + uxx = −F (u); u(x, 0) = u0(x) (1.1)

where u(x, t) is a complex-valued function on R × R, F (u) is the focusing cubic
nonlinearity F (u) := uuu, and u0(x) lies in the Sobolev space Hs(R) for some
s ∈ R.

It is known ([25], [1]) that the Cauchy problem (1.1) is globally well-posed in
Hs for all1 s ≥ 0. Furthermore, due to the many conservation laws of (1.1), we
know that if s is an integer and the initial data is in Hs, then the Hs norm stays
bounded for all time. For instance, for s = 1 one can obtain uniform H1 bounds
by exploiting the conservation of the Hamiltonian

H(u) :=
∫

1
2
|ux|2 −

1
4
|u|4 dx

and the L2 norm, combined with the Gagliardo-Nirenberg inequality.

1991 Mathematics Subject Classification. 35Q53, 42B35, 37K10.
Key words and phrases. Schrödinger equation, upper bound on sobolev norms, orbital stability.
J.E.C. is supported in part by N.S.F. grant DMS 0100595 and N.S.E.R.C. grant RGPIN 250233-

03.
M.K. is supported in part by N.S.F. Grant DMS 9801558.
G.S. is supported in part by N.S.F. Grant DMS 0100375 and by a grant from the Sloan

Foundation.
H.T. is supported in part by J.S.P.S. Grant No. 13740087.

T.T. is a Clay Prize Fellow and is supported in part by a grant from the Packard Foundation.
1For s < 0 one does not even have local well-posedness, at least if one demands uniform

continuity of the solution map; see [21].
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However when s is not an integer, the standard iteration argument only gives
bounds on the Hs norms which grow exponentially in time. For s > 1 there are
polynomial growth bounds2 in [24], [3], [8].

The first result of this paper is to extend these techniques to s between 0 and 1.

Theorem 1.1. If 0 < s < 1 and u0 ∈ Hs, then we have

‖u(t)‖Hs ≤ C(‖u0‖Hs)(1 + |t|)2s+.

The proof of this theorem proceeds by an “upside-down” version of the “I-
method” ([9], [11], [12], [13], [14], [20]; see also [6], [10], [19]), in which one applies
a differentiation operator D = DN to the solution instead of a smoothing operator
I = IN , and proves that the quantity ‖DNu(t)‖22 is almost conserved in time.
One should compare the result in Theorem 1.1 with the ones established in [3],
[8] and [24] for the time asymptotic of the Hs norm for smooth (s > 1) KdV and
Schrödinger type solutions. The method used by Bourgain in [3] is also based on an
improved local estimate, but the improvement is not obtained by replacing the Hs

norm with a better integral (which is our argument here), but instead by using well-
posedness results below the energy norm H1. In [8] and [24] the improvement of
the local estimate is obtained by using sharp bilinear estimates in negative Sobolev
spaces.

We remark that the same polynomial growth result in Theorem 1.1 also holds for
the defocusing cubic NLS (in which −|u|2u is replaced by +|u|2u) and is slightly
easier to obtain. It is likely that one can use the correction term techniques in
[10], [14] to improve the exponent 2s+ substantially3, perhaps all the way down to
0+. Certainly one expects to obtain an exponent which goes to 0 as s → 1− by
exploiting conservation of the Hamiltonian.

One can view Theorem 1.1 as a bound on the possible Hs instability of the 0
solution u ≡ 0 to (1.1). It is not strong enough to say that small Hs perturbations
to this solution at time zero remain small perturbations for all later time, but it
limits the growth of the perturbation to polynomial growth at worst.

The next result of this paper concerns the Hs orbital stability of ground states
for (1.1). For simplicity we shall only consider the ground states at energy 1 (the
other energies can then be recovered by a scaling argument4). It is known [7] that
there exists a unique even positive Schwartz function Q(x) on R which solves the
equation5

Qxx + |Q|2Q = Q. (1.2)

2It is an open question whether one has some sort of scattering in Hs for this equation, which

would of course imply that the Hs norm remains bounded. Some recent progress in this direction

is in [23].
3In the particular case of the cubic 1D NLS equation (1.1), one may also be able to exploit

the complete integrability of the equation to obtain bounds on the Hs norms which are uniform

in time, and perhaps also to obtain global stability bounds for solitons and multisolitons as well.
On the other hand, the methods here do not exploit complete integrability and are applicable to

a wide range of Hamiltonian evolution equations.
4More specifically, for every energy E > 0, there is a unique positive even Schwartz function

QE obeying (QE)xx + |QE |2QE = EQE , but these ground states are linked by the scaling

QE(x) = E1/2Q(E1/2x). Because the equation (1.1) is L2-subcritical, all of these ground states
have different L2 mass. Since the L2 mass is an invariant of the NLS flow, we can thus restrict

our attention to a sphere in L2, in which case only one energy E is relevant. One can then use
the scale invariance of (1.1) to set E = 1.

5Indeed, we have the explicit formula Q(x) := 2−1/2/ cosh(x), although we will not use this

formula in this paper.
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The Cauchy problem (1.1) with initial data u0 = Q then has an explicit solution
u(t) = eitQ. More generally, for any x0 ∈ R and eiθ ∈ S1, the Cauchy problem
with initial data u0(x) = eiθQ(x− x0) has explicit solution ei(θ+t)Q(x− x0). If we
thus define the two-dimensional ground state cylinder6 Σ ⊂ H1(R) by

Σ := {eiθQ(· − x0) : x0 ∈ R, eiθ ∈ S1}
we see that the nonlinear flow (1.1) preserves Σ. Also note that each element of Σ
obeys (1.2) (though of course most ground states are not even or positive).

In [27] (see also [26]) Weinstein showed that the ground state cylinder Σ was
H1-stable. More precisely, he showed an estimate of the form

distH1(u(t),Σ) ∼ distH1(u0,Σ) (1.3)

(when distH1(u0,Σ) is small), for all H1 solutions u(t) to (1.1) and all times t ∈ R.
In other words, solutions which start close to a ground state in H1 at time t = 0,
will stay close to a ground state for all time (though the nearby ground state may
itself vary in time7).

To prove (1.3), Weinstein employed the Lyapunov functional8

L(u) := 2H(u) +
∫
|u|2 =

∫
|ux|2 + |u|2 − 1

2
|u|4 dx, (1.4)

which is well-defined for all u ∈ H1. Since this quantity is a combination of the
Hamiltonian and the L2 norm, it is clearly an invariant of the flow (1.1). More
explicitly, for sufficiently smooth functions u(x, t) we have the formula

∂tL(u) = 2〈ut,−uxx + u− F (u)〉 (1.5)

which clearly vanishes if u solves (1.1). Here and in the sequel we use 〈, 〉 to denote
the real inner product

〈u, v〉 := Re
∫

uv dx.

From (1.5) and (1.2) we see that the ground states in Σ are critical points of L.
In fact they are minimizers of L; more precisely, we have the fundamental coercivity
estimate

L(u)− L(Q) ∼ distH1(u, Σ)2 whenever u ∈ H1 and distH1(u, Σ) � 1;
(1.6)

see [27]. The stability estimate (1.3) then follows easily from (1.6) and the conser-
vation of L.

Note that the functional L is invariant under phase rotation u → eiθu and
translation u 7→ u(· − x0). Thus one cannot expect a coercivity bound like (1.6)
in these directions. Of course, this is consistent with (1.6) since the ground state
cylinder Σ is itself invariant under these symmetries; the point of (1.6) is that

6Note that the ground state cylinder is the orbit of Q under the phase and translation invari-
ances of NLS. We do not utilize the scaling invariance because, as mentioned earlier, this changes

the L2 norm of Q. Also we do not utilize Gallilean invariance because this does not preserve the
Hamiltonian.

7For instance, consider the solution u(x, t) = ei(εx−ε2t)eitQ(x−2εt) for some small ε; this is a
Gallilean transformation of the ground state solution u(t) = eitQ, and is close to this solution at

time zero. However at later times, the solution slowly drifts away from the original ground state
solution, although it remains close to the ground state cylinder Σ.

