COMBINATORICS IS

what combinatorialists do!

One definition:

arranging the elements of sets (usually "discrete", often finite ones) into definite patterns. Examples include:

$$\begin{array}{ll} [n] & = \{1,2,...,n\}. \\ N & = \{1,2,3,...\} \\ N_0 & = \{0,1,2,3,...\} \\ \end{array}$$

Set of all binary sequences of length 10

What kind of issues arise?

- Counting (C)
- Existence (E)
- Optimization (O)

Applications

- Exam scheduling without conflicts (E)
- Transportation problem (O)
- License plate numbers (C)

Ancient Roots

- magic squares (China, 2200 BCE)
- permutations (China, 1100 BCE)
- n-permutations (Sefer Yetzirah, 200-500 CE) movement of heavenly bodies
- Pascal, Fermat (16-17th CE) gambling

Euler (Konigsberg bridge)

Bernoulli (1st book)

Hamilton (graph theory applications)

Let's examine some puzzles and play some games to start.

A. Puzzle

Find the fewest # of steps to get from (a) to (b) where a step is a movement of 1 ball.

Solution:

3 steps are required.

B. Tower of Hanoi

$$n = 1 \checkmark a_1 = 1$$

 $n = 2 \checkmark a_2 \le 3 \text{ and } a_2 > 2 \Rightarrow a_2 = 3.$

Existence

$$\begin{array}{ll} \text{Optimization} & a_{n+1} \leq 2a_n + 1 & \text{Recursion} \\ a_n = 2^n \text{-} 1 & a_{n+1} = 2a_n + 1 \text{ ,} & a_1 = 1. \end{array}$$

C. Game of SIM

Given 6 dots in the plane, and 2 players Red and Blue. Each move consists of joining a pair of dots by a Red or Blue line. Winner is the 1st person to form a triangle in a single colour.

What is the maximum number of moves?

Is there always a winner?

Is there a winning strategy? Does it matter whether you go first or second? Winner? If not, end of game configuration has vertex #1 with 5 lines coming out of it, so at least 3 of them have the same colour, say blue. Look at the 3 end points of these lines. If all the lines joining them are red, we have a red _. Otherwise one line is blue, so together with the 2 blue lines from vertex #1, we have a blue _. Thus, there is always a winner.

Exercise: Is there a winning strategy for player #2?

Exercise: In SIM Misère, the object is to force the <u>other</u> player to complete the first triangle, who then is <u>loser</u>. Is there a winning strategy and if so for which player?

(G.J. Simmons, The game of SIM, J. Recreational Math 2 (1969), 66).

<u>THEOREM</u>: In SIM Misère, if both players play optimally, the <u>first</u> player will lose on the 15th move, at which time he/she will form 2 triangles of his/her colour.

These are examples of Achievement/Avoidance Games.

D. SPROUTS (Conway)

- n dots
- players move alternately by joining any pair of dots by a (possibly curved) line segment, put new dot in the "middle"
- restrictions:
 - no crossing except at dots
 - no dot has > 3 rays emanating from it.
- player to make <u>last move wins</u>.

Questions: Is there a winning strategy? If so, describe it.

Finite game? Max # of moves?

Answer: Sprouts must end in $\leq 3n-1$ moves if we start with n dots (\Rightarrow Finite game) Proof: Each dot has 3 "lives" so we begin with 3n lives. Each time we connect 2 dots we destroy two lives, but we add one since we put in new dot in the middle of the segment which already has 2 rays attached to it. So net loss of life associated with each move is 1.

Thus, game must end in $\le 3n$ moves. In fact, we can sharpen this bound. Suppose we could have 3n moves. Final graph would have n (original) + 3n (new) = 4n vertices, and (3n)2 = 6n edges. Must have at least one vertex of degree 2 (the last one created) and all others have degree at most 3. But this is not possible - try to figure out why. (Hint: show that twice the number of edges must be equal to the sum of the degrees of all the vertices, so $12n \le 3 (4n - 1) + 2$, contradiction.)

Basic Counting Rules and Why They Work

Want to represent letters of alphabet with 2 digit binary strings. How many letters are possible?

<u>Product Rule</u>: n_1 ways to do 1st thing, n_2 ways to do second (irrespective of outcome for first) then $n_1 \times n_2$ ways to do BOTH

Example: How many Licence Plates (Ont.) can be issued, if each consists of 3 letters followed by 3#'s?

What is the solution if the three letters and three numbers can come in any order?

$$\binom{6}{3}26^3 \cdot 10^3$$

Here's a more formal mathematical approach to the Product Rule: suppose S is the set of

solutions to some combinatorial problem. Suppose we can write S in the form $S = S_1 \times S_2$. Then card $(S) = \text{card } (S_1) \times \text{card } (S_2)$.

More generally, if $S = S_1 \times S_2 \times ... \times S_n$, then

card (S) =
$$\prod_{i=1}^{n}$$
 card (S_i).

Exercise: Find the number of divisors of 21? of 168?

(Hint: $168 = 2^4 \cdot 3^3 \cdot 7^2$).

Books

5 Spanish, 4 French, 7 English

How many ways to choose 3, no two from same category?

$$5 \times 4 \times 7$$

Number of ways to choose a pair of books from the above collection not in the same language:

S-F 20 S-E 35 F-E 28 so total by the sum rule is 83

If you can do one thing in n_1 ways, second thing in n_2 ways, there are $n_1 + n_2$ ways that you can do either 1st or 2nd (not both). (SUM Rule)

Choose 3 letter sequences using a,b,c,d,e,f

- a) allow repetition
- b) no repetition
- c) no repetition and must contain e
- d) allow repetition and must contain e
- a) 6^3 (product rule)
- b) 6.5.4 (product rule)
- c) 60 = (5.4) + (5.4) + (5.4)
- d) $6^3 5^3 = 91$

Exercise: Solve part d) by considering three separate cases, ie, 1e, 2e, or 3e.

Here is a move formal mathematical approach to the sum rule: let S be the set of solutions to some mathematical problem. Suppose we can write $S = S_1 \cup S_2$, where $S_1 \cap S_2 = \emptyset$. Then card $(S) = \text{card}(S_1) + \text{card}(S_2)$.

More generally, if we have $S = \bigcup_{i=1}^{n} S_i$, and $S_i \cap S_j = \emptyset$ if

$$i \neq j$$
, then card $(S) = \sum_{i=1}^{n} card (S_i)$.

Note: The collection $\{S_1, S_2, ..., S_n\}$ is called an n-partition of the set S. The subsets S_i in the partition are pairwise disjoint (since $S_i \cap S_i = \emptyset$).

Exercise: Prove the general form of the product rule and the sum rule using induction.

Exercise: Suppose two baseball teams A and B play a "best of five" series, that is, the winner is the team to first win 3 games. Find the number of different possible outcomes in which team A wins.

Permutations

arrangements of a <u>set</u> of distinct objects (sometimes we also arrange "multisets", those are sets which allow multiple copies of the same element; another way of viewing this is we arrange with repetition of elements allowed).

n elt. set S, there are $n! = n \cdot (n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1$ arrangements of the elt of S. There are: $n(n-1) \dots (n-r+1)$ ways to create r-elt. sequences from the elt. of S.

NOTATION
$$[n] = \{1,2,..., n\}, n^n = n!$$
"Falling factorial" $n^r = n(n-1) ... (n-r+1)$
Rising " $n^r = n(n+1) ... (n+r-1)$
Notice: $n^r = n!/(n-r)!$

$$n^{\underline{r}} = (n+r-1)!/(n-1)! = (n+r-1)^{\underline{r}}$$