8This is the functional for energy E = 1. For other energies it is given by L(u) = 2H(u) +∫
E|u|2.
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there are no other directions (in the tangent space of H1 at Q) for which L can be
invariant or concave.

The second main result of this paper is to partially extend the H1 orbital stability
result to an Hs orbital stability-type result for 0 ≤ s < 1. Unfortunately, as in
Theorem 1.1, our estimate loses a polynomial factor in t, so we cannot exclude the
possibility of polynomial orbital instability in Hs:

Theorem 1.2. Let 0 ≤ s < 1, and suppose distHs(u0,Σ) � 1. Then we have

distHs(u(t),Σ) . t1−s+distHs(u0,Σ) (1.7)

whenever 1 ≤ t � distHs(u0,Σ)−1/(1−s+). In particular, u(t) stays in a bounded
subset of Hs for all times |t| � distHs(u0,Σ)−1/(1−s+).

Note that a naive application of the local well-posedness theory would lose a
factor of the form exp(Ct) in the estimate (1.7), so that one could only assure u(t)
stays in a bounded subset of Hs for times |t| . log(1/distHs(u0,Σ)). Note that for
times t close to distHs(u0,Σ)1/(1−s+), the right-hand side of (1.7) is close to 1, so
that we are no longer keeping u(t) close to Σ. At this point one can use Theorem
1.1 to control the further development of u(t).

The proof of (1.7) proceeds via the smoothing operator I = IN mentioned earlier.
Basically, the idea is to show that the modified Lyapunov functional L(Iu) is almost
conserved, and then combine this with (1.6) to obtain (1.7). It turns out that
a naive implementation of this approach loses an epsilon power of distHs(u0,Σ)
because the operator I does not quite preserve the ground state cylinder, but this
can be rectified by the standard technique of choosing an approximating ground
state to obey specially chosen orthogonality conditions. For expository reasons we
have chosen to give the naive versions of the argument first, and only give the full
argument at the end of the paper.

The factor t1−s+ in (1.7) can probably be reduced, however the factor distHs(u0,Σ)
on the right-hand side is necessary (as can be seen even when t ∼ 1).

In all of these arguments it is crucial that the L2 and H1 norms are both sub-
critical (in the sense that they scale as a negative power of length using the natural
scaling of (1.1)). It is because of this that we cannot extend these results to any
other NLS with an algebraic nonlinearity9. In the sequel to this paper we shall
obtain some partial results of the above type in the case when p is not an odd
integer; the main new difficulty is to commute the I operator with non-algebraic
nonlinearities F (u).

2. Notation. We use A . B to denote A ≤ CB, where C is a constant depending
on s which may vary from line to line. We use a+, a− to denote quantities of the
form a + ε, a− ε, where ε is arbitrarily small. We use 〈ξ〉 to denote 1 + |ξ|.

We define the spatial Fourier transform by

f̂(ξ) :=
∫
R

e−ixξf(x) dx

and the spacetime Fourier transform by

ũ(ξ, τ) :=
∫
R

∫
R

e−i(xξ+tτ)u(x, t) dxdt.

9More specifically, the NLS equation is only L2 subcritical when p < 1+ 4
n

, while an algebraic
nonlinearity only occurs when p is an odd integer. Since p > 1, the only subcritical algebraic

equation occurs when n = 1, p = 3.
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Following [2], we define the Xs,b spaces by the norm

‖u‖Xs,b := ‖u‖s,b := ‖〈ξ〉s〈τ − ξ2〉bũ(ξ, τ)‖L2
τ L2

ξ
.

For any time interval I, we define the restricted Xs,b spaces by

Xs,b
I := {u|R×I : u ∈ Xs,b}

with the usual norm

‖v‖Xs,b
I

:= inf{‖u‖s,b : u|R×I = v}.

We shall need the Strichartz estimate

‖u‖L6
x,t

. ‖u‖0,1/2+; (2.1)

this can be obtained by writing an X0,1/2+ function as an average of modulated
free Schrödinger waves (as in [17]) and then using the L6

x,t Strichartz estimate for
free solutions (see e.g. [18] and the references therein).

Interpolating (2.1) with the trivial bound ‖u‖L2
x,t
≤ ‖u‖0,0 we obtain

‖u‖L4
x,t

. ‖u‖0,3/8+. (2.2)

We also record the variant estimate

‖u‖L8
t L4

x
. ‖u‖0,1/2+; (2.3)

this can be obtained by interpolating (2.1) with the energy estimate ‖u‖L∞t L2
x

.
‖u‖0,1/2+.

From [6] (see also [13]) we recall the improved bilinear Strichartz estimate (in
one spatial dimension)

‖u1u2‖L2
t,x

. N−1/2‖u1‖0,1/2+‖u2‖0,1/2+ (2.4)

whenever u1 has Fourier support in the region |ξ| ∼ N , and u2 has Fourier support
in the region |ξ| � N .

Let n ≥ 2, and let m(ξ1, . . . , ξn) be a function supported on the hyperplane
{ξ1 + . . . + ξn = 0}. We use the notation

Λn(m(ξ1, . . . , ξn); f1, . . . , fn)

to denote the multilinear form

Λn(m(ξ1, . . . , ξn); f1, . . . , fn) :=
∫

ξ1+...+ξn=0

m(ξ1, . . . , ξn)f̂1(ξ1) . . . f̂n(ξn).

3. Proof of Theorem 1.1. We shall divide the proof of this theorem into several
broad steps. These steps will also appear in the proof of Theorem 1.2.

• Step 0. Preliminaries; introduction of the modified energy.
Fix 0 < s < 1, and fix the global Hs solution u. Henceforth all implicit constants

may depend on s and the quantity ‖u0‖Hs . Our task is to show that

‖u(T )‖Hs . T 2s+ (3.1)

for all T � 1. By the Hs global well-posedness and regularity theory (see e.g. [1])
and the usual limiting argument it suffices to do this for smooth, rapidly decreasing
u.

We now apply an “upside-down” version of the I-method; whereas the strategy
of the I method is to mollify the solution at high frequencies to make it smoother
(e.g. in the energy class H1), here we amplify the solution at high frequencies
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instead to make it rougher (specifically, we place it in L2). In contrast, the proof
of Theorem 1.2 in later sections will proceed via the ordinary “I-method”.

Fix T , and let N � 1 be a large quantity depending on T to be chosen later.
Let θ(ξ) be a smooth even real-valued symbol such that θ(ξ) = 1 for |ξ| ≤ N and
θ(ξ) = |ξ|s/Ns for |ξ| > 2N , and let D be the Fourier multiplier

D̂f(ξ) := θ(ξ)f̂(ξ). (3.2)

Thus D is the identity for low frequencies |ξ| ≤ N , and becomes a differentiation
operator of order s for high frequencies |ξ| & N .

Define the modified energy EN (t) at time t by

EN (t) := ‖Du(t)‖22. (3.3)

From Plancherel we have the upper bound

EN (0) . ‖u0‖2Hs . 1.

The heart of the argument shall lie in the following almost conservation law for
EN .

Lemma 3.1. If t0 ∈ R is such that EN (t0) ≤ C for some bounded constant
C = O(1), then we have

EN (t0 + δ) = EN (t0) + O(N−1/2+) (3.4)

where δ > 0 is an absolute constant depending only on s and C.

The error bound of O(N−1/2+) might not be sharp; any improvement in this
estimate will lead to a better polynomial growth bound than (3.1). It may be that
one can improve this result by adding suitably chosen “correction terms” to EN (t),
in the spirit of [10], [14].

• Step 1. Deduction of (3.1) from Lemma 3.1.
If we assume Lemma 3.1, then we may iterate it to obtain EN (t) . 1 for all

0 ≤ t � N1/2−. In particular, if we assume T � N1/2−, we have from Plancherel
and (3.3) that

‖u(T )‖Hs . NsEN (T )1/2 . Ns.

Optimizing N in terms of T we obtain (3.1) as desired.
It remains to prove Lemma 3.1. This is done in several stages.

• Step 2. Control u at time t0.
By hypothesis we have

‖Du(t0)‖2 . 1. (3.5)

As one can see from (3.2), this is essentially an Hs-type bound on u (up to powers
of N). However, in order to obtain good polynomial growth bounds it is important
that we use the norm ‖Du‖2 throughout rather than ‖u‖Hs .

• Step 3. Control u on the time interval [t0 − δ, t0 + δ].
We now use (3.5) to claim

‖Du‖
X

0,1/2+ε

[t0−δ,t0+δ]
. 1 (3.6)

for any 0 < ε � 1, if 0 < δ � 1 is a sufficiently small constant (depending on s and
the bound in (3.5), but not on N). This will be achieved by techniques similar to
those used to obtain local well-posedness using the Xs,b spaces (as in e.g. [2]).
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To begin with, by the standard energy estimate for Xs,b spaces (see e.g. [2], or
[16], page 771; note that the multiplier D commutes with the Schrödinger operator
i∂t + ∂xx and is thus harmless) we have

‖Du‖
X

0,1/2+ε

[t0−δ,t0+δ]
. ‖Du(t0)‖L2 + δ0+‖D(iut + uxx)‖

X
0,−1/2+2ε

[t0−δ,t0+δ]
.

Since we are allowed to choose δ to be sufficiently small, it suffices from (3.5), (1.1)
and standard continuity (or iteration) arguments to show the trilinear estimate

‖D(u1u2u3)‖0,−1/2+2ε . ‖Du1‖0,1/2+‖Du2‖0,1/2+‖Du3‖0,1/2+.

We may assume that the ui have non-negative Fourier transforms. Since w(ξ+η) .
w(ξ) + w(η) we can obtain a fractional Leibnitz rule, and reduce to showing

‖D(u1)u2u3‖0,−1/2+2ε . ‖Du1‖0,1/2+‖Du2‖0,1/2+‖Du3‖0,1/2+

‖u1D(u2)u3‖0,−1/2+2ε . ‖Du1‖0,1/2+‖Du2‖0,1/2+‖Du3‖0,1/2+

‖u1u2D(u3)‖0,−1/2+2ε . ‖Du1‖0,1/2+‖Du2‖0,1/2+‖Du3‖0,1/2+.

(3.7)

From the dual of (2.2) we see that ‖f‖0,−1/2+2ε . ‖f‖
L

4/3
x,t

. The claims (3.7) then

follow from Hölder’s inequality and several applications of (2.2). This gives (3.6).

• Step 4. Control the increment of the modified energy.
To prove (3.4), we now apply the fundamental theorem of Calculus to write the

increment of the modified energy (3.3) as

EN (t0 + δ)− EN (t0) =
∫ t0+δ

t0

∂tEN (t) dt. (3.8)

A routine integration by parts10 shows that

∂tEN (t) = 2〈Dut,Du〉
= 2〈iDuxx + iDF (u),Du〉
= 2〈iuuu,D2u〉

= −2ImΛ4(θ(ξ4)2;u(t), u(t), u(t), u(t))

=
1
2
ImΛ4(θ(ξ1)2 − θ(ξ2)2 + θ(ξ3)2 − θ(ξ4)2;u(t), u(t), u(t), u(t)),

where in the last step we exploited the symmetry

Λ4(θ(ξj)2;u(t), u(t), u(t), u(t)) = Λ4(θ(ξk)2;u(t), u(t), u(t), u(t))

for j = 1, 3 and k = 2, 4.
From the above computations, it suffices to show the estimate

|
∫

χ[t0,t0+δ](t)Λ4(M4;u1(t), u2(t), u3(t), u4(t)) dt| . N−1/2+
4∏

i=1

‖Dui‖0,1/2+

for all functions u1, u2, u3, u4 ∈ X0,1/2+, where M4 = M4(ξ1, ξ2, ξ3, ξ4) denotes the
symbol

M4(ξ1, ξ2, ξ3, ξ4) := θ(ξ1)2 − θ(ξ2)2 + θ(ξ3)2 − θ(ξ4)2.
We shall argue similarly to [13]. We apply Littlewood-Paley decompositions,

and assume that ui is supported on the region 〈ξi〉 ∼ Ni for some dyadic Ni ≥ 1;

10This is of course related to the usual energy method computations to control the growth of
higher order energies; see also [3], [24], [8]. Observe that if D was the identity then this derivative

would vanish, thus giving the standard proof of L2 norm conservation.
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of course, we will eventually have to sum in Ni to recover the general case. Define
{soprano, alto, tenor, baritone} = {1, 2, 3, 4} by requiring

Nsoprano ≥ Nalto ≥ Ntenor ≥ Nbaritone.

We may assume that Nsoprano ∼ Nalto since Λ4 is integrating over the region
ξ1 + ξ2 + ξ3 + ξ4 = 0. We may also assume that Nsoprano & N since the symbol
θ(ξ1)2 − θ(ξ2)2 + θ(ξ3)2 − θ(ξ4)2 vanishes otherwise.

We divide into two cases.

• Case (a): Nsoprano � Nbaritone.
In this case M4 = O(θ(Nsoprano)2), so we can essentially 11 bound this term by

θ(Nsoprano)2
∫ ∫ t0+δ

t0

|usoprano||ualto||utenor||ubaritone| dxdt.

We use Hölder’s inequality to take ualto and utenor in L4
x,t, and usopranoubaritone

in L2
x,t. Using two applications of (2.2) and one application of (2.4) we can bound

this by

θ(Nsoprano)2N−1/2
soprano

4∏
i=1

‖ui‖0,1/2+ . N−1/2
soprano

4∏
i=1

‖Dui‖0,1/2+.

The claim then follows by summing in the Ni.

• Case (b): Nsoprano ∼ Nbaritone.
In this case all the frequencies are comparable. The key observation is that for

|ξi| ∼ Nsoprano and ξ1 + ξ2 + ξ3 + ξ4 = 0, we have∣∣ M4

ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4

∣∣ .
θ(Nsoprano)2

N2
soprano

. (3.9)

To see this, we write the denominator as

ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 = (ξ1 − ξ2)(ξ1 + ξ2) + (ξ3 − ξ4)(ξ3 + ξ4)

= (ξ1 − ξ2 − ξ3 + ξ4)(ξ1 + ξ2)

= 2(ξ1 + ξ4)(ξ1 + ξ2)

and the numerator as

M4 =θ(ξ1)2 − θ(ξ2)2 + θ(ξ3)2 − θ(ξ4)2

=θ(ξ3 + (ξ1 + ξ2) + (ξ1 + ξ4))2 − θ(ξ3 + (ξ1 + ξ4))2

+ θ(ξ3)2 − θ(ξ3 + (ξ1 + ξ2))2;

the claim then follows from the double mean value theorem and the estimate

| d2

dξ2
(θ(ξ)2)| . θ(Nsoprano)2

N2
soprano

for all ξ = O(Nsoprano).
To use (3.9) we must use the spacetime Fourier transform, which requires us

to first modify the cutoff χ[t0,t0+δ](t). Write χ[t0,t0+δ](t) = a(t) + b(t), where a(t)

11To be more precise, one should replace ui by Mui, the Hardy-Littlewood maximal function

of ui. This is because the symbol M4 is equal to θ(Nsoprano)2 times a smooth multiplier which
obeys good kernel estimates. We omit the details. An alternate approach is to reduce to the case
when all the ui have non-negative spacetime Fourier transform (which is legitimate since the Xs,b

norms do not care about the phase of ũi), however the time cutoff χ[t0,t0+δ](t) then presents an

annoying technical difficulty (since its Fourier transform is not non-negative).
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is χ[t0,t0+δ](t) convolved with a smooth approximation to the identity of width
N−100

soprano, and b(t) = χ[t0,t0+δ](t)− a(t).
Consider the contribution of b(t). This term is essentially bounded by

θ(Nsoprano)2
∫ ∫

|b(t)||u1(t)||u2(t)||u3(t)||u4(t)| dxdt;

by Hölder’s inequality and (2.3) we may bound this by

N−10
soprano

4∏
i=1

‖ui‖0,1/2+

which easily sums to be acceptable.
Now consider the contribution of a(t). In light of the estimate

‖a(t)u1‖0,1/2+ . N0+
soprano‖u1‖0,1/2+

(see [13]) it suffices to show∫
Λ4(M4;u1(t), u2(t), u3(t), u4(t)) dt . N−1

soprano

4∏
i=1

‖Dui‖0,1/2+.

We may assume that the spacetime Fourier transforms of ui are non-negative. By
Plancherel and (3.9) it suffices to show that∫

ξ1+ξ2+ξ3+ξ4=0

∫
τ1+τ2+τ3+τ4=0

|ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 |ũ1(ξ1, τ1)ũ2(ξ2, τ2)ũ3(ξ3, τ3)ũ4(ξ4, τ4)

. Nsoprano

4∏
i=1

‖ui‖0,1/2+.

From the triangle inequality we have

|ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 | . |τ1 − ξ2
1 |+ |τ2 + ξ2

2 |+ |τ3 − ξ2
3 |+ |τ4 + ξ2

4 |;

interpolating this with the trivial bound of N2
soprano we obtain

|ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 | . Nsoprano(|τ1− ξ2
1 |1/2 + |τ2 + ξ2

2 |1/2 + |τ3− ξ2
3 |1/2 + |τ4 + ξ2

4 |1/2).

By symmetry, it thus suffices to show

|
∫

ξ1+ξ2+ξ3+ξ4=0

∫
τ1+τ2+τ3+τ4=0

|τ1 − ξ2
1 |1/2ũ1(ξ1, τ1)ũ2(ξ2, τ2)ũ3(ξ3, τ3)ũ4(ξ4, τ4)|

.
4∏

i=1

‖ui‖X0,1/2+ .

By Plancherel and Hölder’s inequality the left-hand side is bounded by

‖F(|τ1 − ξ2
1 |1/2ũ1)‖L2

t L2
x
‖u2‖L6

t L6
x
‖u3‖L6

t L6
x
‖u4‖L6

t L6
x

which is acceptable by (2.1) and the definition of X0,1/2+. This completes the proof
of Lemma 3.1, and hence of Theorem 1.1.
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4. Proof of Theorem 1.2: first attempt. We now prove Theorem 1.2. We shall
begin by giving a simplified version of the argument which does not capture the full
power of distHs(u0,Σ) in (1.7), but introduces the main ideas and establishes the
key multi-linear estimates (Lemma 4.2). In the next section, we shall give a better
version of this argument which recovers most of this power in the next section, and
then in the section after that we shall give the most refined version of the argument
that gives (1.7) with no loss.

This argument is very similar to the previous one, and we have deliberately given
the two arguments a nearly identical structure.

• Step 0. Preliminaries; introduction of the modified energy.
By the existing global well-posedness theory and a standard limiting argument

we may assume that u is a global smooth solution which is rapidly decreasing in
space.

Fix 0 < s < 1, u, and let N � 1 be chosen later. Let m(ξ) be a smooth even
real-valued symbol such that m(ξ) = 1 for |ξ| ≤ N and m(ξ) = |ξ|s−1/Ns−1 for
|ξ| > 2N , and let I be the Fourier multiplier

Îf(ξ) := m(ξ)f̂(ξ).

Thus I is the identity for frequencies |ξ| � N and is smoothing of order 1 − s for
high frequencies |ξ| & N .

In analogy with the quantity (3.3) used in the proof of Theorem 1.1, we define
the modified energy12 EN (t) by

EN (t) := L(Iu(t)), (4.1)

where the Lyapunov functional L() was defined in (1.4).
We now estimate EN (0). Write σ := distHs(u0,Σ), thus by hypothesis 0 < σ � 1

and there exists a ground state Q̃ ∈ Σ such that

‖u0 − Q̃‖Hs . σ.

Applying I, we see that
‖Iu0 − IQ̃‖H1 . N1−sσ.

On the other hand, since Q̃ is smooth, its Fourier transform is rapidly decreasing,
and

‖IQ̃− Q̃‖H1 . N−C (4.2)

for any C. Thus, if we assume

N & σ0−, (4.3)

we then have
‖Iu0 − Q̃‖H1 . N1−sσ.

By (1.6) we thus have
EN (0)− L(Q) . N2−2sσ2.

We shall make the assumption that

N2−2sσ2 � 1. (4.4)

The heart of the argument shall lie in the following almost conservation law for
the modified energy EN .

12In a more standard application of the I-method, e.g. [9], [11], [12], [20]) we would take
EN (t) = H(Iu(t)). The main difference here is thus to add an L2 component to the modified

energy in order to make the ground state cylinder an approximate minimizer of the energy.
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Lemma 4.1. If t0 ∈ R is such that EN (t0)− L(Q) � 1, then we have

EN (t0 + δ) = EN (t0) + O(N−1+) (4.5)

where δ > 0 is an absolute constant depending only on s.

As in the previous section, we do not know if the error bound O(N−1+) is sharp;
any improvement in this error estimate will ultimately lead to an improvement of
the t1−s+ factor in (1.7) (if one uses the most refined version of the argument below,
see Section 6).

• Step 1. Deduction of a weak form of (1.7) from Lemma 4.1.
If we assume Lemma 4.1, then we may iterate it to obtain EN (t) − L(Q) .

N2−2sσ2 for all

1 ≤ t � N1−N2−2sσ2, (4.6)

where we assume

N1−N2−2sσ2 � 1 (4.7)

(note that this automatically implies (4.3)).
Fix t as above. Then by (1.6) we have13

‖Iu(t)− Q̃(t)‖H1 . N1−sσ

for some ground state Q̃(t) ∈ Σ depending on t. Using (4.3) as before, we may
modify this to

‖Iu(t)− IQ̃(t)‖H1 . N1−sσ

which implies that
‖u(t)− Q̃(t)‖Hs . N1−sσ

and hence that

distHs(u(t),Σ) . N1−sσ. (4.8)

Optimizing in N subject to (4.4), (4.6), (4.7) we obtain

distHs(u(t),Σ) . t
1−s

3−2s−σ
1

3−2s− (4.9)

whenever t � σ−1/(1−s)−, which is a weak form of (1.7). In the next two sections
we shall use more refined arguments to improve this bound.

It remains to prove Lemma 4.1. This shall be done in several stages.

• Step 2. Control u at time t0.
From the hypothesis EN (t0)− L(Q) � 1 and (1.6) (or the Gagliardo-Nirenberg

inequality) we have

‖Iu(t0)‖H1 . 1. (4.10)

Up to powers of N , this is basically an Hs bound on u(t0), but to obtain good
exponents it is important that we work with the ‖Iu‖H1 norm rather than the
‖u‖Hs .

• Step 3. Control u on the time interval [t0 − δ, t0 + δ].

13Strictly speaking, to apply (1.6) we must assume beforehand that Iu(t) is close to a ground
state. But by hypothesis this is true at time t = 0, and so one may proceed by a standard
continuity argument which we omit. This continuity argument will also be used later in the paper

without further mention.
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We now claim that (4.10) implies the spacetime estimate

‖Iu‖
X

1,1/2+ε

[t0−δ,t0+δ]
. 1 (4.11)

if 0 < δ � 1 is a sufficiently small constant and 0 < ε � 1. As before, it suffices to
show the estimate

‖I(u1u2u3)‖1,−1/2+ε . ‖Iu1‖1,1/2+‖Iu2‖1,1/2+‖Iu3‖1,1/2+. (4.12)

We can write the left-hand side as

‖I〈∇〉(u1u2u3)‖0,−1/2+ε,

where I〈∇〉 is the multiplier with symbol m(ξ)〈ξ〉. Since m(ξ+η)〈ξ+η〉 . m(ξ)〈ξ〉+
m(η)〈η〉, we can use the fractional Leibnitz rule, together with (2.2) and its dual,
to obtain this estimate.

• Step 4. Control the increment of the modified energy.
Now that we have obtained (4.11), the next step is again the fundamental the-

orem of Calculus (3.8). We introduce the nonlinear functional Ω(v), defined on
smooth (H2 will do) functions v on R×R by the formula

Ω(v) :=
∫ t0+δ

t0

〈
iI

(
v(t)xx + F (v(t))

)
,−Iv(t)xx + Iv(t)− F (Iv(t))

〉
dt.

(4.13)

From (3.8), (1.5) and (1.1) we have

EN (t0 + δ)− EN (t0) = 2Ω(u), (4.14)

so in view of (4.11) it suffices to prove the following estimate, which we shall re-use
in later sections.

Lemma 4.2. We have
|Ω(v)| . N−1+

whenever
‖Iv‖

X
1,1/2+ε

[t0−δ,t0+δ]
. 1.

We now prove Lemma 4.2. By repeated integration by parts and a symmetriza-
tion (cf. the computations after (3.8)) we can expand the integrand in (4.13) as

〈iIvxx,−F (Iv)〉+ 〈iIF (v),−Ivxx + Iv − F (Iv)〉
=〈iIvxx,−F (Iv) + IF (v)〉+ 〈iF (v), I2v〉+ 〈iIF (v),−F (Iv)〉
=Re

(
iΛ4(−ξ2

1m(ξ1)(−m(ξ2)m(ξ3)m(ξ4) + m(ξ2 + ξ3 + ξ4)); v, v, v, v)

+ iΛ4(m(ξ4)2, v, v, v, v)

− iΛ6(m(ξ1 + ξ2 + ξ3)m(ξ4)m(ξ5)m(ξ6); v, v, v, v, v, v)
)

=Re
(
C1Λ4(M ′

4; v, v, v, v) + C2Λ4(M ′′
4 ; v, v, v, v) + C3Λ6(M6; v, v, v, v, v, v)

)
where C1, C2, C3 are imaginary constants and

M ′
4 := ξ2

1m(ξ1)
(
m(ξ2)m(ξ3)m(ξ4)−m(ξ2 + ξ3 + ξ4)

)
M ′′

4 := m(ξ1)2 −m(ξ2)2 + m(ξ3)2 −m(ξ4)2

M6 := m(ξ1 + ξ2 + ξ3)m(ξ4)m(ξ5)m(ξ6)−m(ξ1)m(ξ2)m(ξ3)m(ξ4 + ξ5 + ξ6).

It thus suffices to show the bounds
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|
∫ t0+δ

t0

Λ4(M ′
4;u1(t), u2(t), u3(t), u4(t)) dt| . N−1

4∏
i=1

‖Iui‖1,1/2+

(4.15)

|
∫ t0+δ

t0

Λ4(M ′′
4 ;u1(t), u2(t), u3(t), u4(t)) dt| . N−1

4∏
i=1

‖Iui‖1,1/2+

(4.16)

|
∫ t0+δ

t0

Λ6(M6;u1(t), u2(t), u3(t), u4(t), u5(t), u6(t)) dt| . N−1
6∏

i=1

‖Iui‖1,1/2+.
(4.17)

As before, we first restrict the Fourier support of ui to the region 〈ξi〉 ∼ Ni for
some Ni ≥ 1, and promise to sum in the Ni later.

• Step 4(a): Proof of (4.15).
We first prove (4.15). We shall assume that N2 ≥ N3 ≥ N4; the other cases are

similar. We may then assume N2 & N since the symbol vanishes otherwise.
We split into two cases: N2 � N3 and N2 ∼ N3.

• Case 4(a).1: N2 � N3.
We may assume that N1 ∼ N2 since ξ1+ξ2+ξ3+ξ4 = 0. We then bound the sym-

bol M ′
4 by N2

1 m(N1)m(N2) ∼ N1m(N1)N2m(N2), and estimate this contribution
by

N1m(N1)N2m(N2)
∫ ∫

|u1||u2||u3||u4|.

Applying Cauchy-Schwartz followed by two applications of (2.4) we obtain a bound
of

N
1/2
1 m(N1)N

1/2
2 m(N2)

4∏
i=1

‖ui‖0,1/2+ . N
−1/2
1 N

−1/2
2

4∏
i=1

‖Iui‖1,1/2+.

Summing in the Ni we see that this case is acceptable (we lose some logarithms of
N1 and N2 from the N3 and N4 summation, which is why we only end up with a
bound of N−1+ instead of N−1).

• Case 4(a).2: N2 ∼ N3.
Since 〈ξ2 + ξ3 + ξ4〉 ∼ N1, we may bound the symbol M ′

4 by N2
1 m(N1)2, and

estimate the contribution by

N2
1 m(N1)2

∫ ∫
|u1||u2||u3||u4|.

We bound N2
1 m(N1)2 . N1m(N1)N2m(N2) and apply (2.2) four times to bound

this by

N1m(N1)N2m(N2)
4∏

i=1

‖ui‖0,1/2+ .
1

N3m(N3)

4∏
i=1

‖Iui‖1,1/2+.

Summing in the Ni we see that this case is acceptable (again, the N1 and N4

summations cost us some logarithms).

• Step 4(b): Proof of (4.16) and (4.17).
Now we prove (4.16), which is rather easy due to the lack of derivatives in the

symbol. We may assume that N1 ≥ N2, N3, N4. We may assume that N1 & N
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since the symbol vanishes otherwise. Then if we bound the symbol M ′′
4 by O(1)

and use (2.2) we estimate this term by
4∏

i=1

‖ui‖0,1/2+ .
1

N1m(N1)

4∏
i=1

‖Iui‖1,1/2+.

Summing in the Ni we see that this case is acceptable, again losing some logarithms
in the N2, N3, N4 summations. (Indeed, it is clear one could extract far more decay
from this term if desired). Finally, the estimate (4.17) is similar to (4.16) (just use
(2.1) instead of (2.2)).

This concludes the proof of Lemma 4.2, hence of Lemma 4.1, which gives a weak
version of Theorem 1.2.

5. Proof of Theorem 1.2: second attempt. In the previous section we gave
a partial proof of Theorem 1.2, but with the wrong power of distHs(u0,Σ). The
problem was that we were not really exploiting the fact that u(t) was close to the
ground state cylinder Σ; for instance, the bound (4.10) would still be true if u
was at a distance ∼ 1 from the ground state cylinder in the ‖Iu‖H1 metric. To
improve upon these results we must consider not just u(t), but also the difference
w(t) := u(t) − Q(t) between u and an appropriate ground state Q(t) ∈ Σ. In
particular we wish to exploit the fact that w has small norm (with a bound which
depends linearly on σ).

In this section we use the above ideas to refine the argument of the previous
section, and obtain a near miss to (1.7). Unfortunately our power of distHs(u0,Σ)
will still be off by an epsilon, mainly because the smoothing operator I does not
quite preserve the ground state cylinder (so that IQ(t) is not a ground state).
To fix this problem and get the sharp power of distHs(u0,Σ) requires some further
refinements which we delay until the next section in order to simplify the exposition.

We now turn to our second attempt at proving Theorem 1.2, deliberately re-
peating much of the structure of the arguments from previous sections.

• Step 0. Preliminaries; introduction of the modified energy.
We make the same reductions as the previous section, and leave the definition of

the modified energy EN (t) from (4.1) unchanged. The main difference is that we
sharpen Lemma 4.1 to

Lemma 5.1. If t0 ∈ R is such that EN (t0) ≤ L(Q) + σ̃2 for some N−C < σ̃ � 1
for some arbitrary constant C, then we have

EN (t0 + δ) = EN (t0) + O(N−1+σ̃2) (5.1)

where δ > 0 is an absolute constant depending only on s.

As in the previous section, we do not know if the factor O(N−1+) can be im-
proved. The quadratic exponent σ̃2 is probably sharp, however, since the derivative
of EN (t0) will contain terms which are quadratic in the difference w(t) = u(t)−Q(t).

• Step 1. Deduction of a slightly weakened form of (1.7) from Lemma
5.1.

Assume Lemma 5.1 for the moment. We substitute this lemma, with σ̃ ∼ N1−sσ,
in place of Lemma 4.1 in Step 1 of the previous section; note that σ̃ is admissible
by (4.3). The argument then proceeds as before, with (4.6) replaced by

1 ≤ t � N
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(and (4.7) is no longer needed). For this range of t we obtain (4.8). Optimizing in
N subject to (4.3), (4.4), (4.6) we find that we may improve (4.9) to

distHs(u(t),Σ) . t1−s+σ1− (5.2)

whenever
t � σ−

1
1−s−.

This is within an epsilon of (1.7). To remove this last epsilon we shall need a more
refined argument, presented in the next section.

It remains to prove Lemma 5.1. This shall be done in the usual sequence of
stages. The main difference is that, instead of controlling u, we shall control a
difference w(t) = u(t)−Q(t) between u(t) and a suitably chosen ground state Q(t).
This will let us recover the powers of σ̃ in (5.1).

• Step 2. Control w at time t0.
Fix t0. By (1.6) there exists a ground state Qt0 ∈ Σ depending on t0 such that

‖Iu(t0)−Qt0‖H1 . σ̃.

The above estimate asserts that u(t0) is in some sense close to Qt0 . If u(t0) was
in fact equal to Qt0 , then the evolution of u(t) would follow the curve of ground
states14 Q(t) : R → Σ defined by

Q(t) := ei(t−t0)Qt0 . (5.3)

Thus it is natural to define w(t) := u(t)−Q(t). By (4.2) and the previous we have

‖Iw(t0)‖H1 . σ̃, (5.4)

where we have used the hypothesis that σ̃ & N−C for some C.

• Step 3. Control w on the time interval [t0 − δ, t0 + δ].
The idea is now to run a local well posedness argument for w instead of u in

order to gain the powers of σ̃ in (5.1). Specifically, we wish to obtain the spacetime
estimate

‖Iw‖
X

1,1/2+ε

[t0−δ,t0+δ]
. σ̃ (5.5)

for some small absolute constants 0 < δ � 1 and 0 < ε � 1.
To obtain this, we observe from (1.1) and (1.2) that w obeys the difference

equation

iwt + wxx = −G(w(t), Q(t)) (5.6)

where G is the nonlinear expression

G(w(t), Q(t)) := F (Q(t) + w(t))− F (Q(t)).

The exact form of G is not important, save for the fact that G is cubic in Q(t),
Q(t), w, w, and is always at least linear in w, w. By (5.4), (5.6) and the standard
Xs,b energy estimate (as in previous sections), we thus have

‖Iw‖
X

1,1/2+ε

[t0−δ,t0+δ]
. σ̃ + δ0+‖IG(w)‖

X
1,−1/2+2ε

[t0−δ,t0+δ]
.

14This heuristic is a little inaccurate because of the presence of the I, and also because the

error Iu(t0)−Qt0 can affect the modulation parameters of the approximating ground state. We
address these issues in the next section, when we remove the epsilon losses which arise from the

arguments in this section.
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By several applications of (4.12), and the observation that Q(t), Q(t) are Schwartz
in x and thus live in every (time-localized) Xs,b space, we therefore have

‖Iw‖
X

1,1/2+ε

[t0−δ,t0+δ]
. σ̃ + δ0+‖Iw‖

X
1,1/2+ε

[t0−δ,t0+δ]
+ δ0+‖Iw‖3

X
1,1/2+ε

[t0−δ,t0+δ]
.

The claim (5.5) then follows if δ is small enough by standard continuity (or iteration)
arguments.

• Step 4. Control the increment of the modified energy.
We now prove (5.1). By (4.14) it suffices to show that

Ω(Q(t) + w(t)) = O(N−1+σ̃2).

We could do this by direct computation, but we present instead a simple argument
(based on isolating the terms in Ω(Q(t)+w(t)) which are linear in w) which obtains
this bound as a nearly automatic consequence of Lemma 4.2.

To prove the above estimate it suffices by the hypothesis σ̃ & N−C to prove the
more general bound

Ω(Q(t) + k
w(t)
σ̃

) = O(N−1+|k|2) + O(N−C−1|k|) (5.7)

for any real number k such that |k| . 1.
To prove (5.7), first observe from (4.13) that the left-hand side of (5.7) is a

polynomial P (k) in k of degree at most 6 (with the coefficients depending on Q(t),
w(t), σ, of course). From (4.13), (1.2), and integration by parts we see that the
constant term of P is zero. Also, from Lemma 4.2 and (5.5) we see that the left-
hand side of (5.7) is O(N−1+) for all |k| . 1. Thus all the coefficients of P (k) are
O(N−1+). To finish the argument it suffices to show that the linear term of P (k)
is O(N−C−1). Equivalently, it suffices to show that the portion of Ω(Q(t) + w(t))
which is linear in w, w is O(N−C−1σ̃).

To show this we return to (4.14), and exploit the fact that IQ(t) is nearly a
minimizer of L. If we compute EN (t) = L(IQ(t) + Iw(t)) using (1.4) and suppress
terms which are not linear in w, w, we obtain

EN (t) =2〈IQ(t)x, Iw(t)x〉+ 2〈IQ(t), Iw(t)〉
− 2〈F (IQ(t)), Iw(t)〉+ nonlinear terms

Integrating by parts and using (1.2), we obtain

EN (t) = 2〈w(t), R(t)〉+ nonlinear terms

where
R(t) := I(IF (Q(t))− F (IQ(t))).

Differentiating this in time using (5.6), and again suppressing nonlinear terms, we
obtain

∂tEN (t) =2
〈
iwxx(t) + 2iw(t)Q(t)Q(t) + iQ(t)w(t)Q(t), R(t)

〉
+ 2〈w(t), ∂tR(t)〉+ nonlinear terms

We can bound the linear terms by (for instance)

. ‖w(t)‖2(‖R(t)‖H2 + ‖∂tR(t)‖2).
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Because Q(t) is Schwartz, the operator I is almost the identity on Q(t) or F (Q(t)),
and so it is easy to see that15

‖R(t)‖H2 + ‖∂tR(t)‖2 . N−C−1.

Also from (5.5) we have ‖w(t)‖2 . σ̃. Thus the linear part of Ω(Q(t) + w(t)) is
O(N−C−1σ̃) as desired. This proves (5.1), which then almost gives (1.7).

6. Proof of Theorem 1.2: final argument. In the previous sections one had to
assume (4.3) in order to use the approximation Q ≈ IQ. Ultimately this assumption
caused us to miss (1.7) by an epsilon. In order to avoid this loss we shall need to
avoid using the approximation Q ≈ IQ, at least in situations in which one does not
have enough powers of σ in the estimates.

• Step 0. Preliminaries; introduction of the modified energy.
This step is the same as in the previous section, except that we need to replace

the modified energy L(Iu) from (4.1) by a slightly different quantity (because IQ
is not quite a minimizer of L).

To motivate the argument we first recall the more precise statement of Wein-
stein’s estimate (1.6):

Lemma 6.1. [27], [26] Let Q̃ ∈ Σ be a ground state, and let w ∈ H1 obey the two
orthogonality conditions16

〈w,AF (Q̃)〉 = 0 for A = i, ∂x

Then, if the H1 norm of w is sufficiently small, we have the coercivity estimate

L(Q̃ + w)− L(Q̃) = L(Q̃ + w)− L(Q) ∼ ‖w‖2H1 .

Note that the two anti-selfadjoint operators A = i, ∂x are the infinitesimal gen-
erators of the phase rotation and translation groups respectively, both of which
preserve the ground state cylinder Σ.

We shall need to apply this lemma to estimate quantities of the form L(Q(t) +
Iw(t)) (which will be our substitute for L(Iu)). Thus we shall require w to obey
the orthogonality conditions17

〈w(t), AIF (Q(t))〉 = 0 for A = i, ∂x (6.1)

for all times t.
To use Lemma 6.1 we thus need a decomposition u = Q(t)+w(t) of the solution

u which obeys (6.1). This is the purpose of the following Lemma.

Lemma 6.2. If u ∈ Hs(R) is such that distHs(u, Σ) � Ns−1, and N is sufficiently
large depending on s, then we may decompose u = Q̃+w, where Q̃ ∈ Σ is a ground
state, w obeys the orthogonality conditions

〈w,AIF (Q̃)〉 = 0 for A = i, ∂x (6.2)

and the bound

‖Iw‖H1 . N1−sdistHs(u, Σ). (6.3)

15Note that the time derivative ∂t on R(t) is not dangerous because the time-dependence of

Q(t) and R(t) are given by a simple phase rotation eit. In the next section however we shall need
a more sophisticated time evolution for the approximating ground state Q(t).

16If one writes u := Q̃ + w, then these orthogonality conditions have the geometric interpreta-
tion that Q̃ is the closest ground state in Σ to u, as measured in H1 norm.

17This trick of choosing Q(t) to obey carefully selected orthogonality conditions is very common

in stability analysis, see e.g. [22].
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Proof Define the metric d on Hs by

d(u, v) := ‖I(u− v)‖H1 = (〈I(u− v), I(u− v)〉+ 〈∂xI(u− v), ∂xI(u− v)〉)1/2
.

Clearly we have
d(u, Σ) . N1−sdistHs(u, Σ) � 1.

We now claim that there exists a ground state Q′ in Σ which minimizes d(u, Q′),
so that d(u, Q′) = d(u, Σ). To see this, first observe (since u was assumed to be
smooth and rapidly decreasing) that 〈Iu, IeiθQ(x − x0)〉 → 0 as x0 → ±∞, and
similarly for 〈∂xIu, ∂xIeiθQ(x− x0)〉. By orthogonality we thus have

d(u, eiθQ(x− x0)) → (‖Iu‖2H1 + ‖IQ‖2H1)1/2 & 1 � d(u, Σ)

as x0 → ±∞. Thus, in order to minimize d(u, Q′) on Σ, it suffices to restrict Q′ to
a compact subset of the cylinder Σ. By compactness and smoothness we then see
that a minimizer Q′ must exist.

Observe that the statement and conclusion of Lemma 6.2 is invariant under
translations and modulations of u (and hence of Q̃ and w). By these invariances
we may thus assume that the minimizer Q′ is attained at Q′ = Q, thus

d(u, Q) = d(u, Σ) . N1−sdistHs(u, Σ) � 1. (6.4)

The tangent space of Σ at Q is spanned by iQ and Qx. Differentiating

d(u, Q)2 = 〈I(u−Q), I(u−Q)〉+ 〈∂xI(u−Q), ∂xI(u−Q)〉

in these directions, we thus see that

〈I(u−Q), iIQ〉+ 〈∂xI(u−Q), iIQ〉 = 0;

〈I(u−Q), IQx〉+ 〈∂xI(u−Q), ∂xIQx〉 = 0.

Integrating by parts and using (1.2) we obtain

〈w̃, AI2F (Q)〉 = 0 for A = i, ∂x (6.5)

where w̃ := u−Q. This is almost what we want, except that we have I2 instead of
I. To rectify this we shall need to use perturbation theory to shift and modulate the
ground state slightly. In other words, we set Q̃ := eiθQ(x−x0) for some |θ|, |x0| � 1
to be chosen later. Writing q := Q̃−Q and

w := u− Q̃ = w̃ − q,

we see from (6.5) that (6.2) becomes

〈w̃ − q, AIF (Q + q)〉 − 〈w̃, AI2F (Q)〉 = 0 for A = i, ∂x.

We rearrange this as

〈q, AIF (Q + q)〉 − 〈w̃, AI(F (Q + q)− F (Q))〉 = 〈Iw̃, A(1− I)F (Q)〉 for A = i, ∂x.
(6.6)

Since F (Q) is Schwartz, the right-hand side is O(N−100‖Iw̃‖H1) = O(N−99distHs(u, Σ))
by (6.4). Now we expand the left-hand side to first order in θ, ξ0. Observe that

q = Q̃−Q = θiQ− x0Qx + OH2(|θ|2 + |x0|2)

where OH2(X) denotes a quantity whose H2 norm is O(X). Similarly we have

F (Q + q)− F (Q) = θG + x0H + OH2(|θ|2 + |x0|2)
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where G, H are explicit Schwartz functions whose exact form is not important for
us. Thus (6.6) becomes

θ〈iQ,AIF (Q)〉 − x0〈Qx, AIF (Q)〉 − θ〈w̃, AIG〉 − x0〈w̃, AIH〉
= O(N−99dists

H(u, Σ)) + O(|θ|2 + |x0|2) for A = i, ∂x,

which we can write as a matrix system(
〈iQ, iIF (Q)〉 − 〈w̃, iIG〉 −〈QxiIF (Q)〉 − 〈w̃, iIH〉
〈iQ, ∂xIF (Q)〉 − 〈w̃, ∂xIG〉 −〈Qx∂xIF (Q)〉 − 〈w̃, ∂xIH〉

) (
θ
x0

)
= O(N−99dists

H(u, Σ)) + O(|θ|2 + |x0|2). (6.7)

Since G and H are Schwartz, we have

〈w̃, AIG〉, 〈w̃, AIH〉 = O(‖Iw̃‖H1) = O(d(u, Q)) � 1 for A = i, ∂x

by (6.4). Also, an easy integration by parts using (4.2) gives the estimates

〈iQ, iIF (Q)〉 = ‖Q‖44 + O(N−100)

〈Qx, iIF (Q)〉, 〈iQ, ∂xIF (Q)〉 = O(N−100)

〈Qx, ∂xIF (Q)〉 = 3
∫

Q2Q2
x + O(N−100).

Thus if N is large enough, the matrix in (6.7) has a non-degenerate Jacobian at
the point (θ, x0) = (0, 0). By the inverse function theorem (or the contraction
mapping theorem) we can thus solve (6.6) for some θ, x0 = O(N−99distHs(u, Σ)).
The condition (6.3) then follows from (6.4) (since the distance between Q and Q̃ is
O(|θ|+ |x0|) = O(N−99distHs(u, Σ)) in any reasonable norm).

Applying this Lemma at each time t we thus have ground states Q(t) and a
function w(x, t) such that u(t) = Q(t) + w(t) and the orthogonality relations (6.1)
hold for all times t for which distHs(u, Σ) � Ns−1. (We can ignore this latter
condition by standard continuity arguments, since we will eventually verify this
hypothesis (with some room to spare) at the end of the argument).

We now redefine the modified energy EN (t) as

EN (t) := L(Q(t) + Iw(t)). (6.8)

This should be compared to the energy L(IQ(t) + Iw(t)) from (4.1) used in the
previous section. From Lemma 6.1 we have the analogue of (1.6)

EN (t)− L(Q) ∼ ‖Iw(t)‖2H1 (6.9)

whenever ‖Iw(t)‖H1 is sufficiently small. In particular, at time zero we see from
Lemma 6.2 that

EN (0)− L(Q) ∼ ‖Iw(0)‖2H1 . N2−2sσ2.

The analogue of Lemma 5.1 is

Lemma 6.3. If t0 ∈ R is such that EN (t0) ≤ L(Q)+ σ̃2 for some 0 < σ̃ � 1, then
(5.1) holds for some δ > 0 which is an absolute constant depending only on s.

• Step 1. Deduction of (1.7) from Lemma 6.3.
We repeat Step 1 of the previous section, using (6.9) as a substitute for (1.6).

The main differences are that there is no hypothesis of the form σ̃ > N−C in Lemma
6.3, so that there is no need to assume (4.3). We omit the details.
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Note that while there is some logarithmic losses in the O(N−1+) factor of (5.1),
there are none in the σ̃2 factor. This is what allows us to get the sharp power of
distHs(u0,Σ) in (1.7), although the power t1−s+ is probably not sharp.

It remains to prove Lemma 6.3, which we divide into the now-familiar sequence
of steps.

• Step 2. Control w at time t0.
We now prove Lemma 6.3. Fix t0. By (6.9) we again obtain (5.4).

• Step 3. Control w on the time interval [t0 − δ, t0 + δ].
As before, the next step is to obtain (5.5). It will be convenient to write Q(t)

more explicitly as

Q(x, t) =: eiθ(t)eitQ(x− x0(t)) (6.10)

where the modulation parameters θ(t), x0(t) are real-valued; we shall shortly derive
equations for the evolution of these parameters. This ansatz should be compared
with (5.3); note that the standard ground state u(t) = eitQ occurs when θ, x0, w
all identically vanish.

From (1.1), (1.2), (6.10) we see that w obeys the difference equation

iwt + wxx = −G(w(t), Q(t))−Q(t)− iQ(t)t

= −G(w(t), Q(t)) + θ̇(t)Q(t) + iẋ0(t)∂xQ(t)
(6.11)

where G was defined in the previous section. We may thus repeat Step 3 of the
previous section, provided that we can show the estimate

‖θ̇(t)Q(t) + iẋ0(t)∂xQ(t)‖
X

1,−1/2+ε

[t0−δ,t0+δ]
. ‖Iw‖

X
1,1/2+
[t0−δ,t0+δ]

.

Since Q(t) is Schwartz, it suffices to show that

|θ̇(t)|, |ẋ0(t)| . ‖w(t)‖Hs . ‖Iw(t)‖H1 . (6.12)

To do this, we argue in a manner reminiscent of the proof of Lemma 6.2. We
first introduce the renormalized function w̃(t) defined by

w̃(x, t) := e−iθ(t)e−itw(x + x0(t)).

From (6.11) and (6.10) we see that w̃ evolves according to the equation

iw̃t + w̃xx = −G(w̃,Q) + θ̇(t)(Q + w̃) + w̃ + ẋ0(t)∂x(Q + w̃).
(6.13)

On the other hand, from (6.1) we have the orthogonality relations

〈w̃(t), Aj〉 = 0 for j = 0, 1,

where A0, A1 are the Schwartz functions

A0 := I(iQ3); A1 := I∂x(Q3).

Let j = 0, 1. Differentiating the previous in time and then applying (6.13) we
obtain

−〈iw̃xx, Aj〉 = −θ̇(t)〈i(Q+w̃), Aj〉+〈iw̃, Aj〉+ ẋ0(t)〈∂x(Q+w̃)Aj〉−〈iG(w̃,Q), Aj〉
which we rewrite as

〈i(Q + w̃), Aj〉θ̇(t)− 〈∂x(Q + w̃), Aj〉ẋ0(t) = −〈w̃, i(Aj)xx〉+ 〈G(w̃,Q), iAj〉

This is a linear system of two equations j = 0, 1 and two unknowns θ̇(t), ẋ0(t). To
invert this system we first observe that the right hand side is O(‖w‖Hs) since the
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Aj are Schwartz. Also, since IQ−Q has norm O(N−100) in any reasonable space,
we have the coefficient estimates

〈i(Q + w̃), A0〉 = 〈iQ, iQ3〉+ 〈i(IQ−Q), iQ3〉+ O(‖w̃‖Hs)

= ‖Q‖44 + O(N−100) + O(‖w̃‖Hs)

〈i(Q + w̃), A1〉 = 〈iw̃, A1〉+ O(N−100)

= O(‖w̃‖Hs) + O(N−100)

〈∂x(Q + w̃), A0〉 = −〈w̃, ∂xA0〉+ O(N−100)

= O(‖w̃‖Hs) + O(N−100)

〈∂x(Q + w̃), A1〉 = 〈∂xQ, ∂x(Q3)〉+ 〈∂x(IQ−Q), ∂x(Q3)− 〈w, ∂xA1〉
= −〈Qxx, Q3〉+ O(N−100) + O(‖w̃‖Hs).

Observe that the absolute constants ‖Q‖44 and −〈Qxx, Q3〉 = 3
∫

Q2Q2
x are both

non-zero. Thus if N is sufficiently large and ‖w̃‖Hs = ‖w‖Hs is sufficiently small,
we can invert the above 2× 2 linear system and obtain the desired bounds (6.12).
Note that this argument shows that one can make θ(t) and x0(t) differentiable in t.

This completes the proof of (5.5). In particular we have the bounds

‖w(t)‖Hs . ‖Iw(t)‖H1 . σ (6.14)

on the interval [t0 − δ, t0 + δ], so from (6.12) we have

|θ̇(t)|, |ẋ0(t)| . σ̃. (6.15)

• Step 4. Control the increment of the modified energy.
We now prove (5.1) again (or more precisely, we prove (5.1) for the new definition

(6.8) of the modified energy). We write

EN (t) = L(e−itQ(t) + e−itIw(t)).

We now use (1.5) to obtain

∂tEN (t) = 2〈Q(t)t−iQ(t)+Iwt−iIw,−∂xx(Q(t)+Iw)+(Q(t)+Iw)−F (Q(t)+Iw)〉.

We simplify the right factor using (1.2) to obtain

∂tEN (t) = 2〈Q(t)t − iQ(t) + Iwt − iIw,−Iwxx + Iw −G(Iw,Q(t))〉.

From (6.10), (6.11) we have

Q(t)t − iQ(t) + Iwt − iIw = iθ̇(t)(Q(t)− IQ(t))− ẋ0(t)∂x(Q(t)− IQ(t))

+ I(iwxx − iw + iG(w,Q(t))).

To show (5.1), it thus suffices by (3.8), (6.15) to show the bounds∫ t0+δ

t0

σ̃|〈Q(t)− IQ(t),−Iwxx + Iw −G(Iw,Q(t))〉| dt . N−1+σ̃2

(6.16)∫ t0+δ

t0

σ̃|〈∂x(Q(t)− IQ(t)),−Iwxx + Iw −G(Iw,Q(t))〉| dt . N−1+σ̃2

(6.17)

|
∫ t0+δ

t0

〈I(iwxx − iw + iG(w,Q(t))),−Iwxx + Iw −G(Iw,Q(t))〉 dt| . N−1+σ̃2.
(6.18)
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To prove (6.16), (6.17) we use integration by parts to move all the derivatives
onto Q(t)− IQ(t). This function has a norm of N−100 in any reasonable space. By
(6.14) we thus see that these terms are acceptable.

We now prove (6.18). Again we could do this by direct computation, but we
shall instead just use the work that we have already done in previous sections. By
(5.5) it suffices to show

|
∫ t0+δ

t0

〈iIwxx−iIw+iIG(w,Q(t)),−Iwxx+Iw−G(Iw,Q(t))〉| . N−1+‖Iw‖2
X

1,1/2+ε

[t0−δ,t0+δ]
.

The left-hand side consists of multilinear expressions of order between 2 and 6 in
w. Thus (cf. Step 4 of the previous section) it suffices to prove the estimate

|
∫ t0+δ

t0

〈iIw̃xx − iIw̃ + iIG(w̃,Q(t)),−Iw̃xx + Iw̃ −G(Iw̃,Q(t))〉| . N−1+

for all spacetime functions w̃ in the unit ball of X
1,1/2+ε
[t0−δ,t0+δ]. Note that the parameter

σ̃ has totally disappeared, and so we are now able to lose factors of O(N−100) as
necessary.

We now convert the above expression into one which can be dealt with by Lemma
4.2. Fix w̃, and define the functions v(t) by

v(t) := w̃(t) + Q(t).

From (1.2) we have

iIw̃xx − iIw̃ + iIG(w̃,Q(t)) = I(ivxx − iv + iF (v)).

Similarly we have

−Iw̃xx + Iw̃ −G(Iw̃,Q(t)) = −Ivxx + Iv − F (Iv) + B(t)

where the error B(t) is given by

B(t) := [F (Iw̃ + IQ(t))− F (Iw̃ + Q(t))]− [IF (Q(t))− F (Q(t))].

Recall that IQ(t) is within O(N−100) to Q(t) in H1 norm (say), and similarly for
IF (Q(t)) and F (Q(t)). Since Iw̃ is also bounded in H1, we thus have

‖B(t)‖H1 . N−100,

and so the contribution of B(t) is easily seen to be acceptable. Thus it remains to
show that

|
∫ t0+δ

t0

〈I(ivxx + iv − iF (v),−Ivxx + Iv − F (Iv)〉| . N−1+.

From integration by parts we have the identity

〈iIv,−Ivxx + Iv − F (Iv)〉 = 0

so it suffices to show

|
∫ t0+δ

t0

〈I(ivxx − iF (v),−Ivxx + Iv − F (Iv)〉| . N−1+.

But this is immediate from Lemma 4.2 and (4.13). This finishes the proof of (5.1),
and thus Theorem 1.2 is (finally!) completely proved.
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